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Abstract Using techniques of variational analysis, necessary and sufficient subdifferential 
conditions for Holder error bounds are investigated and some new estimates for the¨ 
corresponding modulus are obtained. As an application, we consider the setting of 
convex semi-infinite optimization and give a characterization of the Holder calmness of 
the argmin¨ mapping in terms of the level set mapping (with respect to the objective 
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modulus of the argmin¨ mapping in the framework of linear programming. 

Keywords Holder error bounds¨ · Holder calmness¨ · Convex programming · 
Semi-infinite programming 

Mathematics Subject Classification (2000) 49J53 · 90C25 · 90C31 · 90C34 

1 Introduction 

This paper mainly concerns the study and some applications of the notions of Holder 
error¨ bounds and Holder calmness.¨ 

Given an extended-real-valued function f : X →R∪{+∞} on a metric space X, a point 
x¯ ∈ [f ≤ 0] := {x ∈ X | f(x) ≤ 0} and a number q > 0, we say that f admits a q-order local 
error bound at ¯x, if there exist positive numbers τ and δ such that 

 τd , (1.1) 
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where [f(x)]+ := max{f(x),0}. 

The supremum of all τ > 0 in (1.1) is called the modulus (conditioning rate [40]) of q-
order error bounds of f at ¯x and is denoted by Erq f(x¯); explicitly, 

f(x)q 
 Erq f(x¯) := liminf . (1.2) 

x→x¯, f(x)>0 d(x,[f ≤ 0]) 

It provides a quantitative characterization of error bounds. The absence of error bounds, 
i.e., the situation when (1.1) does not hold for any τ > 0, is signaled by Erq f(x¯)= 0. When 
q = 1, we write simply Er f(x¯) instead of Er1 f(x¯). 

The case q = 1 corresponds to the conventional linear error bounds. Linear error 
bounds have been well studied, especially in the last 15 years, because of numerous 
applications; see, e.g., [1,2,13,14,18,23,24,29,31,34,37,45,46,48]. The study of Holder (¨ 
qorder) and more general nonlinear error bounds started relatively recently thanks to 
more subtle applications, where conventional linear estimates do not hold; see 
[21,39,45,47,50]. 

Many authors have studied seemingly more general than error bounds, but in a sense 
equivalent to them properties of nonlinear subregularity and calmness of set-valued 
mappings, which are of great importance for optimization as well as subdifferential 
calculus, optimality conditions, stability and sensitivity issues, convergence of numerical 
methods, etc; interested readers are referred to [15,25,26,28,30,32,33,36–39,47,50] and 
the references therein. Sufficient conditions for (nonlinear) error bounds generate 
sufficient conditions for (nonlinear) subregularity and calmness; see, e.g., [28–30]. 

Given a set-valued mapping S :Y ⇒ X between metric spaces Y and X, a point (y¯,x¯) 
∈ gph(S) and a number q > 0, we say that S is q-order calm (or possesses q-order calmness 
property) at (y¯,x¯) if there exist a number τ > 0 and neighborhoods U of ¯x and V of ¯y 
such that 

 τd(x,S(y¯)) ≤ d(y,y¯)q, ∀y ∈V and x ∈ S(y)∩U. (1.3) 

If, additionally, ¯x is an isolated point in S(y¯), i.e., S(y¯)∩U = {x¯}, then we say that S 
possesses q-order isolated calmness property 

The supremum of all τ > 0 in (1.3) is called the q-order calmness modulus of S at (y¯,x¯) 
and is denoted by clmq S(y¯,x¯); explicitly, 

 d(y,y¯)q d(y¯,S−1(x))q 

 clmq S . (1.4) 

It provides a quantitative characterization of the calmness property. Following the lines 
of [9, Theorem 2.2], it is easy to verify that clmq S(y¯,x¯) coincides with the modulus of q-
order metric subregularity of S−1 at (x¯,y¯). 

Using techniques of variational analysis, we continue the study of necessary and 
sufficient subdifferential conditions for Holder error bounds, particularly merging the 
con-¨ ventional approach with the new advancements proposed recently in [47]. We 
formulate a general lemma collecting the main arguments used in the proofs of the 
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subdifferential sufficient error bound conditions and demonstrate that both linear and 

Holder type condi-¨ tions, both conventional and those in [47], can be obtained as direct 
consequences of this lemma. 

Moreover, we clarify the relationship between the error bound characterizations in 
[47] and those obtained using the conventional approach. Some new estimates for the 
modulus of q-order error bounds are obtained. The main sufficient subdifferential 
conditions are combinations of two assertions: in Asplund spaces in terms of Frechet 
subdifferentials and´ for convex functions in general Banach spaces. 

In [6], the authors compute or estimate the calmness modulus of the argmin mapping 
of linear semi-infinite optimization problems under canonical perturbations (see Section 
4 for its explicit meaning). Motivated by this and as an application, the last goal of the 
paper is to study in detail Holder calmness in convex semi-infinite programs. In this 
setting we¨ clarify the relationship among the Holder calmness of the solution mapping¨ 
S , the (lower) level set mapping L , and the Holder error bound of a special supremum 
function (see their¨ definitions in Section 4). Moreover, we also estimate the Holder 
calmness modulus of the¨ argmin mapping in the framework of linear programming. 

The rest of the paper is organized as follows: Section 2 summarizes some preliminary 
facts from variational analysis and generalized differentiation widely used in the 
formulations and proofs of our main results. In Section 3 we establish and discuss some 
necessary and sufficient subdifferential conditions for Holder error bounds. The last 
Section¨ 4 

devoted to convex semi-infinite optimization, shows the equivalence among the 
Holder¨ calmness of the (lower) level set and argmin mappings and the Holder error 
bounds of¨ a special supremum function, and also provides an estimate of Holder 
calmness of the¨ argmin mapping under some particular conditions. 

The paper is dedicated to our friend Professor Asen Dontchev on the occasion of his 
70th birthday 

2 Preliminaries 

In this section, we summarize some fundamental tools of variational analysis and 
nonsmooth optimization. 

Our basic terminology and notation are standard, see, e.g., [7, 8, 10, 21, 35, 43, 44]. 
Throughout the paper, X and Y are either metric or normed vector spaces. We use the 
standard notations d(·,·) and k·k for the distance and the norm in any space. For x ∈ X 
and δ > 0, Bδ(x) denotes the open ball centered at x with radius δ. Given a set A and a 
point x in the same space, d(x,A) := infa∈A d(x,a) is the distance from x to A. In particular, 
d(x,0/) = +∞ for any x. If X is a normed vector space, its topological dual is denoted by X∗, 
while h·,·i denotes the bilinear form defining the pairing between the two spaces. We 
denote by B and B∗ the open unit balls in a normed vector space and its dual, respectively. 

Given an extended-real-valued function f : X → R∪{+∞}, we denote by dom f its 

domain: dom f := {x ∈ X | f(x) < +∞}. For a set-valued mapping Φ : X ⇒ Y, the graph and 

the domain of Φ are defined, respectively, by 

 gph(Φ) := {(x,y) ∈ X ×Y | x ∈ X, y ∈ Φ(x)} and domΦ := {x ∈ X | Φ(x) =6 0/}. 

The inverse F−1 :Y ⇒ X of F (which always exists with possibly empty values at some y) is 
defined by 

 F−1(y) := {x ∈ X | y ∈ F(x)}, y ∈Y. 

Obviously, domF−1 = F(X). 
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 Recall that the Frechet subdifferential of´ f at x ∈ dom f is defined as 

, 

and ∂ f(x) := 0/ if x ∈/ dom f. It is well-known that the set ∂ f(x) reduces to the classical 
subdifferential of convex analysis if f is convex. 

The proofs of the main results rely on certain fundamental results of variational 
analysis: the Ekeland variational principle (Ekeland [11]; see also [10,21,35]) and several 
kinds of subdifferential sum rules. Below we provide these results for completeness. 

Lemma 2.1 (Ekeland variational principle) Suppose X is a complete metric space, f : X → 
R∪{+∞} is lower semicontinuous and bounded from below, ε > 0 and λ > 0. If 

f(x¯) < inf f +ε, 
X 

then there exists an xˆ ∈ X such that 
(a) d(xˆ,x¯) < λ, 
(b) f(xˆ) ≤ f(x¯), 
(c) f(x)+(ε/λ)d(x,xˆ) ≥ f(xˆ) for all x ∈ X. 

Lemma 2.2 (Subdifferential sum rules) Suppose X is a normed linear space, f1, f2 : X → 
R∪{+∞}, and x¯ ∈ dom f1 ∩dom f2. 

(i) Fuzzy sum rule. Suppose X is Asplund, f1 is Lipschitz continuous and f2 is lower 
semicontinuous in a neighbourhood of x. Then, for any¯ ε > 0, there exist x1,x2 ∈ X with kxi 

−x¯k < ε, |fi(xi)− fi(x¯)| < ε (i = 1,2), such that 

∂(f1 + f2)(x¯) ⊂ ∂ f1(x1)+∂ f2(x2)+εB∗. 

(ii) Convex sum rule. Suppose f1 and f2 are convex and f1 is continuous at a point in 
dom f2. Then 

∂(f1 + f2)(x¯) = ∂ f1(x¯)+∂ f2(x¯). 

The first sum rule in the lemma above is known as the fuzzy or approximate sum rule 
(Fabian [12]; cf., e.g., [27, Rule 2.2], [35, Theorem 2.33]) for Frechet subdifferentials in´ 
Asplund spaces. The other one is an example of an exact sum rule. It is valid in arbitrary 
normed spaces. For rule (ii) we refer the readers to [22, Theorem 0.3.3] and [49, Theorem 
2.8.7]. 

Recall that a Banach space is Asplund if every continuous convex function on an open 
convex set is Frechet differentiable on a dense subset [´ 41], or equivalently, if the dual 
of each its separable subspace is separable. We refer the reader to [3,35,41] for 
discussions about and characterizations of Asplund spaces. All reflexive, in particular, all 
finite dimensional Banach spaces are Asplund. 

The following fact is an immediate consequence of the definition of the Frechet subd-
´ ifferential (cf., e.g., [27, Propositions 1.10]). 

Lemma 2.3 Suppose X is a normed vector space and f : X → R∪{+∞}. If x¯ ∈ dom f is a 
point of local minimum of f, then 0 ∈ ∂ f(x¯). 

The next subdifferential chain rule is a modification of [37, Lemma 1] and [27, 
Corollary 1.14.1]; see also [47, Proposition 2.1]. 

Lemma 2.4 Suppose X is a normed linear space, f : X → R∪{+∞} is lower semicontinuous 

and x¯ ∈ dom f. Suppose also that ψ : R → R∪{+∞} is differentiable at f(x¯) with 

0(f(x¯)) > 0 and nondecreasing on [f(x¯),+∞). Then 
ψ 
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∂(ψ ◦ f)(x¯) = ψ0(f(x¯))∂ f(x¯). 

3 Characterizations of Holder error bounds¨ 

In this section, we establish and discuss some necessary and sufficient subdifferential 
conditions for Holder error bounds. We start with a slightly new look at the very well 
studied¨ linear error bounds. 

3.1 Linear error bounds 

The next elementary lemma collects the main arguments used in the proofs of the 
subdifferential sufficient error bound conditions, the key tools being the Ekeland 
variational principle (Lemma 2.1) and subdifferential sum rules (Lemma 2.2). It 
establishes an error bound estimate for a fixed point x ∈/ [f ≤ 0] and actually combines 
two separate statements: for lower semicontinuous functions in Asplund spaces and for 
convex functions in general Banach spaces. All sufficient error bound conditions in this 
section are in a sense consequences of this lemma. 

Lemma 3.1 Suppose X is a Banach space, f : X → R∪{+∞} is lower semicontinuous, x ∈ X 
and f(x)> 0. Let τ > 0 and α ∈(0,1]. If either X is Asplund and, given an M > f(x), 

 d(0,∂ f(u)) ≥ τ for all u ∈ X with ku−xk < αd(x,[f ≤ 0]), 

 f(u) < M and f(u) < τd(u,[f ≤ 0]), (3.1) 

or f is convex and 

 d(0,∂ f(u)) ≥ τ for all u ∈ X with ku−xk < αd(x,[f ≤ 0]), 

 f(u) ≤ f(x) and f(u) < τd(u,[f ≤ 0]), (3.2) 

then [f ≤ 0] 6= 0/ and 

 ατd(x,[f ≤ 0]) ≤ f(x). (3.3) 

Proof Suppose that condition (3.3) is not satisfied, i.e. f(x) < ατd(x,[f ≤ 0]) (this is the case, 
in particular, when [f ≤ 0]= 0/). Choose a τˆ ∈(0,τ) such that f(x)<ατˆd(x,[f ≤ 0]). Then, by 
the Ekeland variational principle (Lemma 2.1) applied to the lower semicontinuous 
function f+, there exists a point ˆu ∈ X such that 

f+(uˆ) ≤ f(x), kuˆ−xk < αd(x,[f ≤ 0]), (3.4) f+(uˆ) ≤ 

f+(u)+τˆku−uˆk for all u ∈ X. (3.5) 

Since α ∈(0,1], it follows from (3.4) that ˆu ∈/ [f ≤ 0], and consequently, f+(uˆ)= f(uˆ)> 0. 
If [f ≤ 0] 6= 0/, it follows from (3.5) that 

 f(uˆ) ≤ τˆd(uˆ,[f ≤ 0]). (3.6) 

If [f ≤ 0] = 0/, the last inequality is satisfied trivially. In view of the lower semicontinuity 
of f, we have f+(u) = f(u) > 0 for all u near ˆu, and it follows from (3.5) and Lemma 2.3 
that 0 ∈ ∂(f +g)(uˆ) where g(u) := τˆku−uˆk, u ∈ X. 

(i) Suppose X is Asplund. Choose an ε > 0 such that 

f(x)+ε < M, kuˆ−xk+ε < αd(x,[f ≤ 0]), ε < f(uˆ), ε < τ −τˆ 

 and ε(1+τ) < (τ −τˆ)d(uˆ,[f ≤ 0]). (3.7) 

Applying the fuzzy sum rule (Lemma 2.2(i)), we find points ˆx,xˆ0 ∈ Bε(uˆ) and 
subgradients x∗ ∈ ∂ f(xˆ), x0∗ ∈ ∂g(xˆ0) such that |f(xˆ)− f(uˆ)| < ε and kx∗ +x0∗k < ε. 
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By the definition of g, we have kx0∗k ≤ τˆ. Using (3.7), (3.6), (3.4) and the obvious 

inequality d(xˆ,[f ≤ 0])+kxˆ−uˆk−d(uˆ,[f ≤ 0]) ≥ 0, we obtain the following 
estimates: 

kxˆ−xk ≤ kxˆ−uˆk+kuˆ−xk < ε +kuˆ−xk < αd(x,[f ≤ 0]), 

f(xˆ) > f(uˆ)−ε > 0, 
f 

, 

f(xˆ) < f(x)+ε < M, 

d(0,∂ f(xˆ)) ≤ kx∗k < τˆ +ε < τ. 

This contradicts (3.1). 
(ii) Suppose f is convex. Since g is convex continuous, we can apply the convex sum rule 

(Lemma 2.2(ii)) to find a subgradient x∗ ∈ ∂ f(uˆ) such that kx∗k ≤ τˆ. Thus, making 
use also of (3.6), we have f(uˆ) < τd(uˆ,[f ≤ 0]) and d(0,∂ f(uˆ)) ≤ kx∗k ≤ τˆ < τ. This 
contradicts (3.2) and completes the proof. tu 

In the setting of linear error bounds, the first part of Lemma 3.1 strengthens [37, 
Theorem 2], where a more general setting of Holder error bounds was studied. We are 
going to¨ show in the next subsection that this seemingly more general setting can be 
treated within the conventional linear theory. 

Dropping or weakening any or all of the conditions on u in (3.1) makes the sufficient 
condition in Lemma 3.1 stronger (while weakening the result). This way one can 
formulate simplified versions of Lemma 3.1. For instance, condition f(u) < τd(u,[f ≤ 0]) in 
(3.1) does not seem practical when checking error bounds as it involves the unknown set 
[f ≤ 0], and basically says that only the points not satisfying the error bound property 
with constant τ should be checked. This condition is usually either dropped or replaced 
by the easier to check weaker condition f(u) < τku−x¯k, where ¯x is some point in [f ≤ 0]. 
Corollary 3.2 Suppose X is a Banach space, f : X → R∪{+∞} is lower semicontinuous, x ∈ X 

and f(x) > 0. Let τ > 0 and α ∈ (0,1]. If either X is Asplund or f is convex, and d(0,∂ f(u)) ≥ 

τ for all u ∈ X with ku−xk < αd(x,[f ≤ 0]) and f(u) < τd(u,[f ≤ 0]), then [f ≤ 0] 6= 0/ and 

condition (3.3) holds true. 

Remark 3.3 (i) The subdifferential characterizations in Lemma 3.1 are in fact 
consequences of the corresponding primal space characterizations in terms of slopes, 
some traces of which can be found in its proof; cf. [29,45]. We do not consider primal 
space characterizations in this paper. 

(ii) Elementary (primal or dual) error bound statements for a fixed point x ∈/ [f ≤ 0], 
coming from the Ekeland variational principle and lying at the core of all sufficient 
error bound characterizations have been formulated by several authors; cf. 
[18,20,37,40]. 

(iii) It is well understood by now that Frechet subdifferentials can be replaced in this type 
of´ results by other subdifferentials possessing reasonable sum rules in appropriate 
(trustworthy [19]) spaces. For instance, it is easy to establish analogues of Lemma 3.1 
and the other statements in this section for lower semicontinuous functions in 
general Banach spaces in terms of Clarke subdifferentials. We do not do it in the 
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current paper to keep the presentation simple and avoid using several types of 

subdifferentials in one statement. 
(iv) The value of the parameter α in Lemma 3.1 determines a tradeoff between the 

strength of the error bound estimate (3.3) and the size of the neighbourhood of x 
involved in the sufficient conditions (3.1) and (3.2): increasing the value of α 
strengthens condition (3.3) at the expense of increasing the neighbourhood of x, all 
points from which have to be checked in conditions (3.1) and (3.2). 

The next theorem is a slight generalization of the conventional linear error bound 
statement in the subdifferential form (which corresponds to taking α = 1). It is an 
immediate consequence of Lemma 3.1. 

Theorem 3.4 Suppose X is a Banach space, f : X → R∪{+∞} is lower semicontinuous and 

x¯ ∈ [f ≤ 0]. Let τ > 0 and δ ∈ (0,∞]. If either X is Asplund or f is convex, and d(0,∂ f(x)) ≥ 

τ for all x ∈ Bδ(x¯)∩[f > 0] with f(x) < τd(x,[f ≤ 0]), (3.8) 

then 

 ατd(x,[f ≤ 0]) ≤ f+(x) for all α ∈ (0,1] and x . (3.9) 

Proof Suppose that condition (3.9) is not satisfied, i.e. f+(x) < ατd(x,[f ≤ 0]) for some α 

∈(0,1] and some x . Then d(x,[f ≤ 0])> 0, and consequently, f+(x)= f(x)> 
0. By Lemma 3.1, there exists a u ∈ X with ku−xk<αd(x,[f ≤ 0]) and f(u)<τd(u,[f ≤ 0]) such 

that d(0,∂ f(u))<τ. This contradicts (3.8) because ku−x¯k≤ku−xk+kx−x¯k< 
(α +1)kx−x¯k < δ and f(u) > 0. tu 

The next statement is a simplified version of Theorem 3.4. with the the last inequality 
in (3.8) replaced by the easier to check weaker condition f(u) < τku−x¯k. 

Corollary 3.5 Suppose X is a Banach space, f : X → R∪{+∞} is lower semicontinuous and 

x¯ ∈ [f ≤ 0]. Let τ > 0 and δ ∈ (0,∞]. If either X is Asplund or f is convex, and d(0,∂ f(x)) ≥ 

τ for all x ∈ Bδ(x¯)∩[f > 0] with f(x) < τkx−x¯k, 

then condition (3.9) holds true. 

Remark 3.6 (i) Theorem 3.4 and Corollary 3.5 allow for δ =∞, thus, covering also global 
error bounds. 

(ii) The value of the parameter α in Theorem 3.4 and Corollary 3.5 determines a tradeoff 
between the sharpness of the error bound estimate in (3.9) and the size of the 
neighbourhood of ¯x, where this estimate holds. If the size of the neighbourhood is 
not important, one can take α = 1, which insures the sharpest error bound estimate. 
Note that, unlike Lemma 3.1, in Theorem 3.4 and the subsequent statements in this 
section the parameter α is only present in the concluding part. 

Thanks to Corollary 3.5, the limit Er f(x¯) := liminf d(0,∂ 

f(x)) 

x→x¯, f(x)↓0 

provides a lower estimate for the local error bound modulus Er f(x¯) of f at ¯x. Such 
estimates are often used in the literature. 
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3.2 Holder error bounds¨ 

The estimate (3.9) constitutes the linear error bound for the function f at ̄ x with constant 
ατ. In many important situations such linear estimates do not hold, and this is where 
more subtle nonlinear (in particular, Holder type) models come into play. Surprisingly, 
such¨ seemingly more general models can be treated within the conventional linear 
theory. The next theorem providing a characterization for the Holder error bounds is a 
consequence of¨ Theorem 3.4. 

Given a function f : X → R∪{+∞}, a point x ∈ X with f(x) ≥ 0 and a number q > 0, f q(x) 
stands for [f(x)]q. Thus, f q is a function on [f ≥ 0]. Note that the next theorem 

allows for q > 1. 

Theorem 3.7 Suppose X is a Banach space, f : X → R∪{+∞} is lower semicontinuous and 

x¯ ∈ [f ≤ 0]. Let τ > 0, δ ∈ (0,∞] and q > 0. If either X is Asplund or f is convex, and qf 

q−1(x)d(0,∂ f(x)) ≥ τ for all x ∈ Bδ(x¯)∩[f > 0] with f q(x) < τd(x,[f ≤ 0]), (3.10) 

then 

 ατd  for all α ∈ (0,1] and x . (3.11) 

Proof Apply Theorem 3.4 with the lower semicontinuous function x  in place of f. 
Observe that  and, for any x ∈[f > 0], we have f+q(x)= f q(x) 
and ∂ f q(x) = qf q−1(x)∂ f(x) (by Lemma 2.4). tu 

Theorem 3.7 strengthens [37, Corollary 2, parts (i) and (ii)]. When q = 1, Theorem 3.7 
reduces to Theorem 3.4. 

The next statement is a simplified version of Theorem 3.7, with the the last inequality 
in (3.10) replaced by the easier to check weaker condition f q(u) < τku−x¯k. 

Corollary 3.8 Suppose X is a Banach space, f : X → R∪{+∞} is lower semicontinuous and 

x¯ ∈ [f ≤ 0]. Let τ > 0, δ ∈ (0,∞] and q > 0. If either X is Asplund or f is convex, and qf 

q−1(x)d(0,∂ f(x)) ≥ τ for all x ∈ Bδ(x¯)∩[f > 0] with f q(x) < τkx−x¯k, (3.12) then condition 

(3.11) holds true. 

In view of Corollary 3.8 and definition (1.2), the limit 

d(0,∂ f(x)) 

Erq f  (3.13) 

provides a lower estimate for the modulus Erq f(x¯) of q-order error bounds of f at ¯x. 
Example 3.9 Let f : R → R be given by f(x) = x2 if x ≥ 0 and f(x) = 0 if x < 0. Then [f ≤ 0] = 

R− and, for any x > 0, we have d(x,[f ≤ 0]) = x, d(0,∂ f(x)) = f 0(x) = 2x, and, with q , qf 
q 1. Hence, condition (3.12) is satisfied with q  and any 

τ ∈ (0,1] and δ ∈ (0,∞]. With q , the inequality in (3.11) becomes ατx+ ≤ x+, where x+ 

:= max{x,0}. It is indeed satisfied for all τ ∈ (0,1], α ∈ (0,1] and x ∈ R. tu 
√ 

Example 3.10 Let f : R → R be given by f(x) = x if x ≥ 0 and f(x) = 0 if x < 0. Then 

[f ≤ 0] = R− and, for any x > 0, we have d(x,[f ≤ 0]) = x, d(0,∂ f(x)) = f 0(x) = 2√1 
x, 

√ 
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and, with q=2, qf q−1(x)d(0,∂ f(x))=2· x· 2√1 

x =1. Hence, condition (3.12) is satisfied with q 

= 2 and any τ ∈ (0,1] and δ ∈ (0,∞]. With q = 2, the inequality in (3.11) becomes ατx+ ≤ 

x+. It is indeed satisfied for all τ ∈ (0,1], α ∈ (0,1] and x ∈ R. tu 

It was observed in [47] that applying the Ekeland variational principle in the proof of 
results like Theorem 3.7 in a slightly different way, one can obtain a sufficient 
subdifferential condition for Holder error bounds in a different form. Next we show that 
conditions of¨ this type are also direct consequences of Lemma 3.1. The following 
statement is motivated by [47, Theorem 3.1]. Note that, unlike Theorem 3.7, it is 
restricted to the case q ≤ 1. 

Theorem 3.11 Suppose X is a Banach space, f : X → R∪{+∞} is lower semicontinuous and 
x¯ ∈ [f ≤ 0]. Let τ > 0, δ ∈ (0,∞] and q ∈ (0,1]. If either X is Asplund or f is convex, and 

 d(x,[f ≤ 0])q−1d(0,∂ f(x))q ≥ τ for all x ∈ Bδ(x¯)∩[f > 0] 

 with f q(x) < τd(x,[f ≤ 0]), (3.14) 

then 

 q∈ (0,1)
 and x 

αfor all α 

Proof Suppose that condition (3.15) is not satisfied, i.e. f  

for some α ∈ (0,1) and x . Then d(x,[f ≤ 0]) > 0, and consequently, f+(x) = 

f(x) > 0. Set . Then 0 < f(x) < ατ0d(x,[f ≤ 0]). By 
Lemma 3.1, there exists a u ∈ X with ku−xk < αd(x,[f ≤ 0]) and f(u) < τ0d(u,[f ≤ 0]) such 
that d(0,∂ f(u)) < τ0. Observe that f(u) > 0, 

ku−x¯k ≤ ku−xk+kx−x¯k < (α +1)kx−x¯k < δ, (3.16) 
(1−α)d(x,[f ≤ 0]) < d(x,[f ≤ 0])−ku−xk ≤ d(u,[f ≤ 0]), (3.17) 

q 
 , (3.18) 

f q(u) < (τ0)qd(u,[f ≤ 0])q (3.18< ) τd(u,[f ≤ 0]), 
(3.18) 

d(u,[f ≤ 0])q−1d(0,∂ f(u))q < d(u,[f ≤ 0])q−1(τ0)q < τ. 

(3.19) 

In view of (3.16) and (3.19), this contradicts (3.14) and completes the proof. tu 
Just like Theorem 3.7, when q = 1 Theorem 3.11 reduces to Theorem 3.4. Thus, both 

Theorems 3.7 and 3.11 generalize Theorem 3.4 to the Holder setting.¨ 
The next statement is a simplified version of Theorem 3.11. 

Corollary 3.12 Suppose X is a Banach space, f : X →R∪{+∞} is lower semicontinuous and 
x¯ ∈ [f ≤ 0]. Let τ > 0, δ ∈ (0,∞] and q ∈ (0,1]. If either X is Asplund or f is convex, and 

 d(x,[f ≤ 0])q−1d(0,∂ f(x))q ≥ τ for all x ∈ Bδ(x¯)∩[f > 0] 

 with f q(x) < τkx−x¯k, (3.20) 

then condition (3.15) holds true. 
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As observed in Remark 3.6(ii) concerning Theorem 3.4 and Corollary 3.5, the value of 

the parameter α in Theorem 3.11 and Corollary 3.12 determines a tradeoff between the 
sharpness of the error bound estimate in (3.15) and the size of the neighbourhood of ¯x, 
where this estimate holds. Thanks to the special form of the expression in the left-hand 
side of the inequality in (3.15), the range of values of α in (3.15) can be reduced, with the 
sharpest error bound estimate corresponding to taking α = q. 

Proposition 3.13 Under the assumptions of Theorem 3.11, and adopting the convention 
00 = 1, condition (3.15) is equivalent to the following one: 

 q∈ (0,q]
 and x 

αfor all α 

The latter condition implies 

 qq  for all x . (3.22) 

placed by B(x¯). 

 

Proof The implication (3.21) ⇒ (3.22) is obvious, as well as the implication (3.15) ⇒ (3.21) 
when q < 1. It is easy to check that in the latter case the function α 7→ αq(1−α)1−q is 
strictly increasing on (0,q) and strictly decreasing on (q,1). Hence, when α > q, one has 

αq(1−α)1−q < qq(1−q)1−q and B , and consequently, (3.21) ⇒ (3.15). 
When q = 1, the implication (3.21) ⇒ (3.15) is obvious. For the converse implication, 

only the case α = 1 needs to be covered. Condition (3.15) implies 

 ατd(x,[f ≤ 0]) ≤ f+(x) for all α ∈ (0,1) and x . 

Taking supremum over α in the left-hand side of the above inequality, we see that the 
inequality must hold also for α = 1. The ‘moreover’ part is obvious since αq(1−α)1−q ≤ 
qq(1−q)1−q for all α ∈ (0,q]. tu 

Thanks to Proposition 3.13, the sufficient error bound condition in Corollary 3.12 can 
be simplified further. 

Corollary 3.14 Suppose X is a Banach space, f : X →R∪{+∞} is lower semicontinuous and 
x¯ ∈ [f ≤ 0]. Let τ > 0, δ ∈ (0,∞] and q ∈ (0,1]. If either X is Asplund or f is convex, and 

 qq(1−q)1−qd(x,[f ≤ 0])q−1d(0,∂ f(x))q ≥ τ for all x ∈ Bδ(x¯)∩[f > 0] 

 with qq(1−q)1−q f q(x) < τkx−x¯k, (3.23) 

then 

 τd  for all x . (3.24) 

In view of Corollary 3.8 and definition (1.2), the expression 

Moreover, condition (3.22) is equivalent to (3.21) with the neighbourhood B (x¯) 
re- 
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 Erq 0 f(x¯) := qq(1−q)1−q x→liminfx¯, f(x)↓0 d (dx(,0[,f∂≤f(0x])))1q−q (3.25) 

 

provides a lower estimate for the modulus Erq f(x¯) of q-order error bounds of f at ¯x 
which complements (3.13). 
Example 3.15 Let f : R→R be defined as in Example 3.9: f(x)= x2 if x ≥ 0 and f(x)= 0 if x < 
0. As computed in Example 3.9, for any x > 0, we have d(x,[f ≤ 0]) = x and d(0,∂ f(x)) = f 
0(x) = 2x. Now, with q = , we have for any x > 0: 

qq(1−q)1−qd(x,[f ≤ 0])q−1d(0,∂ f(x))q = 1  · √1 ·√2x = √1 . 
 2 x 2 

Hence, condition (3.23) is satisfied with q =  and any  and δ ∈ (0,∞]. Thus, 

Corollary 3.14 gives in this example a global error bound estimate with constant up to
, while we know from Example 3.9, which is a consequence of Theorem 3.7, that a global 
error bound estimate holds actually with any constant up to 1. tu 

The next proposition shows that a slightly strengthened version of the sufficient error 
bound condition in Corollary 3.8 implies that in Corollary 3.12 (or 3.14). In view of the 
obvious similarity of the concluding conditions (3.11) (with α = 1) in Corollary 3.8 and 
(3.24) in Corollary 3.14, below we compare their assumptions. 

Proposition 3.16 Suppose X is a Banach space, f : X → R∪{+∞} is lower semicontinuous 

and x¯ ∈ [f ≤ 0]. Let τ > 0, δ ∈ (0,∞] and q ∈ (0,1], and the convention 00 = 1 be in force. 

Suppose also that either X is Asplund or f is convex. If qf q−1(x)d(0,∂ f(x)) ≥ τ for all x ∈ 

Bδ(x¯)∩[f > 0] with qq f q(x) < τkx−x¯k, (3.26) 

then 

qqd(x,[f ≤ 0])q−1d(0,∂ f(x))q ≥ τ for all x  with qq f q(x) < τkx−x¯k, 

i.e. condition (3.23) is satisfied with τ0 := (1−q)1−qτ and  in place of τ and δ, 
respectively. 

Proof Suppose that condition (3.26) is satisfied. Then, condition (3.12) is satisfied too and, 
by Corollary 3.8, condition (3.11) holds true. In view of conditions (3.12) and (3.11) with 

α = 1, we have for any x  with qq f q(x) < τkx−x¯k: 

qqd q 

. 

This completes the proof. tu 

Proposition 3.16 allows us to establish a relationship between the lower error bound 
estimates (3.13) and (3.25). 

Corollary 3.17 Suppose X is a Banach space, f : X →R∪{+∞} is lower semicontinuous and 
x¯ ∈ [f ≤ 0]. Let q ∈ (0,1] and the convention 00 = 1 be in force. If X is Asplund or f is convex, 
then 

 (1−q)1−q Erq f .
 (3.27) 
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Proof If Erq f(x¯) = 0, the first inequality in (3.27) holds true trivially. Suppose that 0 < τ < 

Erq f(x¯). By definition (3.13), condition (3.26) is satisfied with some number δ > 0 and, by 

Proposition 3.16, condition (3.23) is satisfied with τ0 :=(1−q)1−qτ and  in place of τ 
and δ, respectively. Hence, by definition (3.25), Erq 0 f(x¯)≥(1−q)1−qτ. Passing 

 
to the limit as τ ↑ Erq f(x¯) proves (3.27). tu 

 

Remark 3.18 In view of Corollary 3.17, the sufficient error bound condition Erq 0 f(x¯) > 0 

is in general weaker than Erq f(x¯) > 0. At the same time, it also yields a weaker error 

 
bound estimate – see (3.27). This is illustrated by Example 3.15, where Erq f(0) = 1, Erq 0 f

, i.e. condition (3.27) holds as equality. 

Inequality (3.27) relating the two lower estimates for the modulus Erq f(x¯) can be 

strict. Moreover, it can happen that Erq f(x¯)=0 while Erq 0 f(x¯)>0. In such cases, Erq 0 f(x¯) 

 
detects q-order error bounds while Erq f(x¯) fails. 

Example 3.19 Let f : R → R be given by 
 

0 if x ≤ 0, 
 

 f(x) := x2 + 1 − 1 if  

  if x . 

For any n = 3,4... and x , we have . Hence [f ≤ 0]= 

R− and f(x) → 0 as x ↓ 0. At the points xn :  , the function is continuous 
from the left. Moreover, 

1 n2 −3n+1 f
 + − −
 = − < 0. 

2 n−1 (n−1)2n2 

Hence, f is lower semicontinuous. For any x > 0, we have d(x,[f ≤ 0]) = x, f 0(x) = 2x if x 6= 
xn and ∂ f(xn) = [2xn,+∞), n = 3,4..., and consequently, d(0,∂ f(x)) = 2x for all x > 

0. With q , we have d

 0 for any x > 0; 

hence, Erq 0 f(x¯) > 0. At the same time, f q n → ∞; hence, Erq f(x¯) = 0. 

In some situations, it can be convenient to reformulate Theorem 3.11 in a slightly 
different form given in the next corollary. 

Corollary 3.20 Suppose X is a Banach space, f : X →R∪{+∞} is lower semicontinuous and 

x¯ ∈ [f ≤ 0]. Let τ > 0, δ ∈ (0,∞] and p ≥ 0. If either X is Asplund or f is convex, and d(0,∂ 

f(x)) ≥ τd(x,[f ≤ 0])p for all x ∈ Bδ(x¯)∩[f > 0] 

 with f(x) < τd(x,[f ≤ 0])p+1, (3.28) 
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then 

 α(1−α)pτd(x,[f ≤ 0])p+1 ≤ f+(x) for all α ∈ (0,1) and x  
1 

Proof Setting q := 
p+1 

1 and replacing τ with τ p+1 in the statement of Theorem 3.11, reduces 

it to that of the above corollary. tu 

Remark 3.21 Corollary 3.20 improves [47, Corollary 3.1], which claims a weaker 
conclusion under stronger assumptions. Condition (3.29) is referred to in [47] as (p+1)-
order error bound. 

Combining Corollaries 3.8 and 3.14, and Proposition 3.16, we can formulate 
quantitative and qualitative sufficient subdifferential conditions for Holder error 
bounds.¨ 

Theorem 3.22 Suppose X is a Banach space, f : X → R∪{+∞} is lower semicontinuous and 
x¯∈[f ≤ 0]. Let either X is Asplund or f is convex, τ > 0, q ∈(0,1], and the convention 00 = 1 
be in force. Consider the following conditions: 

 for all x near x;¯ 
(ii) qf q−1(x)d(0,∂ f(x)) ≥ τ for all x ∈ [f > 0] near x;¯ 
(iii) qq(1−q)1−qd(x,[f ≤ 0])q−1d(0,∂ f(x))q ≥ τ for all x ∈ [f > 0] near x.¯ 

Then (ii) ⇒ (i), (iii) ⇒ (i), and (ii) ⇒ (iii) with (1−q)1−qτ in place of τ. If q = 1, then conditions 
(ii) and (iii) coincide. 

Corollary 3.23 Suppose X is a Banach space, f :X →R∪{+∞} is lower semicontinuous, x¯ ∈ 
[f ≤ 0] and q ∈ (0,1]. Let either X is Asplund or f is convex. f admits a q-order local error 
bound at x if one of the following conditions is satisfied:¯ 
(i) liminf f q−1(x)d(0,∂ f(x)) > 0; x→x¯, f(x)↓0 

(ii) liminf d(x,[f ≤ 0])q−1d(0,∂ f(x))q > 0. x→x¯, 
f(x)↓0 

The last inequality in (3.20) involving the qth power of the function f can sometimes 
be replaced by a similar inequality involving the function f itself. 

Proposition 3.24 Suppose X is a Banach space, f : X → R∪{+∞} is lower semicontinuous 
and x¯ ∈ [f ≤ 0]. Let τ > 0, δ ∈ (0,∞], β > 0 and q ∈ (0,1). If either X is Asplund or 
f is convex, and d(x,[f ≤ 0])q−1d(0,∂ f(x))q ≥ τ for all x ∈ Bδ(x¯)∩[f 

> 0] 

 with f(x) < βkx−x¯k, (3.30) 

then, with r : , 

q∈ (0,1) and x ∈ B r (x¯). (3.31) αfor all α 

Proof If x ∈ Br(x¯)∩[f > 0], then x ∈ Bδ(x¯)∩[f > 0]. If, additionally, f q , then 

f . 

Hence, condition (3.30) implies (3.20) with r in place of δ. The statement follows from 
Theorem 3.11. tu 

Remark 3.25 The above proposition is formulated for the case q<1. When q=1, a similar 
assertion is trivially true with β ≥ τ (as a consequence of Theorem 3.4), but, as the next 
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example shows, fails when β < τ. This example shows also that [47, Proposition 3.1] fails 

when p = 0. 

Example 3.26 Let f  and q = 1. Then there are no x 
∈ [f > 0] with f(x) < β|x|, i.e. condition (3.30) is trivially satisfied with any δ > 0. Similarly, 
τ|x| > f(x) for any x 6= 0, i.e. condition (3.31) fails with any r > 0. tu 

Remark 3.27 (i) One can easily formulate a statement similar to Proposition 3.13 for the 

error bounds statements in Proposition 3.24 and Corollary 3.20. In the latter case, 

the sharpest error bound estimate in (3.29) corresponds to taking α = p+1 
1, where the 

maximum of α(1−α)p over α ∈ (0,1) is attained. 

(ii) The neighbourhood B ) and (3.29), and the 
neighbourhood B (x¯) in (3.22) and (3.24) can always be replaced by the 
smaller neighbourhood B(x¯), independent of α or q. A similar simplification is 
possible also in (3.31). 

(iii) Conditions (3.14) in Theorem 3.11, (3.20) in Corollary 3.12, (3.28) in Corollary 3.20, 
(iii) in Theorem 3.22, (ii) in Corollary 3.23 and (3.30) in Proposition 3.24, although 
sufficient for the corresponding Holder error bound estimates, do not seem practical¨ 
as they involve the unknown distance d(x,[f ≤ 0]), which error bounds are supposed 
to estimate. This remark also applies to the next more general theorem. 
Nevertheless, such conditions are in use in the literature; see [47,51,52]. 

The next theorem combines the sufficient Holder error bound conditions from Theo-
¨ rems 3.7 and 3.11 in a single statement. It is still a consequence of Lemma 3.1. 

Theorem 3.28 Suppose X is a Banach space, f : X → R∪{+∞} is lower semicontinuous and 
x¯ ∈ [f ≤ 0]. Let τ > 0, δ ∈ (0,∞], λ ∈ [0,1] and q ∈ (0,1]. If either X is Asplund or f is 

convex, and 
! 

 d(0,∂ f(x)) ≥ τ for all x ∈ Bδ(x¯)∩[f > 0] 

with λ f(x) 1q −1 +(1−λ)f q(x) < τd(x,[f ≤ 0]), (3.32) 

d(x,[f ≤ 0]) 

then 

 ταd  for all α ∈ (0,1) and x , (3.33) 

where τα > 0 is the unique solution for the equation 

 . (3.34) 

Proof Observe that the function t t is continuous and 
strictly increasing on R+ and satisfies ϕ(0) = 0 and limt→∞ϕ(t) = ∞. Hence, the equation 
(3.34) has a solution for any α > 0 and τ > 0, which is unique. Suppose that condition 
(3.33) is not satisfied, i.e. 

q 
 f+(x) < ταd(x,[f ≤ 0]) (3.35) 

for some α ∈ (0,1) and x . Then d(x,[f ≤ 0]) > 0, and consequently, f+(x) = 
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α f(x) > 0. Consider a 

function g : X → R∪{+∞} defined by 

 g X. (3.36) 

It is obviously lower semicontinuous, g(u)≥ 0 for all u ∈ X, [g ≤ 0]=[g = 0]=[f ≤ 0] and 

g(x)> 0. Observe that g =ψ◦ f+, where tq, 
and ψ : R+ → R+ is strictly increasing and continuously differentiable on (0,∞). Hence, by 
(3.35), 

g 

. 

Thus, 0 < g(x) < ατd(x,[g ≤ 0]). By Lemma 3.1, there exists a u ∈ X such that ku−xk < 

αd(x,[f ≤ 0]), g(u) < τd(u,[f ≤ 0]) and d(0,∂g(u)) < τ. (3.37) 

Hence, f(u) > 0. The first inequality in (3.37) immediately yields estimates (3.16) and 
(3.17). By (3.36) and the second inequality in (3.37), we have 

  . (3.38) 
d 

Applying Lemma 2.4, we 
get 

 

f q−1(u)∂ f(u), 

and consequently, by (3.17) and the third 
inequality in (3.37), 
! d(0,∂ f(u)) < d(0,∂g(u)) < τ. 

In view of (3.16) and (3.38), this contradicts (3.32) and completes the proof. tu 

Remark 3.29 When λ =0, Theorem 3.28 reduces to Theorem 3.7 except for the case α =1 
in (3.11). When λ = 1, Theorem 3.28 reduces to Theorem 3.11. When q = 1, Theorem 3.28 
reduces to Theorem 3.4 except for the case α = 1 in (3.9). The case α = 1 in (3.11) when 
λ = 0 and in (3.9) when q = 1 is an immediate consequence of the case α ∈ (0,1); see the 
argument in the proof of Proposition 3.13. 

The next statement is a simplified version of Theorem 3.28. 

Corollary 3.30 Suppose X is a Banach space, f : X →R∪{+∞} is lower semicontinuous and 
x¯ ∈ [f ≤ 0]. Let τ > 0, δ ∈ (0,∞], λ ∈ [0,1] and q ∈ (0,1]. If either X is Asplund or f is convex, 
and 
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! 

 d(0,∂ f(x)) ≥ τ for all x ∈ Bδ(x¯)∩[f > 0] 

 λ f(x) 1−1 +(1 q with
 kx−x¯k, 

−λ)f (x) < τ 
d(x,[f ≤ 0]) q 

then condition (3.33) holds true. 

3.3 Convex case 

In this subsection X is a normed vector space and the function f : X → R∪{+∞} is assumed 
convex. The statement of Lemma 3.1 can be partially reversed (at the reference point). 

Lemma 3.31 Suppose X is a normed vector space, f : X → R∪{+∞} is convex, x ∈ X, f(x) > 
0 and τ > 0. If 

 τd(x,[f ≤ 0]) ≤ f(x), (3.39) 

then d(0,∂ f(x)) ≥ τ. 

Proof Let condition (3.39) be satisfied and x∗ ∈ ∂ f(x). Then, for any u ∈ [f ≤ 0], we have 

. 

Taking the infimum in the left-hand side over all u ∈ [f ≤ 0], we get kx∗k ≥ τ, which 
concludes the proof. tu 

Combining Theorem 3.4 and Lemma 3.31, we can formulate the standard 
subdifferential linear error bound criterion for convex functions. 

Theorem 3.32 Suppose X is a Banach space, f : X → R∪{+∞} is convex lower 
semicontinuous, x¯ ∈ [f ≤ 0] and τ > 0. The following conditions are equivalent: 

(i) τd(x,[f ≤ 0]) ≤ f+(x) for all x near x;¯ 
(ii) d(0,∂ f(x)) ≥ τ for all x ∈ [f > 0] near x.¯ 

The convex case ‘reverse’ linear error bound statement in Lemma 3.31 can also be 
easily adjusted to the Holder setting both in the ‘conventional’ form as in Theorem¨
 3.7 and its modification as in Theorem 3.11. It is easy to see that the conclusion 
of the next lemma is actually a combination of two different conditions. 

Lemma 3.33 Suppose X is a normed vector space, f : X → R∪{+∞} is convex, x ∈ X and f(x) 
> 0. Let τ > 0 and q ∈ (0,1]. If 

 τd(x,[f ≤ 0]) ≤ f q(x), (3.40) 

then d

, or equivalently, 
. 

Proof Condition (3.40) can be rewritten as 
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τ f 1−q(x)d(x,[f ≤ 0]) ≤ f(x). 

Applying Lemma 3.31 with τ0 := τ f 1−q(x) in place of τ, we get d(0,∂ f(x)) ≥ τ f 1−q(x). 
Similarly, rewriting condition (3.40) as 

, 

and applying Lemma 3.31 with  in place of τ, we get d(0,∂ f(x))≥ 

. tu 

Combining Theorem 3.22 and Lemma 3.33, we can formulate quantitative and 
qualitative subdifferential characterizations of Holder error bounds for convex 
functions.¨ 

Theorem 3.34 Suppose X is a Banach space, f : X → R∪{+∞} is convex lower 
semicontinuous and x¯ ∈ [f ≤ 0]. Let τ > 0, q ∈ (0,1], and the convention 00 = 1 be in force. 
Consider conditions (i), (ii) and (iii) in Theorem 3.22. Then 

(a) (ii) ⇒ (i) and (i) ⇒ (ii) with qτ in place of τ; 
(b) (iii) ⇒ (i) and (i) ⇒ (iii) with qq(1−q)1−qτ in place of τ. 

If q = 1, then all the conditions are equivalent. 

Corollary 3.35 Suppose X is a Banach space, f : X → R∪{+∞} is convex lower 
semicontinuous, x¯ ∈ [f ≤ 0] and q ∈ (0,1]. The following conditions are equivalent: 

 for some τ > 0 and all x near x;¯ 
(ii) liminf f q−1(x)d(0,∂ f(x)) > 0; x→x¯, f(x)>0 

(iii) liminf d(x,[f ≤ 0])q−1d(0,∂ f(x))q > 0. x→x¯, 
f(x)>0 

4 Applications to convex semi-infinite optimization 

In this section, we mainly consider the following convex optimization problem 

 P(c,b) : minimize f(x)+hc,xi 
(4.1) 

 subject to gt(x) ≤ bt, t ∈ T, 

where c, x ∈ Rn, T is a compact set in a metric space Z such that T & Z, f : Rn → R and gt : Rn 

→ R, t ∈ T, are given convex functions such that (t,x) →7 gt(x) is continuous on T ×Rn, and 

b ∈ C(T,R), i.e., T 3 t 7→ bt ∈ R is continuous on T. In this setting, the pair 

(c,b) ∈ Rn ×C(T,R) is regarded as the parameter to be perturbed. The parameter space 

Rn ×C(T,R) is endowed with the norm 

 k(c,b)k := max{kck,kbk∞}, (4.2) 

where Rn is equipped with the Euclidean norm k·k and kbk∞ := maxt∈T |bt|. 
Our aim here is to analyze the solution mapping (also called argmin mapping) of 

problem (4.1): 

S : (c,b) 7→ {x ∈ Rn | x solves P(c,b)} with (c,b) ∈ Rn ×C(T,R). 

In the special case that c is fixed, S reduces to the partial solution mapping Sc :C(T,R)⇒ 
Rn given by 
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Sc(b) = S(c,b). 

Associated with the parameterized problem P(c,b), we denote by F the feasible set 
mapping, which is given by 

F(b) := {x ∈ Rn | gt(x) ≤ bt,t ∈ T}. 
The set of active indices at x ∈ F(b) is the set Tb(x) defined by 

Tb(x) := {t ∈ T | gt(x) = bt}. 

We say that the problem P(c,b) satisfies the Slater constraint qualification 
(hereinafter called the Slater condition) if there exists ˆx ∈ Rn such that gt(xˆ) < bt for all t 
∈ T. The following well-known result (see [16, Theorems 7.8 and 7.9]) plays a key role in 
our analysis. 

Proposition 4.1 Let (c¯,b¯) ∈ Rn ×C(T,R) and assume that P(c¯,b¯) satisfies the Slater 
condition. Then x¯∈S(c¯,b¯) if and only if the Karush-Kuhn-Tucker (KKT) conditions hold, 
i.e., 

 

  x¯ ∈ F(b¯) and −(∂ f(x¯)+c¯)\

 . 

Here cone(X) represents the conical convex hull of X, and we assume that cone(X) 
always contain the zero-vector 0n, in particular cone(0/) = {0n}. 

In this section we provide a characterization for Holder calmness of¨ S at ((c¯,b¯),x¯). 

To this aim, we use the following level set mapping L : R×C(T,R) ⇒Rn given by 

L(α,b) := {x ∈ Rn | f(x)+hc¯,xi ≤ α; gt(x) ≤ bt,t ∈ T} 

and the supremum function f¯ : Rn → R defined as 

 f¯(x) :=sup{f(x)− f(x¯)+hc¯,x−x¯i; gt(x)−b¯t, t ∈ T} (4.3) 

=sup{f(x)+hc¯,xi−(f(x¯)+hc¯,x¯i); gt(x)−b¯t, t ∈ T}. 

(See [6, (11) and (12)] for the linear counterparts of L and f¯.) 
For a given t , we define 

 
T := T ∪{t0}, gt0(x) := f(x)+hc¯,xi and b¯t0 := f(x¯)+hc¯,x¯i. 

 
As T is a compact set (and t0 is an isolated point in T), the function (t,x) →7 gt(x) is 

continuous on T ×Rn, b ∈ C(T,R) and, obviously, 

 
f¯(x) = sup{gt(x)−b¯t, t ∈ T}. 

For any x ∈ Rn, we consider the extended active set 

 
T(x) := {t ∈ T : gt(x)−b¯t = f¯(x)}. 

The following well-known result is useful for us (e.g. [17, VI, Theorem 4.4.2]). 
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 [ ∂gt(x) . (4.4)  ∂ f¯(x) = co

Observe that 
∂gt0(x) = ∂ f(x)+c¯. 

Since ((c¯,b¯),x¯) ∈ gph(S), 

 S . (4.5) 

 
Observe that t0 ∈ T(x¯). Consequently 0n ∈ ∂ f(x), and by (4.4) 

, 

with ui . 

If P(c¯,b¯) satisfies the Slater condition, t0 must be one of the indices involved in the 

sum above, and we shall write 
0 

 ,
 (4.6) 

with u0 ∈ ∂ f(x), ui ∈ ∂gti(x), {ti, i = 1,2,...,q} ⊂ Tb(x), µ0 > 0, µi ≥ 0, i = 1,2,...,q, and µi = 1. 

Otherwise 0n ∈ co  and x would be a global minimum of the function ϕ(·) 
:= sup{gt(·)−b¯t, t ∈ T}, 

giving rise to the contradiction ϕ(xb) < 0 = ϕ(x). Observe that it may happen that µ0 = 1 

and the sum in (4.6) vanishes (this is the case if Tb(x) = 0/). 

The following lemma provides a uniform boundedness result which is needed later. 
It constitutes a convex counterpart of [5, Lemma 3.2]. 

Lemma 4.2 Let ((c¯,b¯),x¯) ∈ gph(S) be given and assume that P(c¯,b¯) satisfies the 
Slater condition. Then there exist M > 0 and neighborhoods U of x and V of¯
 (c¯,b¯) such that, for all (c,b) ∈V and all x ∈ S(c,b)∩U, there exists u ∈ ∂ f(x) 
satisfying 

 . (4.7) 

Proof The result follows arguing by contradiction. By continuity we can assume that P(c,b) 
satisfies the Slater condition at any (c,b) ∈ V. Then, thanks to the KKT conditions, together 
with Caratheodory Theorem, there would exist a sequence gph´ (S) 3 ((cr,br),xr) → 
((c¯,b¯),x¯) such that 

n 

 −(cr +ur) = ∑λi
rur

i (4.8) 
i=1 

for some 0, and some ur , 
verifying as r tends to +∞. 

If we apply a filtering process as in [4, Lemma 3.1], based on the compactness of T 
and [42, Theorem 24.5], we get the existence of points {t1,...,tn} ⊂ Tb(x) such that ti

r → ti, i 
= 1,2,...,n, and ui ∈ ∂gti(x), i = 1,2,...,n, such that ui

r
 → ui, i = 1,2,...,n. Then, dividing both terms 

in (4.8) by σr and taking limits as r → ∞ (after filtering again with respect to the bounded 
coefficients , we reach the same contradiction with the Slater 
condition. tu 
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The following proposition gives a characterization of the q-order calmness property 

for the level set mapping L in terms of the supremum function defined by (4.3). It 
constitutes a Holder convex counterpart of [¨ 5, Proposition 3.1] (see also [6, Theorem 
4]). Recall that q ∈ (0,1]. 

Proposition 4.3 Let ((c¯,b¯),x¯) ∈ gph(S). Then the following are equivalent: (i) 
L is q-order calm at ((f(x¯)+hc¯,x¯i,b¯),x¯) ∈ gph(L); 
(ii) liminf f¯(x)q−1d(0,∂ f¯(x)) > 0. 

x→x¯,f¯(x)↓0 

Proof This result is a direct consequence of the equivalence between the q-order 
calmness of L at ((f(x¯)+hc¯,x¯i,b¯),x¯) and the the existence of a q-order error bound of 
f¯ at ¯x, together with Corollary 3.35, (4.5), and the following inequalities: 

 (4.9) 

= d((f(x¯)+hc¯,x¯i,b¯),L −1(x)) for all x ∈ Rn. 

The proof is complete. tu 

Proposition 4.4 Assume that L is not q-order calm at ((f(x¯)+hc¯,x¯i,b¯),x¯) ∈ gph(L). Then, 
there will exist sequences {xr}r∈N converging to x with¯ f¯(xr) ↓ 0, and {vr}r∈N, vr 

, such that vr converges to 0n, and 

 d
 .

 (4.10) 
vr 

Proof Certainly, if 
liminf f¯(x)q−1d(0,∂ f¯(x)) = 0, x→x¯,f¯(x)↓0 

 
there must exist sequences xr → x¯, with f¯(xr) ↓ 0, and vr ∈ ∂ f(xr), such that 

lim f¯(xr)q−1vr = 0n, (4.11) r→+∞ 

entailing vr → 0n as 

, r. 

 First, we observe that vr 6= 0n, r = 1,2,... Otherwise, i.e. if vr = 0n for some r, then 

 
0n ∈ ∂ f(xr) and xr is a (global) minimum of the convex function f, entailing f(xr) ≤ 

 
f(x) = 0, but this contradicts f(xr) > 0. 

Finally, (4.10) follows from the obvious fact 

S(c¯,b¯) = {x ∈ Rn| f¯(x) = 0} = {x ∈ Rn| 0n ∈ ∂ f¯(x)}. 

Since vr ∈ ∂ f¯(xr), we have 

x ∈ S(c¯,b¯) ⇒ 0 = f¯(x) ≥ f¯(xr)+hvr,x−xri, 

and we conclude 
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S(c¯,b¯) ⊂ {x ∈ Rn| hvr,xi ≤ hvr,xri− f¯(xr)}. 

Applying the well-known Ascoli formula for the distance to a hyperplane we get 

d(xr,S . 

tu 

The following proposition provides a necessary condition in the case that L is not 
qorder calm. The proof updates some arguments in [5, Theorem 3.1] to the convex q-
Holder¨ setting. 

Proposition 4.5 Let ((c¯,b¯),x¯) ∈ gph(S) and assume that P(c¯,b¯) satisfies the Slater 
condition. Suppose that L is not q-order calm at ((f(x¯)+hc¯,x¯i,b¯),x¯) ∈ gph(L). Then 
there exist sequences {xr}r∈N converging to x and¯ {br}r∈N ⊂C(T,R) converging to b 
such that¯ 

kbr −b¯kq 

t∈Tbr (xr) 

with γt > 0, ut ∈ ∂gt(x¯), t ∈ T0, and u ∈ ∂ f(x¯). 

Proof We have established that there exist sequences {xr}r∈N converging to ¯x with f¯(xr) 
↓ 
0, and , such that vr → 0 and (4.10) and (4.11) hold. 

Applying Proposition 5.1 (remember that P(c¯,b¯) satisfies the Slater condition), we 

know that, associated with ¯x ∈ S(c¯,b¯), there is a finite subset T0 ⊂ Tb¯(x¯) such that 

 −(c¯+u) = ∑ γtut, (4.14) 
t∈T0 

for some γt > 0, ut ∈ ∂gt(x¯), t ∈ T0, and u ∈ ∂ f(x¯). Now we proceed by showing the 
existence of N > 0 such that 

 gt(xr)−b¯t ≥ −N f¯(xr) ∀t ∈ T0 and r ∈ N. (4.15) 
We have that (4.14) gives rise to 

− ∑ γt(gt(xr)−b¯t) = − ∑ γt(gt(xr)−gt(x¯)) ≤ − ∑ γthut,xr −x¯i 
 t∈T0 t∈T0 t∈T0 

= hc¯+u,xr −x¯i ≤ hc¯,xr −x¯i+ f(xr)− f(x¯) 

 = f¯(xr). (4.16) 

xr ∈ F(br), lim r,Sc¯(b¯∞)) = 0, 
r→+∞ d(x 

as well as a finite set T0 ⊂ Tbr (xr) satisfying 

(4.12) 

−(c¯+u) ∈ ∑ γtut (4.13) 
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The set T0 is finite, and this allows us to suppose that the following sets are independent 

of r (by taking a suitable subsequence if needed); 

 T  and T . 

The inequality (4.15) is obvious for t . In the non-trivial case, i.e. when T  0/, for 
any  we could deduce from (4.16) and the definition of f¯(xr) that 

 −γt(gt(xr)−b¯t) ≤ − ∑ γt(gt(xr)−b¯t) ≤ f¯(xr)+ ∑ γt(gt(xr)−b¯t) (4.17) 

 e e e 
t∈T0− 

≤ f¯(xr)+ ∑ γt f¯(xr), 
t∈T0+ 

and this implies that 

 

get. 
γt 

Accordingly we take 1+∑t∈T0+γt 
N := max , 

et 

which satisfies (4.15). 
Next we build the sequence {br}r∈N. Urysohn’s Lemma yields the existence, for each 

r, of a function ϕr ∈C(T,[0,1]) such that 

if gt(xr)−b¯t ≥ −N f¯(xr), 

 ϕr(t) = 1, if gt(xr)−b¯t ≤ −(N +1)f¯(xr), 

Then, for each t ∈ T, we define 

 bt
r := (1−ϕr(t))gt(xr)+ϕr(t)(b¯t + f¯(xr)). (4.18) 

If the set {t ∈ T | gt(xr)−b¯t ≤ −(N +1)f¯(xr)} is empty we take ϕr(t) = 0 for all t ∈ T. 
For each r, bt

r −gt(xr) = ϕr(t)(b¯t + f¯(xr)−gt(xr)) ≥ 0, 

and, thus, xr ∈ F(br). 
We easily check that, when ϕr(t) = 1, 

bt
r −b¯t = f¯(xr) < (N +1)f¯(xr), 

and when ϕr(t) < 1, −(N +1)f¯(xr) < gt(xr)−b¯t ≤ f¯(xr), entailing 

bt
r −b¯t ≥ −(N +1)f¯(xr). 

Therefore, for all t ∈ T and all r ∈ N, 
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 . (4.19) 

In addition, (4.15) yields T0 ⊂ Tbr (xr) (as ϕr(t) = 0 if t ∈ T0). This, together with (4.14), leads 
us to (4.13). 

Finally, appealing to (4.10), (4.19) and (4.11), we prove (4.12) as follows: 

 lim
 kbr −b¯k∞ ≤ lim kvrk kbr 

−b¯k∞ 

kvrk 
 ≤ lim (N +1) f¯(x ) (4.20) 

. 

The proof is complete. tu 

Remark 4.6 The following example shows that, in the convex setting, the condition xr ∈ 
F(br) cannot be strengthened to xr ∈ Sc¯(br) for the sequence {xr}r∈N in Proposition 4.5 as 
it happens in the linear case (see the proof of [5, Theorem 3.1]). Consider the convex 
problem in R: 

minimize x2 subject 

to x ≤ 0. 

Given q , take ¯c = 0, b¯ = 0, and ¯x = 0. Then Sc¯(b¯) = {0} and the supremum 
function f¯(x) = sup{x2,x}. Clearly, f¯(x) = x2 for x ∈ (−∞,0]. Then it is easy to verify that 

0 and, thus, by Proposition 4.3, the level set mapping L is 
not q-order calm at ((0,0),0) ∈ gph(L). Moreover, there exist sequences xr := −2−r and br 

:= 2−2r such that 

 xr = −2−r ∈ F(2−2r) = F(br) and lim

  

Recalling that cone(0/) = {0}, (4.13) also holds in this setting. Obviously, xr ∈ F(br) but xr 

∈/ Sc¯(br) = {0} for any r ∈ N. On the other hand, we have 

S(4.22) 
. 

Noting that  for all b ∈ (−1,1), it readily follows from (4.22) that 

 d  and b ∈ (−1,1), (4.23) 

which guarantees that S -order calm at (0,0). 

The above example reveals the fact that the q-order calmness of S at ((c¯,b¯),x¯) may 

not imply the validity of the q-order calmness of L at ((f(x¯)+hc¯,x¯i,b¯),x¯). The following 
theorem constitutes a Holder convex counterpart of [¨ 5, Theorem 3.1] for the linear case. 
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Theorem 4.7 Let x¯ ∈ S(c¯,b¯) and assume that P(c¯,b¯) satisfies the Slater condition. 

Consider the following statements: (i) S is q-order calm at ((c¯,b¯),x¯); 

(ii) Sc¯ is q-order calm at (b¯,x¯); 
(iii) L is q-order calm at ((f(x¯)+hc¯,x¯i,b¯),x¯); 

(iv) f has a q-order local error bound at¯ x.¯ 
Then (iii) ⇔ (iv) ⇒ (i) ⇒ (ii) hold. In addition, if f and gt are linear, then (i) ⇔ (ii) ⇔ (iii) 
⇔ (iv). 

Proof (iii) ⇔ (iv) is Proposition 4.3, while (i) ⇒ (ii) is obvious. Now, we proceed by 
proving that (iv) ⇒ (i). According to (iv), there exist τ,δ ∈ (0,+∞) such that 

. 
According to Lemma 4.2, we may suppose that (4.7) holds for U = Bδ(x¯), together with a 

certain neighborhood V of (c¯,b¯) and a certain M > 0. Then, for all (c,b) ∈ V and all x ∈ 

S(c,b)∩U ∩[f¯ > 0], it follow from (4.5) that τd(x,S(c¯,b¯)) =τd(x,[f¯ ≤ 0]) ≤ f¯(x)q 

q 
(4.24) 

q 
, 

where we have used x ∈ F(b). Let 
us take 

−(u+c) = ∑ ηtut 
t∈T0 

for some finite subset T0 ⊂ Tb(x), u ∈ ∂ f(x), ut ∈ ∂gt(x), and some ηt > 0, t ∈ T0, satisfying 

∑t∈T0 ηt ≤ M. Then we have 

 * + 

 −hu+c,x−x¯i = ∑ ηtut,x−x¯ = ∑ ηthut,x−x¯i 
 t∈T0 t∈T0 

 ≥ ∑ ηt(gt(x)−gt(x¯)) ≥ ∑ ηt(bt −b¯t) (4.25) 
 t∈T0 t∈T0 

≥ −Mkb−b¯k∞, 

which implies, from u ∈ ∂ f(x), that f(x)− f(x¯)+hc¯,x−x¯i ≤hu+c¯,x−x¯i = 

hu+c,x−x¯i−hc−c¯,x−x¯i 

 ≤Mkb−b¯k∞+kc−c¯k·kx−x¯k. (4.26) 

Recalling that kx−x¯k ≤ δ for all x ∈U, (4.2) and (4.26) imply 

f(x)− f(x¯)+hc¯,x−x¯i ≤ (M +δ)k(c,b)−(c¯,b¯)k, 

and therefore (4.24) yields 

 τd(x,S(c¯,b¯)) ≤ max{(M +δ)q,1}k(c,b)−(c¯,b¯)kq, (4.27) 

whenever x ∈ S(c,b)∩U ∩[f¯> 0]. Observe that (4.27) is trivial for x ∈ [f¯≤ 0] =S(c¯,b¯) and, 
hence, we have established (i). 
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To finish the proof, we are establishing (ii) ⇒ (iii) in the linear setting. Suppose to the 

contrary that L is not q-order calm at ((c¯,b¯),x¯). To reach a contradiction, by Proposition 

4.5 it suffices to show that the sequence xr ∈ F(br) in Proposition 4.5 is also contained in 
Sc¯(br), which readily follows from the KKT conditions (4.13) in the linear setting (by 
continuity, it is not restrictive to assume that P(c¯,br) satisfies the Slater condition). tu 

Next we recall the so-called Extended Nurnberger Condition (ENC) [¨ 4, Definition 
2.1], which plays a crucial role in the present paper. 

Definition 4.8 We say that ENC is satisfied at ((c¯,b¯),x¯) ∈ gph(S) when 

P(c¯,b¯) satisfies the Slater condition and there is no 
D ⊂ Tb¯(x¯) 

! 

 with |D| < n such that −(∂ f(x¯)+c¯)\  6= 0/. (4.28) 

The following lemma is also crucial in our analysis; interested readers are referred to 
[4, Theorem 2.1 and Lemma 3.1] for more details. 

Lemma 4.9 Assume that ENC is satisfied at ((c¯,b¯),x¯) ∈ gph(S). Then the following 
conditions hold: 

(i) S is single valued and Lipschitz continuous in a neighborhood of (c¯,b¯). 
(ii) If a sequence {((cr,br),xr)}r∈N ⊂ gph(S) converges to ((c¯,b¯),x¯), then 

(br,xr) ∈ gph(Sc¯) for r large enough. 

Thanks to Lemma 4.9, we will arrive at the following theorem, which shows that the 
parameter c can be considered fixed in our analysis provided that ENC is fulfilled at 
((c¯,b¯),x¯) ∈ gph(S). 

Theorem 4.10 Let ((c¯,b¯),x¯) ∈ gph(S) and suppose that ENC is satisfied at ((c¯,b¯),x¯). 
Then 

clmq S((c¯,b¯),x¯) = clmq Sc¯(b¯,x¯). 

Proof According to Lemma 4.9(i), we have 

k(cr br)−(c¯ b¯)kq 
 clmq S,

 (4.29) 

for certain sequences (cr,br) → (c¯,b¯) and {xr} = S(cr,br) with xr 6= x¯ and xr → x¯. By 
Lemma 4.9(ii), we have 

 {xr} = Sc¯(br) for r large enough. 

Therefore, (4.29) and the obvious consequence of (4.2) 

k(cr,br)−(c¯,b¯)k ≥ kbr −b¯k∞, 

ensure 
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 clmq S((c¯,b¯),x¯) ≥ liminfr→+d (kxbr,rS−(b¯c¯k,q∞b¯)) ≥ clmq 

Sc¯(b¯,x¯). 
∞ 

Since it readily follows from the definitions that clmq Sc¯(b¯,x¯) ≥ clmq S((c¯,b¯),x¯), the 

previous lower limit must be an ordinary limit and we can obtain indeed 

clmq S((c¯,b 

¯),x¯) = clmq Sc¯(b¯,x¯) = r→lim+∞ d(kxbr,rS−(b¯c¯k,q∞b¯)). 

The proof is complete. tu 

In what follows, particularly in Theorem 4.11, we consider a rather weaker condition 

than ENC and then provide an upper estimate for clmq[S,((c¯,b¯),x¯)]. To this aim, we 
associate with (b,x) ∈ gph(Sc¯) the family of KKT subsets of T given by 

Kb(x) := {D ⊂ Tb(x) | |D| ≤ n and −(u+c¯) ∈ cone{∂gt(x),t ∈ D} for some u ∈ ∂ f(x)}. 

For any D ∈ Kb¯(x¯), we consider the supremum function fD : Rn → R given by 

fD(x) :=sup{gt(x)−b¯t,t ∈ T; −gt(x)+b¯t,t ∈ D} 

 =sup{gt(x)−b¯t, t ∈ T \D; |gt(x)−b¯t|, t ∈ D}. (4.30) 

Kb(x) and fD(x) are convex counterparts of the corresponding concepts in [6, Section 3] 
for the linear model. 

Theorem 4.11 Let S(c¯,b¯) = {x¯} and assume that P(c¯,b¯) satisfies the Slater condition. 
Then the following estimate holds 

kb−b¯kq∞ ≤ inf liminf fD(x)q−1d(0,∂ 
fD(x)). 

liminf d(x, 
 x x¯, x b 

Proof The proof is based on similar arguments to those used in the proof of [6, Theorem 
6]. Picking a fixed D ∈ Kb¯(x¯), let us show that 

kb−b¯kq 
 fD(x)). liminf

 (4.31) 
 b→b¯ d x 
 x→x¯, x∈F(b) fD(x)>0 

We have 
liminf fD(x)q−1d(0,∂ fD(x)) = lim fD(xr)q−1d(0,∂ fD(xr)) x→x¯ r→+∞ fD(x)>0 for 

a certain sequence {xr}r∈N such that limr→+∞xr = x¯ and fD(xr) > 0 for all r ∈ N. Obviously, xr 

∈/ Sc¯(b¯) since Sc¯(b¯) = {x¯} and fD(x¯) = 0. Note that d(0,∂ fD(xr)) > 0 since xr ∈/ 
argminx∈Rn fD. 



Holder Error Bounds and H¨ older Calmness¨ 27 
To prove (4.31), we need to build a new sequence of parameters {br}r∈N ⊂ C(T,Rn) 

converging to b¯ such that 
q 

 xr ∈ F(br)  andfD(xr)q−1d(0,∂ fD(xr)).
 (4.32) 

First we give a lower bound for kxr −x¯k. If ur ∈ ∂ fD(xr), ur 6= 0n, and 

kxr −x¯kkurk ≥ hur,xr −x¯i ≥ fD(xr)− fD(x¯) = fD(xr), 

 

and so 

r −x¯k ≥ fD(xr) ≥ fD(xr) . kx (4.33) 
 kurk d(0,∂ fD(xr)) 

The next step consists of the construction of the desired sequence {br} such that (4.32) 
holds. Once again we apply Urysohn’s Lemma which guarantees the existence of a certain 
function ϕr ∈C(T,[0,1]) such that 

0, if t ∈ 
D 

ϕr1, if g (xr). (4.34) t 

Recalling the definition of fD(xr) and the fact that fD(xr) > 0, D and {t ∈ T : gt(xr)−b¯t ≤ 
are disjoint closed sets in T. Certainly, if t belongs to both sets we reach 

the following contradiction: 

fD. 
r 

If the set is empty we take ϕr(t) = 0 for all t ∈ T. 
Now, let us define, for each t ∈ T, 

bt
r := (1−ϕr(t))gt(xr)+ϕr(t)(b¯t + fD(xr)). 

For each r, the definition of br and (4.30) clearly imply that 

bt
r −gt(xr) = ϕr(t)(fD(xr)+b¯t −gt(xr)) ≥ 0 

and thus xr ∈ F(br). Finally, let us observe that bt
r −b¯t = fD(xr) when ϕr(t) = 1, and 

 1 r r −b¯t ≤ fD(xr) 
 −(1+ )fD(x ) < gt(x ) 

r 

when ϕr(t) < 1. Accordingly, 

kbr −b¯k∞ ≤ (1+ 1 )fD(xr) 
r 

which, together with (4.33), entails 
q 

fD(xr)q−1d(0,∂ fD(xr)), 

which ensures (4.32). tu Finally, we will consider the linear counterpart of P(c,b); 
namely, we will always assume that f = 0 and gt(x) = hat,xi for all t ∈ T therein, where t 
7→ at ∈ Rn is continuous on T. 
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Corollary 4.12 Let S(c¯,b¯) = {x¯} and assume that P(c¯,b¯) satisfies the Slater condition. 

Then the following estimates hold clmq S((c¯,b¯),x¯) ≤ clmq Sc¯(b¯,x¯) ≤ inf liminf 

fD(x)q−1d(0,∂ fD(x)). (4.35) 

D∈Kb¯(x¯) fDx(→x)x>¯ 0 

Proof The first inequality follows straightforwardly from (1.4). To prove (4.35), by 
Theorem 4.11 it suffices to show that the sequence xr ∈F(br) produced in Theorem 4.11 
is also contained in Sc¯(br). Taking a fixed D as in Theorem 4.11, since for all t ∈ D, by 
(4.34) we could have ϕr(t) = 0, which follows from the definition of bt

r that bt
r = gt(xr) and 

then implies that D ⊂ Tbr (xr). Noting that f and gt are linear functions, we obtain D ∈ Kbr 

(xr). Recalling that xr ∈ F(br), this certainly yields that xr ∈ Sc¯(br). tu 
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