780 research outputs found

    Multi-Step Knowledge-Aided Iterative ESPRIT for Direction Finding

    Full text link
    In this work, we propose a subspace-based algorithm for DOA estimation which iteratively reduces the disturbance factors of the estimated data covariance matrix and incorporates prior knowledge which is gradually obtained on line. An analysis of the MSE of the reshaped data covariance matrix is carried out along with comparisons between computational complexities of the proposed and existing algorithms. Simulations focusing on closely-spaced sources, where they are uncorrelated and correlated, illustrate the improvements achieved.Comment: 7 figures. arXiv admin note: text overlap with arXiv:1703.1052

    Rational invariant subspace approximations with applications

    Get PDF
    Includes bibliographical references.Subspace methods such as MUSIC, Minimum Norm, and ESPRIT have gained considerable attention due to their superior performance in sinusoidal and direction-of-arrival (DOA) estimation, but they are also known to be of high computational cost. In this paper, new fast algorithms for approximating signal and noise subspaces and that do not require exact eigendecomposition are presented. These algorithms approximate the required subspace using rational and power-like methods applied to the direct data or the sample covariance matrix. Several ESPRIT- as well as MUSIC-type methods are developed based on these approximations. A substantial computational saving can be gained comparing with those associated with the eigendecomposition-based methods. These methods are demonstrated to have performance comparable to that of MUSIC yet will require fewer computation to obtain the signal subspace matrix

    Modelling Aspects of Planar Multi-Mode Antennas for Direction-of-Arrival Estimation

    Get PDF
    Multi-mode antennas are an alternative to classical antenna arrays, and hence a promising emerging sensor technology for a vast variety of applications in the areas of array signal processing and digital communications. An unsolved problem is to describe the radiation pattern of multi-mode antennas in closed analytic form based on calibration measurements or on electromagnetic field (EMF) simulation data. As a solution, we investigate two modeling methods: One is based on the array interpolation technique (AIT), the other one on wavefield modeling (WM). Both methods are able to accurately interpolate quantized EMF data of a given multi-mode antenna, in our case a planar four-port antenna developed for the 6-8.5 GHz range. Since the modeling methods inherently depend on parameter sets, we investigate the influence of the parameter choice on the accuracy of both models. Furthermore, we evaluate the impact of modeling errors for coherent maximum-likelihood direction-of-arrival (DoA) estimation given different model parameters. Numerical results are presented for a single polarization component. Simulations reveal that the estimation bias introduced by model errors is subject to the chosen model parameters. Finally, we provide optimized sets of AIT and WM parameters for the multi-mode antenna under investigation. With these parameter sets, EMF data samples can be reproduced in interpolated form with high angular resolution

    Detect and Pointing Algorithms Performance for a 2D Adaptive Antenna Array

    Get PDF
    In recent decades, we have witnessed a great progress in wireless communications. The huge amount of data that users expect to access has required an effort to increase the capacity of wireless networks. The main limitation of these communication systems is the increasing interference between channels and multipath fading. Smart antennas technology has emerged, solving some of these problems and improving the performance of wireless networks. This chapter addresses a group of algorithms, directions of arrival (DOA) and beamforming, applied to planar antenna arrays. The algorithms are simulated, and their performance is evaluated in terms of runtime, accuracy and dependence with signal-to-noise ratio (SNR), applied to a smart antenna system

    Time Delay Estimation from Low Rate Samples: A Union of Subspaces Approach

    Full text link
    Time delay estimation arises in many applications in which a multipath medium has to be identified from pulses transmitted through the channel. Various approaches have been proposed in the literature to identify time delays introduced by multipath environments. However, these methods either operate on the analog received signal, or require high sampling rates in order to achieve reasonable time resolution. In this paper, our goal is to develop a unified approach to time delay estimation from low rate samples of the output of a multipath channel. Our methods result in perfect recovery of the multipath delays from samples of the channel output at the lowest possible rate, even in the presence of overlapping transmitted pulses. This rate depends only on the number of multipath components and the transmission rate, but not on the bandwidth of the probing signal. In addition, our development allows for a variety of different sampling methods. By properly manipulating the low-rate samples, we show that the time delays can be recovered using the well-known ESPRIT algorithm. Combining results from sampling theory with those obtained in the context of direction of arrival estimation methods, we develop necessary and sufficient conditions on the transmitted pulse and the sampling functions in order to ensure perfect recovery of the channel parameters at the minimal possible rate. Our results can be viewed in a broader context, as a sampling theorem for analog signals defined over an infinite union of subspaces

    Generalized DOA and Source Number Estimation Techniques for Acoustics and Radar

    Get PDF
    The purpose of this thesis is to emphasize the lacking areas in the field of direction of arrival estimation and to propose building blocks for continued solution development in the area. A review of current methods are discussed and their pitfalls are emphasized. DOA estimators are compared to each other for usage on a conformal microphone array which receives impulsive, wideband signals. Further, many DOA estimators rely on the number of source signals prior to DOA estimation. Though techniques exist to achieve this, they lack robustness to estimate for certain signal types, particularly in the case where multiple radar targets exist in the same range bin. A deep neural network approach is proposed and evaluated for this particular case. The studies detailed in this thesis are specific to acoustic and radar applications for DOA estimation

    Sensor array signal processing : two decades later

    Get PDF
    Caption title.Includes bibliographical references (p. 55-65).Supported by Army Research Office. DAAL03-92-G-115 Supported by the Air Force Office of Scientific Research. F49620-92-J-2002 Supported by the National Science Foundation. MIP-9015281 Supported by the ONR. N00014-91-J-1967 Supported by the AFOSR. F49620-93-1-0102Hamid Krim, Mats Viberg

    Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing

    Get PDF
    Unsere moderne Gesellschaft ist Zeuge eines fundamentalen Wandels in der Art und Weise wie wir mit Technologie interagieren. Geräte werden zunehmend intelligenter - sie verfügen über mehr und mehr Rechenleistung und häufiger über eigene Kommunikationsschnittstellen. Das beginnt bei einfachen Haushaltsgeräten und reicht über Transportmittel bis zu großen überregionalen Systemen wie etwa dem Stromnetz. Die Erfassung, die Verarbeitung und der Austausch digitaler Informationen gewinnt daher immer mehr an Bedeutung. Die Tatsache, dass ein wachsender Anteil der Geräte heutzutage mobil und deshalb batteriebetrieben ist, begründet den Anspruch, digitale Signalverarbeitungsalgorithmen besonders effizient zu gestalten. Dies kommt auch dem Wunsch nach einer Echtzeitverarbeitung der großen anfallenden Datenmengen zugute. Die vorliegende Arbeit demonstriert Methoden zum Finden effizienter algebraischer Lösungen für eine Vielzahl von Anwendungen mehrkanaliger digitaler Signalverarbeitung. Solche Ansätze liefern nicht immer unbedingt die bestmögliche Lösung, kommen dieser jedoch häufig recht nahe und sind gleichzeitig bedeutend einfacher zu beschreiben und umzusetzen. Die einfache Beschreibungsform ermöglicht eine tiefgehende Analyse ihrer Leistungsfähigkeit, was für den Entwurf eines robusten und zuverlässigen Systems unabdingbar ist. Die Tatsache, dass sie nur gebräuchliche algebraische Hilfsmittel benötigen, erlaubt ihre direkte und zügige Umsetzung und den Test unter realen Bedingungen. Diese Grundidee wird anhand von drei verschiedenen Anwendungsgebieten demonstriert. Zunächst wird ein semi-algebraisches Framework zur Berechnung der kanonisch polyadischen (CP) Zerlegung mehrdimensionaler Signale vorgestellt. Dabei handelt es sich um ein sehr grundlegendes Werkzeug der multilinearen Algebra mit einem breiten Anwendungsspektrum von Mobilkommunikation über Chemie bis zur Bildverarbeitung. Verglichen mit existierenden iterativen Lösungsverfahren bietet das neue Framework die Möglichkeit, den Rechenaufwand und damit die Güte der erzielten Lösung zu steuern. Es ist außerdem weniger anfällig gegen eine schlechte Konditionierung der Ausgangsdaten. Das zweite Gebiet, das in der Arbeit besprochen wird, ist die unterraumbasierte hochauflösende Parameterschätzung für mehrdimensionale Signale, mit Anwendungsgebieten im RADAR, der Modellierung von Wellenausbreitung, oder bildgebenden Verfahren in der Medizin. Es wird gezeigt, dass sich derartige mehrdimensionale Signale mit Tensoren darstellen lassen. Dies erlaubt eine natürlichere Beschreibung und eine bessere Ausnutzung ihrer Struktur als das mit Matrizen möglich ist. Basierend auf dieser Idee entwickeln wir eine tensor-basierte Schätzung des Signalraums, welche genutzt werden kann um beliebige existierende Matrix-basierte Verfahren zu verbessern. Dies wird im Anschluss exemplarisch am Beispiel der ESPRIT-artigen Verfahren gezeigt, für die verbesserte Versionen vorgeschlagen werden, die die mehrdimensionale Struktur der Daten (Tensor-ESPRIT), nichzirkuläre Quellsymbole (NC ESPRIT), sowie beides gleichzeitig (NC Tensor-ESPRIT) ausnutzen. Um die endgültige Schätzgenauigkeit objektiv einschätzen zu können wird dann ein Framework für die analytische Beschreibung der Leistungsfähigkeit beliebiger ESPRIT-artiger Algorithmen diskutiert. Verglichen mit existierenden analytischen Ausdrücken ist unser Ansatz allgemeiner, da keine Annahmen über die statistische Verteilung von Nutzsignal und Rauschen benötigt werden und die Anzahl der zur Verfügung stehenden Schnappschüsse beliebig klein sein kann. Dies führt auf vereinfachte Ausdrücke für den mittleren quadratischen Schätzfehler, die Schlussfolgerungen über die Effizienz der Verfahren unter verschiedenen Bedingungen zulassen. Das dritte Anwendungsgebiet ist der bidirektionale Datenaustausch mit Hilfe von Relay-Stationen. Insbesondere liegt hier der Fokus auf Zwei-Wege-Relaying mit Hilfe von Amplify-and-Forward-Relays mit mehreren Antennen, da dieser Ansatz ein besonders gutes Kosten-Nutzen-Verhältnis verspricht. Es wird gezeigt, dass sich die nötige Kanalkenntnis mit einem einfachen algebraischen Tensor-basierten Schätzverfahren gewinnen lässt. Außerdem werden Verfahren zum Finden einer günstigen Relay-Verstärkungs-Strategie diskutiert. Bestehende Ansätze basieren entweder auf komplexen numerischen Optimierungsverfahren oder auf Ad-Hoc-Ansätzen die keine zufriedenstellende Bitfehlerrate oder Summenrate liefern. Deshalb schlagen wir algebraische Ansätze zum Finden der Relayverstärkungsmatrix vor, die von relevanten Systemmetriken inspiriert sind und doch einfach zu berechnen sind. Wir zeigen das algebraische ANOMAX-Verfahren zum Erreichen einer niedrigen Bitfehlerrate und seine Modifikation RR-ANOMAX zum Erreichen einer hohen Summenrate. Für den Spezialfall, in dem die Endgeräte nur eine Antenne verwenden, leiten wir eine semi-algebraische Lösung zum Finden der Summenraten-optimalen Strategie (RAGES) her. Anhand von numerischen Simulationen wird die Leistungsfähigkeit dieser Verfahren bezüglich Bitfehlerrate und erreichbarer Datenrate bewertet und ihre Effektivität gezeigt.Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable systems. The fact that they rely on standard algebraic methods only allows their rapid implementation and test under real-world conditions. We demonstrate this concept in three different application areas. First, we present a semi-algebraic framework to compute the Canonical Polyadic (CP) decompositions of multidimensional signals, a very fundamental tool in multilinear algebra with applications ranging from chemistry over communications to image compression. Compared to state-of-the art iterative solutions, our framework offers a flexible control of the complexity-accuracy trade-off and is less sensitive to badly conditioned data. The second application area is multidimensional subspace-based high-resolution parameter estimation with applications in RADAR, wave propagation modeling, or biomedical imaging. We demonstrate that multidimensional signals can be represented by tensors, providing a convenient description and allowing to exploit the multidimensional structure in a better way than using matrices only. Based on this idea, we introduce the tensor-based subspace estimate which can be applied to enhance existing matrix-based parameter estimation schemes significantly. We demonstrate the enhancements by choosing the family of ESPRIT-type algorithms as an example and introducing enhanced versions that exploit the multidimensional structure (Tensor-ESPRIT), non-circular source amplitudes (NC ESPRIT), and both jointly (NC Tensor-ESPRIT). To objectively judge the resulting estimation accuracy, we derive a framework for the analytical performance assessment of arbitrary ESPRIT-type algorithms by virtue of an asymptotical first order perturbation expansion. Our results are more general than existing analytical results since we do not need any assumptions about the distribution of the desired signal and the noise and we do not require the number of samples to be large. At the end, we obtain simplified expressions for the mean square estimation error that provide insights into efficiency of the methods under various conditions. The third application area is bidirectional relay-assisted communications. Due to its particularly low complexity and its efficient use of the radio resources we choose two-way relaying with a MIMO amplify and forward relay. We demonstrate that the required channel knowledge can be obtained by a simple algebraic tensor-based channel estimation scheme. We also discuss the design of the relay amplification matrix in such a setting. Existing approaches are either based on complicated numerical optimization procedures or on ad-hoc solutions that to not perform well in terms of the bit error rate or the sum-rate. Therefore, we propose algebraic solutions that are inspired by these performance metrics and therefore perform well while being easy to compute. For the MIMO case, we introduce the algebraic norm maximizing (ANOMAX) scheme, which achieves a very low bit error rate, and its extension Rank-Restored ANOMAX (RR-ANOMAX) that achieves a sum-rate close to an upper bound. Moreover, for the special case of single antenna terminals we derive the semi-algebraic RAGES scheme which finds the sum-rate optimal relay amplification matrix based on generalized eigenvectors. Numerical simulations evaluate the resulting system performance in terms of bit error rate and system sum rate which demonstrates the effectiveness of the proposed algebraic solutions
    corecore