3 research outputs found

    The Radius of Metric Subregularity

    Get PDF
    There is a basic paradigm, called here the radius of well-posedness, which quantifies the "distance" from a given well-posed problem to the set of ill-posed problems of the same kind. In variational analysis, well-posedness is often understood as a regularity property, which is usually employed to measure the effect of perturbations and approximations of a problem on its solutions. In this paper we focus on evaluating the radius of the property of metric subregularity which, in contrast to its siblings, metric regularity, strong regularity and strong subregularity, exhibits a more complicated behavior under various perturbations. We consider three kinds of perturbations: by Lipschitz continuous functions, by semismooth functions, and by smooth functions, obtaining different expressions/bounds for the radius of subregularity, which involve generalized derivatives of set-valued mappings. We also obtain different expressions when using either Frobenius or Euclidean norm to measure the radius. As an application, we evaluate the radius of subregularity of a general constraint system. Examples illustrate the theoretical findings.Comment: 20 page

    H\"older Error Bounds and H\"older Calmness with Applications to Convex Semi-Infinite Optimization

    Get PDF
    Using techniques of variational analysis, necessary and sufficient subdifferential conditions for H\"older error bounds are investigated and some new estimates for the corresponding modulus are obtained. As an application, we consider the setting of convex semi-infinite optimization and give a characterization of the H\"older calmness of the argmin mapping in terms of the level set mapping (with respect to the objective function) and a special supremum function. We also estimate the H\"older calmness modulus of the argmin mapping in the framework of linear programming.Comment: 25 page

    Transversality Properties: Primal Sufficient Conditions

    Full text link
    The paper studies 'good arrangements' (transversality properties) of collections of sets in a normed vector space near a given point in their intersection. We target primal (metric and slope) characterizations of transversality properties in the nonlinear setting. The Holder case is given a special attention. Our main objective is not formally extending our earlier results from the Holder to a more general nonlinear setting, but rather to develop a general framework for quantitative analysis of transversality properties. The nonlinearity is just a simple setting, which allows us to unify the existing results on the topic. Unlike the well-studied subtransversality property, not many characterizations of the other two important properties: semitransversality and transversality have been known even in the linear case. Quantitative relations between nonlinear transversality properties and the corresponding regularity properties of set-valued mappings as well as nonlinear extensions of the new transversality properties of a set-valued mapping to a set in the range space due to Ioffe are also discussed.Comment: 33 page
    corecore