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Abstract—In this paper, we derive and assess decision schemes
to discriminate, resorting to an array of sensors, between the H,
hypothesis that data under test contain disturbance only (i.e., noise
plus interference) and the H; hypothesis that they also contain
signal components along a direction which is a priori unknown
but constrained to belong to a given subspace of the observables.
The disturbance is modeled in terms of complex normal random
vectors plus deterministic interference assumed to belong to a
known subspace. We assume that a set of noise-only (secondary)
data is available, which possess the same statistical characteriza-
tion of noise in the cells under test. At the design stage, we resort
to either the plain generalized-likelihood ratio test (GLRT) or
the two-step GLRT-based design procedure. The performance
analysis, conducted resorting to simulated data, shows that the
one-step GLRT performs better than the detector relying on the
two-step design procedure when the number of secondary data is
comparable to the number of sensors; moreover, it outperforms a
one-step GLRT-based subspace detector when the dimension of
the signal subspace is sufficiently high.

Index Terms—Adaptive detection, direction detection, dis-
tributed targets, generalized likelihood ratio test, interference
rejection.

1. INTRODUCTION

DAPTIVE detection of multiple-point-like or range-

spread (in a word, distributed) targets embedded in
Gaussian or non-Gaussian disturbance has received increasing
attention from the signal processing community in recent
years [1]-[9, and references therein]. More precisely, adaptive
detection of distributed targets has been addressed in [1] and
[2]; therein, useful target echoes are modeled as signals known
up to multiplicative factors, possibly different from one range
cell to another, namely supposed to belong to a known one-
dimensional subspace of the observables. Noise is modeled in
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terms of independent, complex normal random vectors with
a common covariance matrix up to possibly different power
levels. Covariance matrices are unknown at the receiver, and a
set of noise-only additional data (the so-called secondary data)
is available for estimation purposes. More precisely, detectors
based on the generalized-likelihood ratio test (GLRT) and ad
hoc decision schemes (relying on the two-step GLRT-based
design procedure) have been proposed in [1] for the case
that noise vectors share one and the same covariance matrix
(homogeneous scenario) or the same covariance matrix up to
possibly different power levels between primary data (range
cells under test) and secondary ones (partially homogeneous
scenario). Proposed detectors possess the constant false alarm
rate (CFAR) property under the design assumptions. In [2],
an ad hoc detector is adopted in order to address detection
of target echoes in a heterogeneous scenario, namely for the
more general case that noise returns share the same covariance
matrix up to possibly different power levels from one cell to
another. Remarkably, the proposed decision scheme guarantees
the CFAR property with respect to the covariance matrices of
noise returns (under the design assumptions).

Detection of point-like targets, modeled as vectors con-
strained to belong to a known subspace of the observables,
in the presence of interference and noise of unknown power
has been considered in [3]; therein, the interference subspace
is known and linearly independent of the signal subspace.
Modeling useful target echoes in terms of signals belonging to
a known subspace of the observables has also been suggested in
[4] as a possible means to maintain an acceptable detection loss
for slightly mismatched mainlobe targets. Adaptive subspace
detection of point-like targets has been addressed in [5]. Detec-
tion of distributed targets, modeled in terms of vectors confined
to a known subspace, and embedded in noise of unknown
power plus deterministic interference, assumed to belong to an
unknown subspace, has been considered in [6]. Finally, several
detection algorithms are encompassed as special cases of the
amazingly general framework and derivations in [7].

In this paper, we address adaptive detection of distributed
targets embedded in noise, modeled in terms of complex normal
random vectors with unknown covariance matrix, plus inter-
ference resorting to the GLRT and the two-step GLRT-based
design procedure; interference subspace is known and linearly
independent of the signal space. We also assume that a set of
noise-only (secondary) data is available at the receiver; noise
in primary data and secondary data share the same statistical
characterization (homogeneous scenario). The possible useful
signals are aligned with an unknown direction constrained to
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belong to a given subspace of the observables. This model
might be a viable means to address adaptive detection in case of
mismatched steering vectors. It has been proposed in [8]-[10]
where detection in the presence of white noise with a known
and unknown power, respectively, has been considered.

The paper is organized as follows. Section Il is devoted to the
problem formulation while the detector designs are the object
of Section III. Section IV contains the performance assessment
of the proposed algorithms and, finally, Section V concludes the
paper with some remarks and hints for future work.

II. PROBLEM FORMULATION

Assume that an array of antennas senses K p range cells and
denote by r, € CV*!' ke Qp = {1,..., Kp}, the N-dimen-
sional complex vector containing returns from the kth cell. We
want to discriminate between the Hy hypothesis that the r’s,
k € Qp, contain disturbance only and the H; hypothesis that
they also contain useful target echoes s;, € € <1,

We assume that the disturbance is the sum of colored noise
and interference, modeled as a deterministic signal. Moreover,
we suppose that the 83 s can be modeled as 8 = a8, a € C,
k € Qp, with s € oVl being, in turn, a linear combination
of the columns of the full-column-rank matrix H € C~ xr.
similarly, the interference signals 4, € CV ke Qp, are
linear combinations of the ¢, ¢ + r < NV, linearly independent
columns of the matrix J € CV*9, Succinctly, 8 and iy, k € Qp,
are assumed to belong to (H) and (J), respectively. Thus, 8 and
ir, can be recast as s = Hp and i, = Jgq,, k € Qp, where
pe €™ andgq, € €', k € Qp, are r-dimensional and
g-dimensional complex vectors, respectively. In the following,
we assume that the subspaces spanned by the columns of the
matrices H and J are known and that the matrix [H J] is full
rank while p, the a;’s, and the g;,’s are unknown quantities.

The noise vectors n;, € cN Xl, k € Qp, are modeled as
N-dimensional complex normal vectors with unknown, posi-
tive-definite, covariance matrix M € CV*V . We also suppose
that Kg secondary data, r, € CV ke Q5 = {Kp +
1,...,Kp + Kg}, containing noise only, namely r, = ng,
k € Qg, are available and that such returns share the same sta-
tistical characterization of the noise components in the primary
data. Finally, we assume that the ny’s, k € Qp U ()g, are inde-
pendent random vectors.

Summarizing, the detection problem to be solved can be for-
mulated in terms of the following binary hypothesis test:

Ho - e =Jg, +n,, keQp
0 Te = N, k’EQS
H. - e =arHp+Jq, +np, keQp
1.
Tr = Ng, ke Qg

where we suppose that Kg > N and, as already stated, that
r+q < N.

III. DETECTOR DESIGNS

Denote by R = [Rp Rg] the overall data matrix, where
Rp = [ri---rx,] € CV**7 is the primary data matrix
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and Rs = [rrp41-- Trpirs] € CVFS is the secondary
data matrix. Moreover, let @ = [q; ---q,] € C*F7 a =
[Oél -~-aKP] S (DlXKP, and K = Kp + Ks.

A. One-Step GLRT-Based Detector

We now derive the GLRT based upon primary and secondary
data, which is tantamount to the following decision rule [11]:

max max max max f1(R;p,a,Q, M)

_ P (23 Q M Iil
A(R) = max max fo(R;Q, M) 1?07

where f;(R;-) is the probability density function (pdf) of R
under the H;, j = 0,1 hypothesis, and v is the threshold value
to be set in order to ensure the desired probability of false alarm
(Pra).-

The pdf of R, under Hy, can be written as

Jo(B;Q. M) = [mr

X exp {—tr [M_l (S + (Rp—JQ)(Rp - JQ)T)} }

where S = RSR; e VN is K g times the sample covariance
matrix based on secondary data,! det(-) and tr(-) are the deter-
minant and the trace of a square matrix, respectively, and T de-
notes conjugate transpose. In order to compute the compressed
likelihood under H, observe that the maximum of fo(R; Q, M)
with respect to M is attained by substituting the true covariance
matrix with the sample covariance, namely with

—

M= % S+ (R — JQ)(Rp — JQ)T].

Substitution of M into the fo(R;-) yields

NK
1

* {det [S+ (Rp — JQ)(Rp — JQM} '

Now maximization over the matrix @ is tantamount to per-
forming the following minimization

min det [§ + (Rp — JQ)(Rp — JQ)']

JQ)
x(Rp — JQ)t§™V 2]
= dot(8) min det [IKP +(Rp—JQ)'S “(Rp - JQ)}

= det(S) ngndet [IN + S_l/Z(RP —

where I,,, denotes the m-dimensional identity matrix, and the
last equality follows from identity [12]

det(I,, + BC) = det(I,, + CB) (1)

with B € €™*™ and C € C™*™ rectangular matrices.

INote that the matrix $ is invertible if K > N.
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As a preliminary step towards the above minimization, ob-
serve that

det [IKP +(Rp—JQ)'S™(Rp - JQ)]
= det [A1 + (Q - D)TAZ(Q - D)]

where
A =1Ig, +R.S 'Rp—D'J'S "D, A,=J'S"'J
with, in turn

D=(J's )\ J's Ry

and that the matrices A; and A are positive definite. It follows
that

min det [IK,, +(Rp—JQ)'S " (Rp — JQ)}
= rrgn det [A1 + (Q — D) A>(Q — D)]
= det [Ix, + RL.S™'Rp — D'3'$71JD)
where we have used equation (2-30) in [7], namely

min det(4; + UTA,U) = det(A,), 2

with U = Q — D. In particular, we have that
Q- argngndet S+ (Rp —JQ)(Rp — JQ)']
=(J'87 )" IS Rp.

Finally, the compressed likelihood function under Hj is given
by

fo(R: Q. M) = <£>NK

em
1

X
det™ (8) det™ [T, +(87"/ 2Rp) (In—Py.)(S~Y “Rp)]

where Jg = S7Y2J € @V*? and Px € €™ is the pro-
jection matrix? onto the range of the full-column-rank matrix
Kec ¢ m<n,ie.,

Px = K(K'K) 'K'.

2For future reference, we denote by Py = I,, — P the projection matrix
onto the orthogonal complement of the subspace spanned by the columns of K .
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On the other hand, the pdf of the data matrix under the H;
hypothesis is given by

fl(R;p7a7Q7M)

- [WN dit(M)}
X exp {—tr [M—l (S + (Rp — Hpa — JQ)

x(Rp - Hpa = JQ)N) | }. 3
Again, maximization with respect to M yields
= 1
M= Ve [S + (Rp — Hpa — JQ)(Rp — Hpa — JQ)'] .

Moreover, optimization over the signal and interference vectors
a and @, respectively, can be straightforwardly solved after ob-
serving that

Hpa + JQ = [Hp J] [g} —Wp)Q

where W(p) = [Hp J] € V>V s a full-column-rank
matrix function of p and Q = [aT QT]T € QUtDxEr it
T in turn, denoting transpose. Thus, optimization with respect
to @ and @, under the H; hypothesis, is formally identical to
optimization with respect to @, under the H hypothesis, and
the result is given by the equation shown at the bottom of the
page, where Ws(p) = S™/*W (p).

It still remains to maximize the above equation with respect
to p or, equivalently, to minimize

det [Trc, +(S/*Rp)' (Ix — Pw.p) (S /*Rp)] 4

with respect to p. To this end, observe that

S~V’W(p) =8~V [Hp J] = [S~V*Hp S]]
=[Hsp Js]

with Hg = S™*2H € €V*", and, hence, that [3], [6]

Pw@) =P, +PPjS(HSp)
=Py, +(In—Py,)(Hsp)
x [(Hsp)' (Ix — Py,) (Hsp)]
x (Hsp)' (Ix — Py,). (%)

1

Moreover, the projection matrix I y — Py, canbe recastas Iy —
P, = ZZ" where Z € CV*V=9 jgaslice of unitary matrix,
ie.Z2'Z2 =1 N—q- Thus, substituting the above-factored form

K/ (em)]™™

fl(R7p7a7@/‘/M\-) =

det™ (8) det” [IK}, +(87°Rp) (In - Pw. () (S‘1/2Rp)]
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for Iy — Py into the expression (5) for Py, and it back
into (4), after some algebra, yields

_ T _
det |:IKP =+ (S 1/Z,Rp) (IN — PWs(p)) (S 1/2Rp)i|
= det [Ixe, + (287 2Rp)!

x (In-q = Pup) (287 "Rp)|

— det |I, + (Z'872Rp) (2'87/*Rp)

v

A

— T _
—(2'S7'’Rp) Py ,(2'S/*Rp)

_ T _
— det [A— (2'87V°Rp) Py, (218 1/2Rp)]
= det(A) det [IKP — AV?RLS?
x ZPg,2'S "RpA | (6)

where

A=Ig, +(Z'8V2Rp) (2" /?Rp)
— I, +(SYRp) (Ix - P;.)(8"/*Rp)

is a positive-definite matrix, H fg - Z'H s, and PH’S p is the
projection matrix onto the space spanned by Hsp = Z'H sp.
Now, PH’s p can be recast as

PH’Sp =,

withw € ¢V 7‘1)“, in turn, a unit-norm vector belonging to

the range of H's, namely to (H's). Thus, it follows that

(6) = det(A) det [IK ~ ATVPRLS7VZPy,,
x ZTS_I/QRPA*/Z}
— det(A) det [IKP — ATV2RLSTV? Zynt
x ZTS*l/ZRPA*/ﬂ
— det(A) (1 —v'Z18"?Rp A RSV 2zv)
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where we have also used identity (1). Eventually, we have
shown that minimization of (4) with respect to p is tantamount
to solving the following maximization:

max, v ZT8/*Rp A RISV Zv.
vE Hg,

viw=1

To this end, denote by E' the matrix
Z'S™Y’RpAT'RI, 87?2,
The minimization problem at hand can be recast as

max v Ev =
o2

viv=1

max v (PH/S + PIJ:_I’b)
2

va};_(IPH,S + P, ) v

= maXx ’UTPHISEPH/S'U

!
ve(ny)
vTov=1

= Amax (PH/S EPy, )
= Anax (P, 287 ?RpA™!
x RS '/*ZPy, )

where Apyax(-) denotes the maximum eigenvalue of the matrix
argument.
Finally, the compressed likelihood function under H; is given
by the equation shown at the bottom of the page.
Summarizing, the GLRT is given by

1

1K py_
A (R)_1 A (P 78 V2R, A"'Rl.S"V/2ZP )
~Amax L HYy P P H
H,
z 4K
Hy

or, equivalently

A1(R) = A (PH,S Z'$7'°RpAT'R,S7*ZPy, )

ERp ™
o VK

with

A=TIg, + (S—l/ 2RP)T (IN = PJS) (s—l/ 2RP).

(K /em)NE

det™ (8) det [IKP + (8 V?Rp) (Iy - P3,) (87 2RP)]

1

X [1 B )\max (PH/SZTS_1/2RPA—1RJ;JS—1/2ZPH/S)}K-
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B. Two-Step GLRT-Based Detector

In this subsection, we derive an ad hoc detector based upon
the two-step GLRT-based design procedure. More precisely,
we first derive the GLRT detector assuming that M is known.
Then, we come up with a fully-adaptive detector by replacing
M with S.

Under the assumption that the covariance matrix of the noise
is known, the GLRT is given by

max max mQaX f1(Rp;p. a,@Q)

_ 5 e o
A(RP) B man fo(RP; Q) 1?0 K ®)

where f;(Rp;-) is the pdf of Rp under the H; hypothesis, j =
0,1; it turns out that fo(Rp;-) and f1(Rp;-) are given by

fo(Rp; Q) = {m] v

X exp {—tr [M_l(Rp —JQ)(Rp — JQ)T} }
and

f1(Rp;p,a,Q) = [m]lﬂa

<exp{~tr [M (R Hpa—JQ) (Rp—Hpa—IQ)']}

respectively. As to v, it is the threshold value to be set in order to
ensure the desired Py, . Let us begin by solving the optimization
problem under the H, hypothesis and observe that maximizing
fo(Rp;-) with respect to @ is equivalent to the following min-
imization problem:

rrgntr [M_I(Rp - JQ)(Rp - JQ)T]
= ngntr [(Rp ~JQ)'M ' (Rp - JQ)]

— mintr [(M™/*Rp ~ JQ)' (M~ Re ~ 11 Q)]

where Jyy = M ~1/2 7 Tt is not difficult to show that

@ = arg mén tr [(M_I/QRP—JMQ)T(M_I/QRP—JMQ)}

-1
_ (JTMJM) JhMV?R,

and, consequently, that the compressed likelihood function
under Hj is given by

fo(Rp; Q) = [W] v

xexp{~tr [R.M™/*P3, M~/ ’Rp|}.
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In order to maximize the numerator of (8) with respect to «
and @, it is convenient to recast the pdf as follows:

Kp
fi(Rp;p, @, Q) = [m} exp{ —tr [(Mﬁl/ZRp

—WM(P)Q)T (M_l/ZRP - WM(P)Q)] }

where

Walp) = M2 [HpJ] and Q= [g] .

Thus, following the lead of previous maximization with respect
to Q, yields

N 1 Kp
J1(BRp;p, a, Q) = [m}

X exp {—tr [RJIFJM_UZP#,‘VM(F)M_I/ZRP] } .

It still remains to maximize the pdf under H; with respect to p,
namely to solve the following optimization problem:

mintr [RLM2Pg M *Rp| . 9)
r

To this end, observe that

P‘%VM(p) =1y _PWM(P)
=y —Pys,)— In—Pj,,) (Hup)
x [(Hup)' (In — Py,,) (HMP)]_I
x (Hyp)' (In — Py,,)
=P3, — Py, (Hup) [(H up) Py, (H MP)} -
x (Hup)'P3,,

:Z]\,[ {IN—q - (HIZ\/IP)

X [(H%,IP)T (HIMP)} ( IMP)T} ZR[

where H s = M_I/ZH, Zr € CV*(N=9) 5 4 slice of a uni-
tary matrix satisfying PJJ‘M = Iy - Py, = ZMZ}LM, and
H ﬁu = ZLH M = ZITMM -12q Substituting the above ex-
pression for Pf,‘VM (p) Into (9) yields

tr [RLM~/*Py, M~/ °Rp|

— maxtr [(ZLM‘I/ 2Rp)T Py, , (2},M™" 2Rpﬂ .

p

Again, the projection matrix PH/A ,p can be factorized as
PH/A p= vv’, where v € CV=9*1 {5 an orthonormal vector
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belonging to (H",), thus leading to the following solution of
the maximization problem:

max tr {(ZJIR/IM_I/ZRP)Jr PH;\/IP (ZR,IM_1/2RP):|

14

= max
ve(#)

[’DTZ;[MM_UZRPR})M_I/2ZAJ’D]
viv=1

= max

ve ()
viv=1

v (Pu, + Py, ) 2, M~ *Rp

><R}M—1/2ZM (PH’M + P}LISW) 'v]
|v'Pa, Z), M7 RpRLM ™20 Py 0]

= max
ve(H)

viv=1

= Amax (P, 23, M ™" *RpRLM ™2, Py, ) .

Summarizing, the natural logarithm of the GLRT for known
M is given by

H,
Amax (P, 23, M~ RpRLM ™2, Py, ) 27y,
0

(10)
In order to come up with a fully adaptive detector, we can
plug S in place of M into (10); such substitution yields

H,
As(R) = Anax Py, 2'S ™ °RoRLS ™2 2Py ) Z lny

" an

where Z is such that Iy — Py, = VAR
As a final remark, note that receiver (7) and (11) are equiva-
lent for ¢+ = N and, in fact, the following relation holds true:

A (R) = A>(R)

= A (12)

The proof is given in the Appendix.

IV. PERFORMANCE ASSESSMENT

Since closed-form expressions for the probability of detec-
tion (P,) and the Py, are not available, we resorted to standard
Monte Carlo counting techniques. More precisely, in order to
evaluate the threshold necessary to ensure a preassigned value
of Py, and the P;’s, we resorted to 100/ Py, and 104 indepen-
dent trials, respectively.

We randomly generated the entries of J and H at each run
of the Monte Carlo simulation as independent and identically
distributed (i.i.d.) random variables (rv’s) taking on values
+1/ VN with equal probability. Interference coordinates 4.
k € Qp, are i.i.d. complex normal vectors with zero mean
and covariance matrix given by 021, where o2 is related to
the power of the interference (power per dimension). As to the
vector p, it is a complex normal vector with zero mean and
covariance matrix given by I.. Moreover, |ax| = |a|, k € Qp,
where | - | denotes the modulus of a complex number, and the
phases of the ay’s are i.i.d. rv’s uniformly distributed in (0,
2m). Finally, all of above rv’s and random vectors are each
other independent.
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35

SNR (dB)

Fig. 1. P, versus SNR for direction detectors (7) (circle marker) and (11) (tri-
angle marker) with NV = 8, K'p = 8,and K5 = 8: 7 = 2, ¢ = 4 (solid lines);
r = 4, q = 2 (dashed lines).

35

SNR (dB)

Fig.2. P, versus SNR for direction detectors (7) (circle marker) and (11) (tri-
angle marker) with V.= 16, Kp = 8,and K's = 16:r = 2, ¢ = 4 (solid
lines); r = 4, ¢ = 2 (dashed lines).

As to the noise, it is modeled as an exponentially correlated
complex normal vector with one-lag correlation coefficient p,
namely the (4, j)th element of the covariance matrix M is given
by o2p!"=9l,i,j=1,...,N, withp = 0.95and 02 = 1.

The P, is set to 10~* and the signal-to-noise ratio (SNR) is
defined as

Kp
_ 1 2 et a1
SNR = NZW E[p'H'M ' Hp]
k=1
where E[-] denotes statistical expectation. Note that

Ejp'H'M 'Hp] = %tr(Mfl).

Figs. 1 and 2 plot P; versus SNR for the GLRT-based direc-
tion detector (7) and the ad hoc direction detector (11), respec-
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Fig. 3. P, versus SNR for the direction detectors (7) (circle marker) and (11)
(triangle marker), and the subspace detector (cross marker) with N = 8, K'p =
8,and Kg = 16:r = 2, ¢ = 4 (solid lines); r = 4, ¢ = 2 (dashed lines).

tively. Fig. 1 assumes N = 8, Kp = 8, and Kg = 8 while
Fig. 2 refers to N = 16, Kp = 8, and Ks = 16; both con-
siderr = 2, ¢ = 4 and r = 4, ¢ = 2. The figures highlight
that the GLRT outperforms the ad hoc detector for the consid-
ered parameter values and that the gain is significant for values
of r and ¢ such that r + ¢ is small compared to N. Such result
is explained by the fact that for » + ¢ = N, the two detectors
coincide.

Figs. 3 and 4 plot P; versus SNR for the direction detectors
(7) and (11), and the GLRT subspace detector for the homo-
geneous scenario [13]. More precisely, Fig. 3 assumes NV = 8§,
Kp =8,and Kg = 16, while Fig. 4 refersto N = 16, Kp = 8,
and Ks = 32; both consider r = 2, g = 4andr = 4, q = 2.
The figures show that the gain of the GLRT direction detector
(7) with respect to the ad hoc direction detector (11) is signifi-
cantly reduced for Ks = 2N. Other simulation studies, not re-
ported here for the sake of brevity, confirm it for Kg > 2N. The
curves also show that the gain of the GLRT direction detector
with respect to the GLRT subspace detector is not negligible for
r = 4, ¢ = 2 and, more generally, when the dimension of the
signal subspace is sufficiently high.

V. CONCLUSION

In this paper, we have implemented the GLRT direction de-
tector and an ad hoc direction detector to operate in the presence
of the homogeneous Gaussian noise with unknown covariance
matrix and subspace interference. To this end, we have supposed
that a set of noise-only data is available and that the useful target
and the interference belong to known subspaces of the observ-
ables. The performance assessment shows that the plain GLRT
performs better than the ad hoc detector, although at the price
of a certain increase of the computational complexity, when the
number of secondary data is comparable to the number of sen-
sors. However, simulation studies also indicate that the gains
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Fig. 4. P, versus SNR for the direction detectors (7) (circle marker) and (11)
(triangle marker), and the subspace detector (cross marker) with N = 16,
Kp =8,and Ks = 32: 17 = 2, q = 4 (solid lines); r = 4, ¢ = 2 (dashed
lines).

of the former with respect to the latter are in the order of 1 dB
(or less) when Kg > 2N. The comparison with a subspace de-
tector has shown that the GLRT direction detector can guarantee
significant gains when the dimension of the signal subspace is
sufficiently high. The derivation of GLRT and ad hoc direction
detectors for unknown interference subspace and/or a partially
homogeneous scenario is part of the current research activity
together with a performance analysis of the pros and cons of di-
rection detectors in comparison with other “robust” techniques
capable to take into account possible uncertainties on the actual
steering vector of the target.

APPENDIX

The Appendix is aimed at proving that the GLRT (7) and the
ad hoc detector (11) are equivalent for » + ¢ = N. Since [H J|
and S have full rank N, the columns of [Hg Jg]| are a basis
for the vector space CN*L 1t follows that we can write each
vector S~/ 2‘rk, k € Q, as a linear combination of the columns
of [Hs Jg]. Otherwise stated, the “whitened” version of the
primary data matrix Rp can be represented as

_ C
Rps=S 1/2RPZ[H5J5]|:C§:| =HCqxr+ JsC;

where Cgy € €K7 and C; € ¢1*Er,
The above premises also imply that in receiver (7), matrix A
can be recast as

A=Ix, +(5V?Rp) (In = Ps.) (S/*Rp)
=TI, + (HsCy + JsCy) P3 (HsCy + J5Cy)
=Ix, + (HsCy) Py (HsCh).
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In addition, the decision variable of test (7) can be rewritten
as

A(R) = Apax { P 2187 ?Rp A7 RS 2Py, |

= Anas { R} ZP, Z'RpsA ™}

RL..ZZ Hs

PL
Is

H.ZZ' Hs

PL
Js

:)\max
Ax(R
i gt -1
XHS@RpsA
P;,
f
max{(PJSRPS) HS

x {(PjSHS)T (PjSHS)]

xHY, (P7,Rps) A—l}

P; HsCy + P35 JsC;
N——
0

J(pr ) (pim)]

A*l

Hs

= )\max
proves

x | Py, HsCy + P35 JsC;
N——

; 0 [1]
= Amax { (P7.HsCu) Hs

e LR

><HTS (P3.HsCn) A—l} 3]

Amax {(HSCH) (P#SHS) [4]
NPT

x (1%3151‘5)T (HSCH)A—l} (61

= Ao {(HSCH)*PHSHS (HSCH)A—l} . (13)

Observe now that 7]
rank (P#SHS) =rank(Hg) =r =N — g =rank (P#S) . (8]

Hence, the subspaces spanned by the columns of P 7. Hs
and P 7. are one and the same. It follows that we can replace
Pp. g with P7_ in (13) obtaining
Jg S
')

Armax {(HSCH)TPl (HsCr)A™
= /\max{(HSOH)TP (HSOH)

F
+ (HsCn)'P3 (HsCn)]™

F

[9]

[10]

[11]

[12]

X [IKI’ 1}

[13]

= Amax {F‘(IKP + F)_l} .

A (R)
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Finally, it is easy to check that the maximum eigeinvalue of
F(Ig, + F)~
F'; it follows that

! can be related to the maximum eigenvalue of

)\max(F)
14+ Amax(F)°

Amax {F(IKP +F)” }

Similarly, rewriting the decision statistic of receiver (11) as

(R)
= Amax { Pu, Z'S7V*RpRLS ™12 2Py, }
=

max

{
{RpS

{R 27'Hs (HLZ2'Hs) ngzTRPS}

S V2ZPy, 2'S Ry }

1
)\max{R}S P.JI_SHS (HTSP.JI_SHS) HTSP#S RPS}

-~

P,
PL H
Jg S

= Amax {(HSOH)TP§S (HSOH)}
= /\max(F)

identity (12).
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