10,676 research outputs found

    Generalized Likelihood Ratio Test for Detection of Gaussian Rank-One Signals in Gaussian Noise With Unknown Statistics

    Get PDF
    We consider the classical radar problem of detecting a target in Gaussian noise with unknown covariance matrix. In contrast to the usual assumption of deterministic target amplitudes, we assume here that the latter are drawn from a Gaussian distribution. The generalized likelihood ratio test (GLRT) is derived based on multiple primary data and a set of secondary data containing noise only. The new GLRT is shown to be the product of Kelly's GLRT and a corrective, data dependent term. We also investigate two-step approaches where the GLRT for a known disturbance covariance matrix is first derived. In order to come up with detectors that provide a good tradeoff between detection of matched signals and rejection of mismatched signals, we also investigate the two-step GLRT when a fictitious signal is included in the null hypothesis. The constant false alarm rate properties of the detectors are analyzed. Numerical simulations are presented, which show that for small sample sizes the newly-proposed GLRT can outperform Kelly's GLRT and, in addition, that detectors including a fictitious signal are very powerful, at least for low-to-intermediate clutter to noise ratio values

    Matched direction detectors and estimators for array processing with subspace steering vector uncertainties

    Get PDF
    In this paper, we consider the problem of estimating and detecting a signal whose associated spatial signature is known to lie in a given linear subspace but whose coordinates in this subspace are otherwise unknown, in the presence of subspace interference and broad-band noise. This situation arises when, on one hand, there exist uncertainties about the steering vector but, on the other hand, some knowledge about the steering vector errors is available. First, we derive the maximum-likelihood estimator (MLE) for the problem and compute the corresponding Cramer-Rao bound. Next, the maximum-likelihood estimates are used to derive a generalized likelihood ratio test (GLRT). The GLRT is compared and contrasted with the standard matched subspace detectors. The performances of the estimators and detectors are illustrated by means of numerical simulations

    Adaptive detection of a signal known only to lie on a line in a known subspace, when primary and secondary data are partially homogeneous

    Get PDF
    This paper deals with the problem of detecting a signal, known only to lie on a line in a subspace, in the presence of unknown noise, using multiple snapshots in the primary data. To account for uncertainties about a signal's signature, we assume that the steering vector belongs to a known linear subspace. Furthermore, we consider the partially homogeneous case, for which the covariance matrix of the primary and the secondary data have the same structure but possibly different levels. This provides an extension to the framework considered by Bose and Steinhardt. The natural invariances of the detection problem are studied, which leads to the derivation of the maximal invariant. Then, a detector is proposed that proceeds in two steps. First, assuming that the noise covariance matrix is known, the generalized-likelihood ratio test (GLRT) is formulated. Then, the noise covariance matrix is replaced by its sample estimate based on the secondary data to yield the final detector. The latter is compared with a similar detector that assumes the steering vector to be known

    Echo Cancellation : the generalized likelihood ratio test for double-talk vs. channel change

    Get PDF
    Echo cancellers are required in both electrical (impedance mismatch) and acoustic (speaker-microphone coupling) applications. One of the main design problems is the control logic for adaptation. Basically, the algorithm weights should be frozen in the presence of double-talk and adapt quickly in the absence of double-talk. The optimum likelihood ratio test (LRT) for this problem was studied in a recent paper. The LRT requires a priori knowledge of the background noise and double-talk power levels. Instead, this paper derives a generalized log likelihood ratio test (GLRT) that does not require this knowledge. The probability density function of a sufficient statistic under each hypothesis is obtained and the performance of the test is evaluated as a function of the system parameters. The receiver operating characteristics (ROCs) indicate that it is difficult to correctly decide between double-talk and a channel change, based upon a single look. However, detection based on about 200 successive samples yields a detection probability close to unity (0.99) with a small false alarm probability (0.01) for the theoretical GLRT model. Application of a GLRT-based echo canceller (EC) to real voice data shows comparable performance to that of the LRT-based EC given in a recent paper

    GLRT-Based Direction Detectors in Homogeneous Noise and Subspace Interference

    Get PDF
    In this paper, we derive and assess decision schemes to discriminate, resorting to an array of sensors, between the H0 hypothesis that data under test contain disturbance only (i.e., noise plus interference) and the H1 hypothesis that they also contain signal components along a direction which is a priori unknown but constrained to belong to a given subspace of the observables. The disturbance is modeled in terms of complex normal random vectors plus deterministic interference assumed to belong to a known subspace. We assume that a set of noise-only (secondary) data is available, which possess the same statistical characterization of noise in the cells under test. At the design stage, we resort to either the plain generalized-likelihood ratio test (GLRT) or the two-step GLRT-based design procedure. The performance analysis, conducted resorting to simulated data, shows that the one-step GLRT performs better than the detector relying on the two-step design procedure when the number of secondary data is comparable to the number of sensors; moreover, it outperforms a one-step GLRT-based subspace detector when the dimension of the signal subspace is sufficiently high

    A novel approach to robust radar detection of range-spread targets

    Full text link
    This paper proposes a novel approach to robust radar detection of range-spread targets embedded in Gaussian noise with unknown covariance matrix. The idea is to model the useful target echo in each range cell as the sum of a coherent signal plus a random component that makes the signal-plus-noise hypothesis more plausible in presence of mismatches. Moreover, an unknown power of the random components, to be estimated from the observables, is inserted to optimize the performance when the mismatch is absent. The generalized likelihood ratio test (GLRT) for the problem at hand is considered. In addition, a new parametric detector that encompasses the GLRT as a special case is also introduced and assessed. The performance assessment shows the effectiveness of the idea also in comparison to natural competitors.Comment: 28 pages, 8 figure

    Adaptive Detection of Structured Signals in Low-Rank Interference

    Full text link
    In this paper, we consider the problem of detecting the presence (or absence) of an unknown but structured signal from the space-time outputs of an array under strong, non-white interference. Our motivation is the detection of a communication signal in jamming, where often the training portion is known but the data portion is not. We assume that the measurements are corrupted by additive white Gaussian noise of unknown variance and a few strong interferers, whose number, powers, and array responses are unknown. We also assume the desired signals array response is unknown. To address the detection problem, we propose several GLRT-based detection schemes that employ a probabilistic signal model and use the EM algorithm for likelihood maximization. Numerical experiments are presented to assess the performance of the proposed schemes

    Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays

    Full text link
    Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an essential task in sonar, radar, acoustics, biomedical and multimedia applications. Many state of the art wide-band DOA estimators coherently process frequency binned array outputs by approximate Maximum Likelihood, Weighted Subspace Fitting or focusing techniques. This paper shows that bin signals obtained by filter-bank approaches do not obey the finite rank narrow-band array model, because spectral leakage and the change of the array response with frequency within the bin create \emph{ghost sources} dependent on the particular realization of the source process. Therefore, existing DOA estimators based on binning cannot claim consistency even with the perfect knowledge of the array response. In this work, a more realistic array model with a finite length of the sensor impulse responses is assumed, which still has finite rank under a space-time formulation. It is shown that signal subspaces at arbitrary frequencies can be consistently recovered under mild conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant eigenvectors of the wide-band space-time sensor cross-correlation matrix. A novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order to recover consistency. The number of sources active at each frequency are estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can be fed to any subspace fitting DOA estimator at single or multiple frequencies. Simulations confirm that the new technique clearly outperforms binning approaches at sufficiently high signal to noise ratio, when model mismatches exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans. on Signal Processing on 12 February 1918. @IEEE201
    corecore