
Submitted to INFORMS Journal on Computing
manuscript (Please, provide the mansucript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Service Provisioning Problem in Cloud and
multi-Cloud Systems

Mauro Passacantando
Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy, mpassacantando@di.unipi.it

Danilo Ardagna, Anna Savi
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan,

Italy, danilo.ardagna@polimi.it, anna.savi@mail.polimi.it

Cloud Computing is a new emerging paradigm that aims at streamlining the on-demand provisioning of

resources as services, providing end-user with flexible and scalable services accessible through the Internet

on a pay-per-use basis. Since modern Cloud systems operate in an open and dynamic world characterized

by continuous changes, the development of efficient resource provisioning policies for Cloud-based services

becomes increasingly challenging.

This paper aims to study the hourly basis service provisioning problem through a generalized Nash game

model. We take the perspective of SaaS (Software as a Service) providers which want to minimize the

costs associated with the virtual machine instances allocated in a multi-IaaSs (Infrastructure as a Service)

scenario, while avoiding incurring in penalties for requests execution failures and providing quality of service

guarantees. SaaS providers compete and bid for the use of infrastructural resources, while the IaaSs want to

maximize their revenues obtained providing virtualized resources.

We propose a solution algorithm based on the best-reply dynamics, which is suitable for a distributed

implementation. We demonstrate the effectiveness of our approach by performing numerical tests, considering

multiple workloads and system configurations. Results show that our algorithm is scalable and provides

significant cost savings with respect to alternative methods (5% on average but up to 260% for individual

SaaS providers). Furthermore, varying the number of IaaS providers 8–15% cost savings can be achieved

from the workload distribution on multiple IaaSs.

Key words : Cloud Computing; Game Theory; Generalized Nash Equilibrium

History :

1. Introduction.

Handling workloads of great diversity and enormous scale is necessary in all the most sig-

nificant fields of today society, due to the penetration of Information and Communications

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/93751395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Technology (ICT) in our daily interactions with the world both at personal and community

levels, encompassing business, commerce, education, manufacturing, and communication

services. With the rapid development of computing and storage technologies, and with the

success of the Internet, computing resources have become cheaper, more powerful and more

universally available than ever before. In such a setting, dynamic systems are required

to provide services and applications that are more competitive, more scalable, and more

responsive with respect to traditional systems. This technological trend has enabled the

realization of a new computing paradigm called Cloud Computing, in which resources (e.g.,

CPU and storage) are provided as general utilities that can be leased by users through the

Internet in an on-demand fashion.

The Cloud-based services are not only restricted to software applications (Software as a

Service – SaaS), but could also be the platform for the deployment and execution of appli-

cations developed in house (Platform as a Service – PaaS) and the hardware infrastructure

(Infrastructure as a Service – IaaS).

In the SaaS paradigm, applications are available over the Web and provide Quality of

Service (QoS) guarantees to end-users. SaaS providers host both the applications and the

data, hence end-users are able to use and access services from all over the world. With

PaaS, applications are developed and deployed on platforms transparently managed by the

Cloud provider. Platforms typically include databases, middleware, and also development

tools. In IaaS systems, virtual computer environments are provided as services and servers,

storage, and network equipment can be outsourced by customers without the expertise to

operate them.

Many companies are offering Cloud Computing services such as Google App Engine

(Google Compute Engine 2014), Amazon Elastic Compute Cloud (EC2) (Amazon Web

Services 2014) or Microsoft Windows Azure (Microsoft Windows Azure 2014). Large data

centers provide the infrastructure behind the Cloud and virtualization technology makes

Cloud computing resources more efficient and cost-effective both for providers and cus-

tomers. Indeed, end-users obtain the benefits of the infrastructure without the need to

implement and administer it directly, adding or removing capacity almost instantaneously

on a “pay-as-you-use” basis. On the other hand, Cloud providers can maximize the uti-

lization of their physical resources also obtaining economies of scale.

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 3

The development of efficient service provisioning policies is among the major issues

in Cloud research. Indeed, modern Cloud applications operate in an open and dynamic

world characterized by continuous changes which occur autonomously and unpredictably.

Moreover, the rapid growth of the Internet and traditional ICT problems, such as resource

allocation or QoS, pricing and load shedding, has led to a very complex interaction between

all the involved competitors.

In such context, Noncooperative Game Theory models have been successfully applied

to diverse problems such as Internet pricing, flow and congestion control, routing, and

networking (Altman et al. 2006). One of the most widely used solution concept in Game

Theory is the Nash Equilibrium (Nash 1951): a set of strategies for the players constitute

a Nash Equilibrium if no player can benefit by changing his/her strategy unilaterally or,

in other words, every player is playing a best response to the strategy choices of his/her

opponents.

Many approaches have been used to represent, model, and manage Cloud services at

run-time through Game Theory tools. In (Feng et al. 2014) authors present an in-depth

game theory study on price competition, moving progressively from a monopoly market to

a duopoly market, and finally to an oligopoly Cloud market. They characterize the nature

of noncooperative competition in a Cloud market with multiple competing Cloud service

providers, derive algorithms that represent the influence of resource capacity and operat-

ing costs on the solution and they prove the existence of a Nash equilibrium. A model

of competitive equilibrium and market dynamics in an e-commerce scenario is proposed

in (Dube et al. 2007). Here the authors analyse pricing choices and decisions to outsource

ICT systems providing a representation of the Internet competition and the solution maxi-

mizing profits. A recent survey on Cloud service pricing models is provided also in (Gohad

et al. 2013).

Studies on the maximization of the social welfare as a long-term social utility are dis-

cussed in (Menache et al. 2011). Under appropriate convexity assumptions on the operating

costs and individual utilities, the work established the existence and uniqueness of the

social optimum, considering relevant queuing aspects in a centralized setting. Furthermore,

other studies are presented in (Wan et al. 2012), where authors employ a bidding model to

solve the resource allocation problem in virtualized servers with multiple instances compet-

ing for resources. A unique equilibrium point is obtained. A similar discussion can be found

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

in (Wei et al. 2010) where a QoS constrained parallel tasks resource allocation problem is

considered. In (Abhishek et al. 2012) the authors consider two simple pricing schemes for

selling Cloud instances and study the trade-off between them. Exploiting Bayesian Nash

equilibrium the authors provide theoretical and simulation based evidence suggesting that

fixed prices generate a higher expected revenue than hybrid systems. Using Bellman equa-

tions and a dynamic bidding policy in (Zafer et al. 2012), an optimal strategy under a

Markov spot price evaluation is found to serve jobs with deadline and availability con-

straints. Another work regarding on-spot bidding is proposed in (Song et al. 2012). Authors

propose a profit aware dynamic bidding algorithm, which observes the current spot price

and selects bids adaptively to maximize the average profit of a Cloud service broker while

minimizing its costs in a spot instance market.

In this paper, we take the perspective of SaaS providers which host their applications

at multiple IaaS providers. Each SaaS provider wants to minimize the cost of use of Cloud

resources and penalties for requests execution failures. The cost minimization is challenging

since on-line services receive dynamic workloads that fluctuate over multiple time scales.

Resources have to be allocated flexibly at run-time according to workload fluctuations.

Furthermore, each SaaS behaves selfishly and competes with others SaaS for the use of

infrastructural resources supplied by IaaS providers. Each IaaS, in his turn, wants to max-

imize the revenues obtained providing the resources.

To capture the behavior of SaaSs and IaaSs in this conflicting situation, in which the

best choice for one depends on the choices of the others, we recur to the Generalized Nash

Equilibrium (GNE) concept (see e.g., (Bigi et al. 2013, Cavazzuti et al. 2002, Debreu 1952,

Facchinei and Kanzow 2010a, Rosen 1965)). GNE is an extension of the Nash equilib-

rium, in which not only the objective function but also the feasible region of each player

depend on the strategies chosen by the other players. We propose a solution algorithm

based on the best-reply dynamics, which is suitable for a fully distributed implementation.

We demonstrate the effectiveness of our approach by performing numerical analyses, con-

sidering multiple workloads and system configurations, and comparing our solution with

other literature approaches. Results show that our algorithm is scalable and provides sig-

nificant cost savings with respect to alternative methods (5% on average but up to 260% for

individual SaaS providers can be obtained). Furthermore, by varying the number of IaaS

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 5

providers we show that 8-15% cost savings can be achieved from the workload distribution

on multiple IaaSs.

In (Ardagna et al. 2011, 2013, Anselmi et al. 2013) we used the GNE concept for a

service provisioning problem where the perspective of SaaS providers hosting their appli-

cations at a single IaaS/PaaS provider is taken. Each SaaS needs to comply with end

user applications Service Level Agreement (SLA) and, at the same time, maximize its

own revenue, while minimizing the cost of use of resources supplied by the IaaS/PaaS.

On the other hand, the IaaS wants to maximize the revenues obtained providing on spot

resources. With respect to our previous works, in this paper we consider the allocation of

SaaS resources on multiple IaaS providers which is far more challenging and complex with

respect to the allocation of resources on a single Cloud. Furthermore, more realistic pricing

models are considered which lead to nonconvex feasible sets for which current literature

results cannot guarantee even the GNE existence. To the best of our knowledge, the only

work considering a multi-SaaS and multi-IaaS scenario is presented in (Roh et al. 2013),

where a resource pricing problem in geo-distributed Cloud is presented. Authors propose a

Stackelberg game-theoretic framework that is further reduced to a Rosen’s concave game.

However, more restrictive assumptions than our work are introduced and on spot resources

are not considered.

The remainder of the paper is organized as follows. Section 2 describes the problem under

study and introduces the design assumptions. In Section 3 the SaaS and IaaS problems

are formalized and the service provisioning problem is modeled as a Generalized Nash

Equilibrium Problem. Then, a distributed algorithm based on the best-reply dynamics is

provided in Section 4 in order to find a GNE which is efficient from the SaaS providers

point of view. The experimental results are discussed in Section 5. Conclusions and some

future research directions are finally drawn in Section 6.

2. Problem Statement.

Our model considers SaaS providers using Cloud Computing facilities according to the IaaS

paradigm to offer multiple transactional Web services (WSs), each service representing a

different application.

The hosted WSs can be heterogeneous with respect to resource demands, workload

intensities and QoS requirements. The set of IaaS will be indicated as I, while S will

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

indicate the set of SaaSs. Si denotes the set of SaaS providers running at the IaaS provider

i and Ij the set of IaaS providers supporting SaaS j. The set of WS applications offered

by the j-th SaaS provider is denoted by Aj; the set of applications running at IaaS i is

denoted by Ai and A is the set of applications of all the SaaS providers.

An SLA contract, associated with each WS application, is established between the SaaS

provider and its end-users. We will indicate with Rk the threshold that needs to be guar-

anteed for the execution of each WS application k ∈Aj. In particular, the average response

time E [Rk] executing the WS application k has to be less or equal to the given thresh-

old Rk. Furthermore, SaaS providers implement an admission control mechanism and can

reject requests under heavy loads. According to the SLA, if the SaaS provider rejects a

request, the SLA is violated and the SaaS incurs in penalties; we will denote with νk the

penalty for rejecting a single application k request. However, in order to fix the rejection

rate above a fixed threshold and guarantee a minimum availability, SaaS j may decide to

guarantee a minimum throughput λk for any k ∈Aj.

Applications are hosted in virtual machines (VMs) which are dynamically instantiated

by the IaaS providers up to a maximum number of Ni for each IaaS i. For the sake of

simplicity, we have imposed that VMs are homogeneous providing a maximum service rate

µki for the requests of application k running at the IaaS i, but this constraint can be easily

relaxed. In the following we assume that SaaS providers host their application at multiple

IaaS providers that compete each other in the Cloud market. The interoperability among,

possibly, heterogenous technologies is guaranteed by the middleware layer developed by

the MODAClouds project (MODAClouds 2014, Ardagna et al. 2012b) which allows to

run applications concurrently on multiple Clouds increasing the availability of the whole

system. Furthermore, we make the simplifying assumption that each VM hosts a single

WS application.

IaaS providers usually charge the use of their resources on an hourly basis. Hence, the

SaaS faces the problem of determining every hour the optimal number of VMs for each

WS class in order to minimize costs and penalties. Resource allocation is performed on the

basis of a prediction of future WS workloads (Ardagna et al. 2012a, Zhu et al. 2009b) and

we will denote with Λk the prediciton of the arrival rate for WS application k for the next

time horizon. The SaaS needs also an estimate of the future performance of each VM in

order to determine application average response time. We model, as a first approximation

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 7

and as in the other literature approaches (see, e.g., (Kumar et al. 2009, Zhang et al. 2013)),

each WS class hosted in a VM as an M/G/1 queue in tandem with a delay center (see

Figure 1). We assume (as common among Web service containers) that requests are served

according to the processor sharing scheduling discipline. As discussed in (Ardagna et al.

2013), the delay center allows to model network delays and/or protocol delays introduced

in establishing connections, etc. and it will be denoted with Dki. Performance parameters

are also continuously updated at run-time in order to capture transient behaviours, VMs

network and I/O interference and performance time of the day variability of the Cloud

provider, as in (Zhang et al. 2013).

Figure 1 System performance model.

Multiple VMs can run in parallel to support the same application. In that case, we

suppose that the workload is evenly shared among multiple instances (see Figure 2), which

is common for current Cloud solutions (Amazon Elastic Cloud 2014). However, our model

can be easily generalized to consider also heterogeneous resources relying for the load

balancing on the proportional assignment schema (Ardagna et al. 2013).

For IaaS providers we consider a pricing model similar to Amazon EC2. Each IaaS

provider offers: (i) reserved VMs, for which SaaS providers applies for a one-time payment

(currently every one or three years) for each instance they want to reserve, and (ii) on

spot VMs, for which SaaS providers bid and compete for unused IaaS capacity. We will

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Local
workload
manager

Virtualized
Servers

IaaS Provider

Virtual(Machine(Monitor(

Hardware(

VM(VM(VM(

WS1(WS1(WS2(

VM(

WSk(…(…(

Local
workload
manager

Local CA manager

Local WS arrival rates

Virtualized Servers

Execution rate of local arrivals

r12 + s12

⇤k
⇤1,⇤2, . . . ,⇤k

x13, x23, . . . , xk3

x1i, x2i, . . . , xki

i = 1 i = 2

i = 3 i = 4

Figure 2 Cloud Infrastructures.

denote with rki and ski the number of reserved and on spot instances supporting the

WS application k at IaaS i, respectively. Moreover, Rij denotes the maximum number of

reserved VMs available for SaaS j at IaaS i.

The VM instances are charged with the reserved cost ρi and on spot cost σi for each

SaaS hosted at IaaS i. These latter costs are set by the IaaS and fluctuate periodically

depending on the IaaS provider time of the day energy costs ωi and also on the supply and

demand from SaaS for on spot VM. Indeed, each SaaS provider j competes for the use of

on spot VMs specifying the maximum cost σij it is willing to pay per instance per hour

at IaaS i and the number of on spot VMs it wants to use ski for application k at IaaS i. If

IaaS i sets the on spot cost σi less or equal to the threshold σij, then the SaaS j obtains

the use of ski (≤ ski) on spot VMs that IaaS i dedicates for application k, otherwise the

IaaS decides not to allocate any on spot instance to SaaS j.

IaaS provider i has to determine every hour the time unit cost σi for on spot instances

and the number ski of on spot instances to be allocated to application k, in order to

maximize its total revenue.

On the other side, SaaS provider j has to determine every hour: the throughput xki for

the execution of the WS application k at site i; the number rki of reserved VMs supporting

the WS application k at IaaS i; the number ski of desired on spot VMs supporting the WS

application k at IaaS i; the maximum cost σij it is willing to pay for on spot VMs instances,

in order to minimize both the costs of reserved and on spot VMs and the penalties due to

request rejections.

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 9

Since on spot resource are less reliable than reserved ones, the price σij offered by SaaS

j to IaaS i is assumed to be lower than a fraction qij ∈ (0,1) of the reserved VM cost ρi.

Moreover, in order to guarantee a minimum reliability level for every WS application, the

number of on spot VMs required by SaaS j to any IaaS provider for any WS application is

assumed to be lower than a fraction ηj ∈ (0,1) of the total number of resources requested.

Indeed, if only on spot VMs are adopted by the SaaS and they are terminated by the IaaS,

an application could become unavailable.

We assume that the SaaS decisions are taken according to some i.i.d. probabilistic law.

The resulting application execution rate (or throughput, acceptance rate) is denoted by

Xk =
∑
i∈Ij

xki for application k and is less or equal to the prediction Λk for the arrival rate of

the WS application k. If the workload is evenly shared among the VMs, then the average

response time for execution of application k requests is given by:

E [Rki] =Dki +
1

µki−
(

xki
rki+ski

) ,
under the assumption that the VMs are not saturated (i.e., the equilibrium conditions for

the M/G/1 queues hold, µki (rki + ski)−xki > 0).

For the sake of clarity, the notation adopted here is summarized in Table 1.

3. Generalized Nash Game Model.

The resource provisioning problem for the Cloud Computing system under study describes

a conflicting situation, in which the optimal choices of SaaS and IaaS providers depend

on the choices of the others. In this section we formulate this problem as a Generalized

Nash Equilibrium Problem (GNEP): Section 3.1 is devoted to the formulation of the SaaS

resource allocation problem, Section 3.2 contains the IaaS providers optimization problems

and the Generalized Nash equilibria of the game are defined in Section 3.3.

3.1. Game Formulation from the SaaS Side.

The problem that SaaS provider j has to periodically solve can be formulated as follows:

min
rki,ski,xki,σij

Θj =
∑
k∈Aj

∑
i∈Ij

(ρi rki +σi ski) +
∑
k∈Aj

T νk (Λk−Xk) (1)

subject to

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

System Parameters

S Set of SaaS providers
I Set of IaaS providers
Si Set of SaaS providers j running applications at IaaS i
Ij Set of IaaS providers supporting SaaS j
A Set of applications of all the SaaS providers
Aj Set of applications of the SaaS provider j
Ai Set of applications running at IaaS i
Λk Prediction of the arrival rate for application k
λk Minimum arrival rate to be guaranteed for application k
µki Maximum service rate for executing class k application at IaaS i
Dki Queueing delay for executing class k application at IaaS i

Rk Application k average response time threshold
νk Penalty for rejecting a single application k request
ρi Time unit cost for reserved VMs at IaaS i
qij Maximum fraction of reserved VMs price for on spot VMs price SaaS provider j is willing to pay to IaaS i
ωi VM time unit energy cost for IaaS provider i
ηj Maximum fraction of total resources allocated as on spot VMs for SaaS provider j
Ni Maximum number of VMs that can be executed at the IaaS i
Rij Maximum number of reserved VMs that can be executed for the SaaS j at IaaS i
T Control time horizon

SaaS Decision Variables

rki Number of reserved VMs used for application k at IaaS i
ski Number of desired on spot VMs for application k at IaaS site i
xki Throughput for application k at IaaS i
Xk Overall throughput for application k
σij Time unit cost threshold for SaaS j for on spot VM instances at site i

IaaS Decision Variables

ski Number of on spot VMs used for application k at IaaS site i
σi Time unit cost offered for on spot VM instances at site i

Table 1 Parameters and decision variables.

Dki +
1

µki−
(

xki
rki+ski

) ≤Rk ∀k ∈Aj,∀i∈ Ij, (2)

∑
i∈Ij

xki =Xk ∀k ∈Aj, (3)

λk ≤Xk ≤Λk ∀k ∈Aj, (4)∑
k∈Aj

rki ≤Rij ∀i∈ Ij, (5)

ski ≤
ηj

1− ηj
rki ∀k ∈Aj, ∀i∈ Ij, (6)

σij ≤ qij ρi ∀i∈ Ij, (7)

rki, ski, xki, σij ≥ 0 ∀k ∈Aj,∀i∈ Ij. (8)

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 11

The first two terms of the payoff function represent the costs of reserved and on spot

VMs, respectively, while the third term determine the penalties incurred with request

rejections. Constraint (2) ensures that the average response time is less or equal to the

threshold Rk established in the SLA contract. Note that (2) can be equivalently rewritten

as a linear constraint in terms of variables rki and xki. Constraints (3) and (4) represent the

bounds on the throughput: the lower bound λk is needed to satisfy SLA contracts and the

upper bound Λk is the application request rate prediction. Constraint (5) entails that the

reserved VMs allocated to IaaS i are less or equal to the maximum number available Rij.

Constraint (6) is introduced for fault tolerance reasons, as explained before, and guarantees

that the number of on spot instances ski is at most a fraction ηj than the total number

rki + ski of VMs requested to IaaS i for application k. Constraint (7) sets an upper bound

for σij given by the fraction qij of the reserved VM cost ρi.

We remark that we have imposed variables ski and rki to be continuous but not integer,

as in reality they are. In fact, requiring variables to be integer could make the solution

much more difficult from the computational perspective. We therefore decide, as in several

literature approaches (see, e.g., (Ardagna et al. 2013, Zhang et al. 2012)), to deal with con-

tinuous variables, actually considering the continuous relaxation of the problem. However,

experimental results have shown that if the fractional optimal values of the variables are

rounded to the closest integer solution, the gap between the optimal value of the integer

problem and the optimal value of the relaxed one is very small. This is intuitive for large

scale data centers including thousands of servers and is a common assumption adopted in

the literature (Zhang et al. 2012).

3.2. Game Formulation from the IaaS Side.

Every IaaS provider i has to solve the following optimization problem:

max
ski,yij ,σi

Θi =
∑
k∈Ai

[(ρi−ωi) rki + (σi−ωi) ski] (9)

subject to

∑
k∈Ai

ski ≤Ni−
∑
k∈Ai

rki, (10)

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

σi ≥ ωi, (11)

σi−σij ≤M (1− yij) ∀j ∈ Si, (12)

σij −σi ≤M yij ∀j ∈ Si, (13)

0≤ ski ≤ ski yij ∀j ∈ Si, ∀k ∈Aj, (14)

yij ∈ {0,1} ∀j ∈ Si. (15)

Constraint (10) entails that the total number of on spot VMs allocated to applications

is less or equal to the number of available VMs, while constraint (11) guarantees that the

on spot instance cost is at least equal to the energy cost ωi. Constraints (12)– (14) model

the dynamics between SaaS providers and IaaS i about the cost and the number of on spot

VMs. In fact, exploiting the auxiliary binary variable yij, we obtain that if IaaS i chooses

the on spot cost σi greater than σij, then it follows from (12) that yij = 0 and hence ski = 0

for all WS applications k ∈Aj, that is IaaS decides not to allocate any on spot instance to

SaaS j. On the other hand, if σi < σij, then (13) implies that yij = 1 and hence ski ≤ ski,
i.e., the SaaS j obtains the use of ski on spot VMs which is less or equal to the required

number ski.

The IaaS optimization problem stated above is a Mixed Integer Nonlinear Programming

problem, in which the objective function is neither convex nor concave (because it contains

the products σi ski), thus it is very challenging from a computational point of view. How-

ever, we now show that its special structure allows to develop a simple ad-hoc algorithm

for finding a global optimal solution.

For the sake of simplicity, let us assume that the on spot prices σij offered by the SaaS

providers are decreasingly ordered, i.e., σi1 > σi2 > · · · > σi|Si|. The idea of the solution

algorithm is based on the following argument: if IaaS chooses σi >σi1, then its revenue is

null; if σi = σi1, then it offers on spot VMs only to the first SaaS, obtaining the revenueR1 =

σi1
∑

k∈A1
ski (provided that the number of on spot VMs available is at least

∑
k∈A1

ski);

if IaaS sets σi ∈ (σi2, σi1), then it offers again on spot VMs only to the first SaaS, but its

revenue is σi1
∑

k∈A1
ski which is lower than R1. Next, if the IaaS reduces σi to σi2, this

time it gains R2 = σi2
∑

k∈A1∪A2
ski; if it sets σi ∈ (σi3, σi2), then again this choice is not

convenient since the revenue is lower than R2, and so on. Therefore, the optimal price σi

must be equal to one of the on spot prices σij offered by the SaaS providers and it can be

obtained by iterating this process until there are no more VMs available according to the

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 13

capacity constraint (10). The complete method to obtain the global optimum solution of

IaaS problem is reported in Algorithm 3.1.

Algorithm 3.1: solving the IaaS i optimization problem.

1 Sort σij in decreasing order: σi1 >σi2 > · · ·>σi|Si|
2 Si =Ni−

∑
k∈Ai

rki

3 σi =∞, Ri = 0, t= 1

4 s= min

{
Si,

∑
1≤j≤t

∑
k∈Aj

ski

}
, R= σit s

5 if R>Ri then

6 σi = σit, Ri =R

7 if (s < Si and t < |Si|) then

8 t= t+ 1, go to step 4

9 for j ∈ Si do

10 if σij ≥ σi then

11 yij = 1

12 for k ∈Aj do

13 ski = min{ski, Si}, Si = Si− ski

14 else

15 yij = 0

16 ski = 0 ∀ k ∈Aj

The algorithm starts sorting the prices σij offered by the SaaSs and determines the

number Si of on spot VMs that the IaaS i can offer (steps 1 and 2). During the execution

of the algorithm σi represents the current best price for the IaaS, Ri the corresponding

revenue and t is an index to iterate among SaaSs. These three values are initialized in

step 3. Steps 4–8 find the optimal cost σi. The IaaS determines if there is enough capacity

to provide to the first t SaaSs the on spot VMs at the price σit offered by the SaaS t.

The maximum number s of on spot VMs that the IaaS can sell to the first t SaaSs is the

minimum between the available capacity Si and the total number of on spot VMs requested

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

by the first t SaaSs, that is
∑

1≤j≤t

∑
k∈Aj

ski. The corresponding revenue is R= σit st (step 4).

Then, in steps 5 and 6 σi and Ri are updated accordingly. Steps 4–6 are iterated until

either all of the SaaSs have been considered, i.e., t= |Si|, or the IaaS capacity is saturated

s= Si. The optimal values of yij and ski are assigned in steps 9–16 according to the price

offered by SaaS providers and their WS applications requirements.

Notice that the time complexity of Algorithm 3.1 is O (max{|Si| log(|Si|), |Ai|}), due to

the sorting at step 1 and the assignment of ski at step 13.

3.3. Generalized Nash Equilibria.

In this framework, SaaS providers and the IaaS providers are taking decisions at the same

time. The objective function of each SaaS (IaaS) depends on the variables of the IaaSs

(SaaSs). Moreover, the strategy set each SaaS (IaaS) depends on the variables of the IaaSs

(SaaSs). In this setting, we can not analyse decision in isolation, but we must ask what a

SaaS would do, taking into account the decision of the IaaSs and other SaaSs. To capture

the behavior of SaaSs and IaaSs in this conflicting situation (game) in which what a SaaS

or a IaaS (the players of the game) does directly affects what others do, we consider the

Generalized Nash game, which is broadly used in Game Theory and other fields. We remind

the reader that the GNEP differs from the classical Nash Equilibrium Problem since, not

only the objective function of each player depends upon the strategies chosen by all the

other players, but also the strategy set of each player may depend on the rival players’

strategies.

The service provisioning problem results in a GNEP where the strategies of SaaS j

are xj = (xki)k∈Aj ,i∈Ij , rj = (rki)k∈Aj ,i∈Ij , σj = (σij)i∈Ij and sj = (ski)k∈Aj ,i∈Ij , while the

strategies of IaaS i are si = (ski)k∈Ai
, yi = (yij)j∈Si and σi.

In this setting, a Generalized Nash Equilibrium (GNE) is a set of strategies such that no

player can improve its payoff function by changing its strategy unilaterally (Facchinei and

Kanzow 2010a), i.e., a GNE is a vector (r∗, x∗, σ∗, s∗, s∗, y∗, σ∗) such that constraints (2)–(8)

and (10)–(15) are satisfied, for any j ∈ S we have

Θj(r
∗
j , x
∗
j , s
∗, σ∗)≤Θj(rj, xj, s

∗, σ∗), ∀ (rj, xj) satisfying constraints (2)–(8), (16)

and for all i∈ I we have

Θi(r
∗, s∗i , σ

∗
i)≥Θi(r

∗, si, σi), ∀ (si, σi) satisfying constraints (10)–(15). (17)

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 15

4. Solution Algorithm.

In the last years, several algorithms for solving GNEPs have been proposed in the lit-

erature (Facchinei and Kanzow 2010b, von Heusinger and Kanzow 2009, von Heusinger

et al. 2012, Nabetani et al. 2011, Pang and Fukushima 2005, Panicucci et al. 2009). All

these approaches can be applied to GNEPs in which each player has to solve a convex

optimization problem. Moreover, most of them solves GNEPs with shared constraints.

Unfortunately, the GNEP stated in the previous section does not meet any of the two

conditions. In fact, the IaaSs optimization problems are not convex since involve binary

variables yij and the constraints of each player are not shared with all the other players.

Therefore, the GNEP considered in this paper is very challenging to solve. In this section,

we propose an ad-hoc algorithm based on the best-reply dynamics, which is suitable for a

distributed implementation, in order to find a GNE. The complete procedure is reported

in Algorithm 4.1.

Steps 1–10 initialize the values of SaaSs and IaaSs variables. The algorithm starts (step

1) choosing, for any IaaS i, the on spot price σi as 10% higher than the energy costs ωi.

Next, each SaaS j computes the optimal value of reserved and on spot resources considering

the ideal scenario in which the overall Cloud system workload is light and all the necessary

resources can be obtained from IaaSs (step 3). In other words, in the ideal scenario we

assume that ski = ski for each WS application k ∈ Aj and each IaaS i ∈ Ij, and there is

no SaaSs competition on the on spot prices. The problem of SaaS j in the ideal scenario,

denoted by IdealSaaS[j], can be formulated as follows:

min
rki,ski,xki

∑
k∈Aj

∑
i∈Ij

(ρi rki +σi ski) +
∑
k∈Aj

T νk (Λk−Xk) (18)

subject to

Dki +
1

µki−
(

xki
rki+ski

) ≤Rk ∀k ∈Aj,∀i∈ Ij, (19)

∑
i∈Ij

xki =Xk ∀k ∈Aj, (20)

λk ≤Xk ≤Λk ∀k ∈Aj, (21)

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Algorithm 4.1: Solution algorithm

1 σi = 1.1ωi, ∀ i∈ I

2 for j ∈ S do

3 Solve IdealSaaS[j]

4 σij = min{σi, qij ρi} , ∀ i∈ Ij

5 for i∈ I do

6 for j ∈ Si s.t. σij <σi do

7 ski = 0, ∀ k ∈Aj

8 Stoti =
∑
j∈Si

s.t. σij=σi

∑
k∈Aj

ski

9 for j ∈ Si s.t. σij = σi do

10 ski = ski min

1,

Ni−
∑
k∈Ai

rki

Stoti

 , ∀ k ∈Aj

11 continue = 0

12 for j ∈ S do

13 solve SaaS[j]

14 if (problem is unfeasible) and (∃ i∈ Ij s.t. σij ≤ σi < qij ρi) then

15 solve IdealSaas[j]

16 for i∈ Ij s.t. σij ≤ σi < qij ρi do

17 σij = min{1.01σi, qij ρi}

18 continue = 1

19 else

20 if (∃ k ∈Aj s.t. Xk <Λk) and (∃ i∈ Ij s.t. σij ≤ σi < qij ρi) then

21 for i∈ Ij s.t. σij ≤ σi < qij ρi do

22 σij = min{1.01σi, qij ρi}

23 continue = 1

24 for i∈ I do

25 solve IaaS[i]

26 if continue= 1 then

27 go to step 11

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 17∑

k∈Aj

rki ≤Rij ∀i∈ Ij, (22)

rki, ski, xki ≥ 0 ∀k ∈Aj,∀i∈ Ij. (23)

Moreover, each SaaS j sets the on spot price thresholds σij as the minimum between σi

set by IaaSs and the fraction qij of reserved price ρi (step 4). Then, each IaaS i assigns the

on spot resources to SaaSs: it decides not to allocate any on spot instance to each SaaS j

such that the on spot price thresholds σij is less than the on spot price σi (steps 6-7). It

computes the total number Stoti of on spot VMs required by SaaSs j with σij = σi (step

8); if Stoti is less or equal to the total number of available on spot VMs, i.e., Ni−
∑
k∈Ai

rki,

then it assigns ski = ski for all k ∈Aj; otherwise ski are rescaled proportionally to the ratio(
Ni−

∑
k∈Ai

rki

)
/Stoti (step 10).

Subsequently, the best reply dynamics starts. Each SaaS j solves its own problem

SaaS[j]; if this problem is unfeasible, i.e., SaaS j cannot guarantee the minimum through-

put λk for some k ∈Aj, and there exists at least a IaaS from which it could obtain more on

spot resources, then it solves the problem in the ideal scenario (step 15) and it increases

the on spot price threshold σij up to 1% higher than the on spot price σi, provided that

it is below the bound qij ρi (steps 15-17). This increase of σij is performed also in the case

some workload is rejected for some class k ∈ Aj, i.e., Xk < Λk (steps 20-22). We adopt

the flag continue to indicate that some SaaS has increased the on spot price threshold

σij and it needs to play again. Next, each IaaS solves its own problem IaaS[i] (steps

24-25). If the flag continue is equal to 1, then all the players need to solve again their

problems, otherwise the strategies of each player are the best response to the ones of the

other players, that is a GNE is obtained.

Note that, Algorithm 4.1 is suitable of a fully distributed implementation: The SaaS

providers initially send to the IaaSs their bid σij and the values of reserved and desired

on-spot resources, i.e., rik and sik obtained solving the ideal scenario problem at step

3. Then, the IaaS providers sends back to individual SaaSs the the number of on-spot

VMs available sik (steps 5-10). Then, the best reply procedure starts an messages are

exchanged by SaaS providers increasing their bids and IaaS providers. As a final remark,

note that Algorithm 4.1 does not require to share the information on the SLA contracts

and performance parameters (i.e., Rk, λk, etc.) among SaaSs and IaaSs.

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

5. Experimental Results.

The proposed solution has been evaluated for a variety of systems and workload config-

urations. Tests have been performed on a VirtualBox virtual machine based on Ubuntu

12.04 server running on an Intel Xeon Nehalem dual socket quad-core system with 32 GB

of RAM. CPLEX 12.2.0.0 has been used as MILP solver (IBM ILOG CPLEX Optimizer

2014). Section 5.1 describes the design of experiments. Scalability is discussed in Sec-

tion 5.2, while Section 5.3 is devoted to quantitatively analyze the efficiency of the equilibria

with respect to other approaches proposed in the literature and currently implemeted by

Cloud providers. Finally, Section 5.4 illustrates how the SaaSs solution changes by varying

the number of target IaaSs, demonstrating cost savings from multi-Cloud adoption.

5.1. Design of Experiments.

The proposed approach has been evaluated by considering a very large set of randomly

generated instances. The performance parameters of the applications and infrastructural

resource costs have been randomly generated uniformly in the ranges reported in Table 2

as in other literature approaches (Anselmi and Verloop 2011, Ardagna et al. 2012c, Kusic

et al. 2008), considering also real applications (Ardagna et al. 2013) and according to com-

mercial fees applied by IaaS/PaaS Cloud providers (Amazon Elastic Cloud 2014, Microsoft

Windows Azure Virtual Machines 2014).

The upper bounds Rk on the average response time were set proportional to the request

service demand 1/µki, i.e., for every SaaS j and application k ∈Aj,

Rk = γk min
i∈Ij

1

µki
,

where γk has been randomly generated uniformly in the range [5, 40], as in (Ardagna and

Pernici 2007). Since request rejection has an important impact on SaaS provider reputation,

we set λk = 0.8 Λk.

Moreover, we analysed the solutions behavior by varying also the ratio of the reserved

instances with respect to the total IaaSs resources. In particular, we define the proportion

of the available reserved VMs on the total resources offered by IaaS i as

φi =

∑
j∈Si

Rij

Ni

. (24)

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 19

Ni [1000, 2000] VMs Rij [100, 200] VMs

Dki [0.001, 0.05] s Rk [0.025, 0.1] s

µki [200, 400] req/s ηj [0.25, 0.75]

Λk [1, 250] req/s λk [0.8, 200] req/s

ρi [0.048, 0.076] $/h ωi [0.005, 0.01] $/h

Table 2 Performance parameters and time unit costs.

Our evaluation is conducted by setting, for all i, φi = 0.6 and φi = 0.7 (i.e., the SaaSs

can rely on the reserved VMs for 60 % or 70% of the total IaaS resources). Unfortunately,

the data on IaaSs trade policies, i.e., φi parameters, are not public available.

The number of SaaS providers has been varied between 100 and 500, the number of

applications (evenly shared among SaaSs) between 1,000 and 5,0001. The number of IaaSs

is smaller compared to SaaSs and it is fixed to 10. This reflects the current business offer.

We considered scenarios in which every SaaS relies on three IaaSs at most. All the results

reported in the next sections are average values that have been computed on 40 different

instances of the same size for every configuration of the Cloud system.

5.2. Scalability Analysis.

Scalability results are reported in Table 3 which shows the average execution time and

the average number of iterations performed by the best reply procedure (steps 12-27 of

Algorithm 4.1), under the assumption that SaaS problems are solved in parallel (i.e., a

distributed implementation is adopted). We considered the worst case scenario where the

cardinality of the IaaSs set is fixed at |I|= 10 and the SaaS to IaaS mapping set cardinality

is |Ij|= 3 for all j ∈ S.

The execution time of Algorithm 4.1 increases with the problem instance size, however

the average execution time is always below 5 seconds. Since in real Cloud systems, the

run-time resource allocation is performed periodically on a hourly basis (see, e.g., (Almeida

et al. 2010, Armbrust et al. 2009, Birke et al. 2012)), we can state that the proposed method

is very efficient and our solution is suitable to determine the resource provisioning of very

large Cloud infrastructures compatibly with the problem time scales, without introducing

any system overhead.

1 We have verified that the performance of Algorithm 4.1 is not affected by the applications to SaaSs assignment
cardinality (we varied the number of applications per SaaS in the range 1-100). Results are omitted for space limitation.

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

(|S|, |A|) Time (s) Iterations

(100, 1000) 0.362 4.7

(200, 2000) 0.738 2.7

(300, 3000) 1.010 5.0

(400, 4000) 1.662 2.3

(500, 5000) 4.252 2.7

Table 3 Average execution times and average number of best reply iterations of Algorithm 4.1

5.3. Equilibria efficiency

Since the considered problem can admit multiple equilibria, it is worth analyzing the effi-

ciency of the equilibrium found by Algorithm 4.1. In order to evaluate the quality of

our approach, we have implemented a different version of Algorithm 4.1, called Alterna-

tive Algorithm, characterized by a different choice of the initial solution. For each SaaS,

the initial number of reserved and desired on spot VMs is determined according to the

utilization principle, i.e., the number of VM instances at step 3 is computed such that

the average utilization of all VMs, i.e., xki/[µki(rki + ski)], is equal to U . Threshold-based

approaches have been widely used in the literature (see, e.g., (Wolke and Meixner 2010,

Zhu et al. 2009a)) and are also advocated by IaaS providers. For example, Amazon Elas-

tic Beanstalk (Amazon Inc. 2014) provides a basic mechanism to trigger the start-up or

termination of VM instances according to the threshold values, which can be specified by

SaaS providers accessing the Amazon EC2 API.

In particular, the Alternative Algorithm replaces step 3 of Algorithm 4.1 with the fol-

lowing steps:

for i∈ Ij do

3a. xki = Λk

|Ij | , ∀ k ∈Aj
3b. rki = xki

µkiU
, ∀ k ∈Aj

3c. R̂ij =
∑
k∈Aj

rki

3d. if R̂ij >Rij then rki = rki
Rij

R̂ij
, ∀ k ∈Aj

3e. ski = xki
µkiU
− rki, ∀ k ∈Aj

In other words, all the incoming workload is served and it is evenly shared among avail-

able IaaS (step 3a). Then, the Alternative Algorithm tries to use only reserved instances

and determines its number according to the utilization threshold (step 3b). If reserved

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 21

resources are not sufficient (step 3d), reserved instances are rescaled and the number of

desired on spot instances is computed (step 3e). As in (Ardagna et al. 2012a, Zhu et al.

2009a), we set U = 0.6.

We considered three different metrics to evaluate the efficiency of the two algorithms:

OFRtot =

∑
j∈S

Θj

(
GNEAlg. 4.1

)
∑
j∈S

Θj (GNEAlternative Alg.)
,

OFRmin = min
j∈S

Θj

(
GNEAlg. 4.1

)
Θj (GNEAlternative Alg.)

,

OFRmax = max
j∈S

Θj

(
GNEAlg. 4.1

)
Θj (GNEAlternative Alg.)

.

OFRtot is the objective funcion ratio (OFR) between the total SaaS cost at the equi-

librium found by Algorithm 4.1 (GNEAlg. 4.1) and the total SaaS cost at the equilibrium

found by the Alternative Algorithm (GNEAlternative Alg.), while OFRmin and OFRmax are

the minimum and maximum ratio between the individual SaaS cost at GNEAlg. 4.1 and

the individual SaaS cost at GNEAlternative Alg., respectively. Values lower than 1 indicate

that Algorithm 4.1 provides better performance.

|S| OFRtot OFRmin OFRmax % better

100 0.9402 0.3923 1.0 11.12

200 0.9592 0.5202 1.0 7.69

300 0.9585 0.3940 1.0 7.08

400 0.9437 0.3826 1.0 9.00

500 0.9445 0.4843 1.0 8.48

Table 4 Alternative Algorithm Comparison

Results in Table 4 show that, on average Algorithm 4.1 provides solutions better than 5%

of the alternative one. If the individual SaaS are considered, OFRmin ratio ranges between

38% and 52%, that is in the worst case the Alternative Algorithm provides a solution

worst than 192–261%, while Algorithm 4.1 always performs at least as the Alternative one

(OFRmax is always equal to 1). The last column of Table 4 reports the percentage value of

the number of SaaS providers such that Algorithm 4.1 performs better than the alternative

one, i.e., Θj

(
GNEAlg. 4.1

)
<Θj

(
GNEAlternative Alg.

)
.

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

5.4. Multiple IaaS Analysis.

In this Section we consider SaaS providers relying on one or more IaaS providers to host

their applications in order to highlight the benefits of the adoption of multi-IaaS solutions.

In particular for every SaaS j, the number of target IaaSs |Ij| has been varied between 1

and 3.

To perform a fair comparison, the total number of reserved VMs available is always the

same both in the single IaaS case and in the multi-IaaS scenario. Problem instances have

been randomly generated such that

∑
i∈Ij , |Ij |=1

Rij =
∑

i∈Ij , |Ij |=2

Rij =
∑

i∈Ij , |Ij |=3

Rij, ∀j ∈ S,

where also the arrival rates Λk are fixed. Results are shown in Table 5, average Θj values

are expressed in $.

φi |Ij|= 1 |Ij|= 2 |Ij|= 3

0.6 15.5489 14.2971 13.1112

0.7 16.2184 14.5385 14.2297

Table 5 Average Θj value ($) for Multi-IaaS adoption.

The average Θj value decreases as the cardinality of Ij increases both for φ= 0.6 and

φ = 0.7, suggesting an effective advantage of having more IaaS providers from the SaaS

point of view. Using two IaaS, savings range in 8–10%, while adopting three IaaS providers

saving grow up to 12–15% with respect to the single IaaS scenario.

This could be expected, since with multiple IaaS providers when resources offered by a

IaaS are saturated, SaaSs can start VMs into another IaaS provider without incurring in

penalties for request rejections. Moreover, with the possibility of allocating resources in

more than one IaaS, SaaSs can compete for the cheapest resources on multiple providers,

in order to reduce their fees. Indeed, a SaaS can bid for lowest on spot price resources,

decreasing its cost thresholds σij according to the different prices σi.

Finally, we computed the average on spot prices σi fixed by IaaSs for the three cases:

values are reported in Table 6.

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 23

φi |Ij|= 1 |Ij|= 2 |Ij|= 3

0.6 0.7346 0.7490 0.7515

0.7 0.7362 0.7226 0.7463

Table 6 Average on spot prices σi ($)

Results do not vary significantly. Since the number of reserved instances is the same

across different scenarios, we can argue that the SaaSs savings are due to the fact that

SaaSs can access resources from the cheapest provider.

In conclusion, our analysis demonstrates that using simultaneously multiple IaaS

providers allows both to improve the availability for the SaaS end-users and to achieve

economic benefits.

6. Conclusions.

In this paper, we considered the problem of run-time management of IaaSs provider capac-

ities among multiple competing SaaSs through the formulation and study of a GNE model.

We took the perspective of SaaS providers whose goal is the minimization of the costs

associated with the virtual machine instances allocated on multiple IaaSs, while guar-

anteeing QoS constraints. On the other side, each IaaS provider aims at maximizing its

revenues. The cost model includes SaaS revenues and penalties incurred for request rejec-

tions and infrastructural costs associated with IaaSs resources. Current on spot pricing

models adopted by IaaS providers are considered, which lead to a nonconvex generalized

game for which current literature results cannot guarantee even the equilibrium existence.

We proposed a solution technique based on the best reply dynamic and evaluated the

effectiveness of our approach, performing a wide set of analyses which considered multiple

workloads and system configurations. Scalability analysis have shown that systems up to

thousands of applications can be managed very efficiently in a fully distributed manner.

Since the computation times required to solve problem instances of maximum size were

around 5 seconds, we can state that the execution time is compatible with the time scales

characterizing the service provisioning problem, without introducing any system overhead.

When compared with an alternative method inspired by other literature solutions and

currently implemented by IaaS providers, significant cost savings can be achieved (5% on

average, up to 260% for individual SaaS providers). Furthermore, we have shown that

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

varying the number of IaaS providers 8-15% cost savings can be achieved from the workload

distribution on multiple IaaSs.

Future work will be devoted to a deeper investigation of the time scales which can

be adopted to govern the behavior of Cloud systems, performing resource allocation also

every few minutes. Furthermore, on demand resources will be included in the game model

formulation.

Acknowledgments

Danilo Ardagna’s work is partially supported by the European Commission grant no. FP7-ICT-2011-8-318484

(MODAClouds).

*Bibliography

Abhishek, V., I.A. Kash, P. Key. 2012. Fixed and market pricing for cloud services. Computer Communica-

tions Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on. 157–162.

Almeida, J., V. Almeida, D. Ardagna, I. Cunha, C. Francalanci, M. Trubian. 2010. Joint admission control

and resource allocation in virtualized servers. Journal of Parallel and Distributed Computing 70 344–

362.

Altman, E., T. Boulogne, R. El Azouzi, T. Jiménez, L. Wynter. 2006. A survey on networking games in

telecommunications. Computers & OR 33 286–311.

Amazon Elastic Cloud. 2014. http://aws.amazon.com/ec2/.

Amazon Inc. 2014. AWS Elastic Beanstalk. http://aws.amazon.com/elasticbeanstalk/.

Amazon Web Services. 2014. http://aws.amazon.com/.

Anselmi, J., D. Ardagna, M. Passacantando. 2013. Generalized Nash Equilibria for SaaS/PaaS Clouds.

European Journal of Operational Research –doi:http://dx.doi.org/10.1016/j.ejor.2013.12.007.

Anselmi, J., I.M. Verloop. 2011. Energy-aware capacity scaling in virtualized environments with performance

guarantees. Performance Evaluation 68 1207–1221.

Ardagna, D., S. Casolari, M. Colajanni, B. Panicucci. 2012a. Dual time-scale distributed capacity allocation

and load redirect algorithms for cloud systems. Journal of Parallel and Distributed Computing 72

796–808.

Ardagna, D., E. di Nitto, P. Mohagheghi, S. Mosser, C. Ballagny, F. D’Andria, G. Casale, P. Matthews,

C.-S. Nechifor, D. Petcu, A. Gericke, C. Sheridan. 2012b. Modaclouds: A model-driven approach for

the design and execution of applications on multiple clouds. Modeling in Software Engineering (MISE),

2012 ICSE Workshop on. 50–56.

Ardagna, D., B. Panicucci, M. Passacantando. 2011. A game theoretic formulation of the service provisioning

problem in cloud systems. Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra,

Elisa Bertino, Ravi Kumar, eds., WWW . ACM, 177–186.

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 25

Ardagna, D., B. Panicucci, M. Passacantando. 2013. Generalized Nash equilibria for the service provisioning

problem in cloud systems. IEEE Transactions on Services Computing 6 429–442.

Ardagna, D., B. Panicucci, M. Trubian, L. Zhang. 2012c. Energy-aware autonomic resource allocation in

multitier virtualized environments. IEEE Transactions on Services Computing 5 2–19.

Ardagna, D., B. Pernici. 2007. Adaptive service composition in flexible processes. IEEE Transactions on

Software Engineering 33 369 –384.

Armbrust, M., A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson,

A. Rabkin, I. Stoica, M. Zaharia. 2009. Above the clouds: A berkeley view of cloud computing. Tech.

Rep. UCB/EECS-2009-28, EECS Department, University of California, Berkeley.

Bigi, G., M. Castellani, M. Pappalardo, M. Passacantando. 2013. Existence and solution methods for equi-

libria. European Journal of Operational Research 227 1–11.

Birke, R., L. Y. Chen, E. Smirni. 2012. Data centers in the cloud: A large scale performance study. Chang

(2012), 336–343.

Cavazzuti, E., M. Pappalardo, M. Passacantando. 2002. Nash equilibria, variational inequalities, and dynam-

ical systems. Journal of Optimization Theory and Applications 114 491–506.

Chang, R., ed. 2012. 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA,

June 24-29, 2012 . IEEE.

Debreu, G. 1952. A social equilibrium existence theorem. Proceedings of the National Academy of Sciences

of the USA 38 886–893.

Dube, P., Z. Liu, L. Wynter, C. H. Xia. 2007. Competitive equilibrium in e-commerce: Pricing and outsourc-

ing. Computers & OR 34 3541–3559.

Facchinei, F., C. Kanzow. 2010a. Generalized Nash equilibrium problems. Annals of Operations Research

175 177–211.

Facchinei, F., C. Kanzow. 2010b. Penalty methods for the solution of generalized Nash equilibrium problems.

SIAM Journal on Optimization 20 2228–2253.

Feng, Y., B. Li, B. Li. 2014. Price competition in an oligopoly market with multiple iaas cloud providers.

IEEE Transactions on Computers 63 59–73.

Gohad, A., N.C. Narendra, P. Ramachandran. 2013. Cloud pricing models: A survey and position paper.

Cloud Computing in Emerging Markets (CCEM), 2013 IEEE International Conference on. 1–8.

Google Compute Engine. 2014. https://cloud.google.com/products/compute-engine/.

IBM ILOG CPLEX Optimizer. 2014. http://www-01.ibm.com/software/integration/optimization/

cplex-optimizer/.

Kumar, D., A. N. Tantawi, L. Zhang. 2009. Real-time performance modeling for adaptive software systems

with multi-class workload. MASCOTS . 1–4.

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Kusic, D., J.O. Kephart, J.E. Hanson, N. Kandasamy, G. Jiang. 2008. Power and performance management

of virtualized computing environments via lookahead control. Autonomic Computing, 2008. ICAC ’08.

International Conference on. 3–12.

Menache, I., A. Ozdaglar, N. Shimkin. 2011. Socially optimal pricing of cloud computing resources. Proceed-

ings of the 5th International ICST Conference on Performance Evaluation Methodologies and Tools.

VALUETOOLS ’11, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-

tions Engineering), ICST, Brussels, Belgium, Belgium, 322–331.

Microsoft Windows Azure. 2014. http://www.windowsazure.com/.

Microsoft Windows Azure Virtual Machines. 2014. http://www.windowsazure.com/en-us/home/

features/virtual-machines/.

MODAClouds. 2014. http://www.modaclouds.eu/.

Nabetani, K., P. Tseng, M. Fukushima. 2011. Parametrized variational inequality approaches to generalized

Nash equilibrium problems withshared constraints. Computational Optimization and Applications 48

423–452.

Nash, J. 1951. Non-cooperative games. Annals of Mathematics 54 286–295.

Pang, J.-S., M. Fukushima. 2005. Quasi-variational inequalities, generalized Nash equilibria, and multi-

leader-follower games. Computational Management Science 2 21–56.

Panicucci, B., M. Pappalardo, M. Passacantando. 2009. On solving generalized Nash equilibrium problems

via optimization. Optimization Letters 3 419–435.

Roh, H., C. Jung, W. Lee, D.-Z. Du. 2013. Resource pricing game in geo-distributed clouds. INFOCOM .

1519–1527.

Rosen, J. B. 1965. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica

33 520–534.

Song, Y., M. Zafer, K.-W. Lee. 2012. Optimal bidding in spot instance market. Albert G. Greenberg, Kazem

Sohraby, eds., INFOCOM . IEEE, 190–198.

von Heusinger, A., C. Kanzow. 2009. Relaxation methods for generalized Nash equilibrium problems with

inexact line search. Journal of Optimization Theory and Applications 143 159–183.

von Heusinger, A., C. Kanzow, M. Fukushima. 2012. Newton’s method for computing a normalized equilib-

rium in the generalized Nash game through fixed point formulation. Mathematical Programming 132

99–123.

Wan, Jian, Dechuan Deng, Congfeng Jiang. 2012. Non-cooperative gaming and bidding model based resource

allocation in virtual machine environment. IPDPS Workshops. IEEE Computer Society, 2183–2188.

Wei, G., A. V. Vasilakos, Y. Zheng, N. Xiong. 2010. A game-theoretic method of fair resource allocation for

cloud computing services. The Journal of Supercomputing 54 252–269.

Passacantando, Ardagna, Savi: Service Provisioning Problem in Cloud and multi-Cloud Systems
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 27

Wolke, A., G. Meixner. 2010. Twospot: A cloud platform for scaling out web applications dynamically.

Towards a Service-Based Internet . Lecture Notes in Computer Science, Springer Berlin Heidelberg,

13–24.

Zafer, M., Y. Song, K.-W. Lee. 2012. Optimal Bids for Spot VMs in a Cloud for Deadline Constrained Jobs.

Chang (2012), 75–82.

Zhang, L., X. Meng, S. Meng, J. Tan. 2013. K-scope: Online performance tracking for dynamic cloud appli-

cations. Presented as part of the 10th International Conference on Autonomic Computing . USENIX,

Berkeley, CA, 29–32.

Zhang, Q., Q. Zhu, M. F. Zhani, R. Boutaba. 2012. Dynamic service placement in geographically distributed

clouds. Distributed Computing Systems (ICDCS), 2012 IEEE 32nd International Conference on. 526–

535.

Zhu, X., D. Young, B. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C. Hyser, D. Gmach, R. Gardner,

T. Christian, L. Cherkasova. 2009a. 1000 islands: An integrated approach to resource management for

virtualized data centers. Journal of Cluster Computing 12 45–57.

Zhu, X., D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. Mckee, C. Hyser, D. Gmach, R. Gardner,

T. Christian, L. Cherkasova. 2009b. 1000 islands: an integrated approach to resource management for

virtualized data centers. Cluster Computing 12 45–57.

