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The purpose of this thesis is to emphasize the lacking areas in the feld of direction of

arrival estimation and to propose building blocks for continued solution development in the

area. A review of current methods are discussed and their pitfalls are emphasized. DOA

estimators are compared to each other for usage on a conformal microphone array which

receives impulsive, wideband signals. Further, many DOA estimators rely on the number

of source signals prior to DOA estimation. Though techniques exist to achieve this, they

lack robustness to estimate for certain signal types, particularly in the case where multiple

radar targets exist in the same range bin. A deep neural network approach is proposed and

evaluated for this particular case. The studies detailed in this thesis are specifc to acoustic

and radar applications for DOA estimation.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Direction of arrival (DOA) estimation is relevant in acoustics, radar, sonar, and wire-

less applications and has been widely studied for the past several decades. Being able to

approximately localize a source or target contributes to environmental awareness and more

detailed scene understanding necessary for modern-world applications which rely heavily

on sensor-gathered information. This is particularly useful for autonomous vehicles which

rely on being able to fully understand a dynamic environment without reliance on human

direction. DOA is also applicable in military applications where it may be advantageous to

know where a blast originated from or where a particular target exists, for both offensive

and defensive purposes. Determining the DOA from a sensor array is signifcant in that it

can be done in circumstances where a-priori knowledge is unknown and in settings where

it is impractical or unsafe for the determination to be made by a person.

From multiple sensor arrays, a source can be confdently localized to a position in

space, through triangulation of combined arrays estimates of directionality. Often these

multiple sensor arrays are distributed such that signifcant distance exists between them.

As such, the case where a suffciently-distanced source signal only reaches a singular sen-

sor array presents a challenge in resolving the location of the source. However, for cases
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where only a single sensor array can be utilized, it is necessary to still be able to determine

the origin of the source and thus alternative approximations must be employed. From a

relatively small (small in that the elements are not distributed such that they are representa-

tive of several larger distributed arrays), singular array confguration, the ability to localize

a source is limited to determining the general directionality of arrival, respective to the

sensor array, and is also limited by the number of array elements. Depending on the ap-

plication, elements of phased arrays are spaced with the wavelength of the signal in mind

such that smaller waves such as radio waves require smaller array apertures than those of

acoustics.

In the context of this work, the DOA is characterized as the relative angular projection

of a given source signal onto an appropriate receiving array. Though both azimuth (θ) and

elevation (φ) arrival angles can be extracted from source signal information, there is partic-

ular interest in being able to know only the general azimuth directionality for localization

purposes.

Array confgurations signifcantly affect an estimator’s ability to approximate an appro-

priate angle. Most studied array geometries are uniformly-spaced, despite recent studies

which have shown arbitrarily-spaced elements to provide a more robust reception [55].

Furthermore, the inclusion for wideband acoustic signals has not been heavily integrated

into the literature. There exist approaches which exploit the separation of a wideband sig-

nal into frequency bins such that narrowband methods can be utilized [55]. Even so, many

popular estimators rely on prior knowledge of the number of source signals to compute ap-
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propriate DOAs. Because this information is diffcult to know in a real-world application,

additional data analysis techniques are necessary to make this prediction.

Source number estimation techniques which work reasonably well have been imple-

mented and used for varied applications. However, in a particular case of radar application,

most of these methods based on signal subspace exploitation are insuffcient to properly

estimate the number of received signals.

Thus, this thesis was motivated by developing contributing work in the area of direction

of arrival estimation for both acoustic and radar applications. The ultimate goal of this

thesis was to work towards the development of a solution for robust DOA estimation on an

arbitrary sensor array, given a wideband signal.

1.2 Applications

DOA estimation is applicable in several areas of array signal processing to include

acoustics, radar, and sonar. These applications vary in their specifc details like propagation

properties and equipment variances but ultimately can be reduced to the same foundational

components. Typical applications for DOA estimation include source localization, target

detection, and object tracking.

To appropriately estimate the DOA of a given signal, it is assumed that there exists

some sensor array which receives a signal of interest in the presence of noise and a pro-

cessing algorithm uses such data to estimate the DOA.

In acoustic applications, DOA estimation can be used to determine the source location

of a sound. This information is relevant to scene understanding as well as source track-
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ing. In radar applications, it is often advantageous to be able to recognize the presence or

absence of a specifed target in the surrounding environment.

Current studies in the area focus on determining the DOA of moving sources, moving

receiver arrays, or a combination of both. However, the scope of this research is limited

to stationary sources and receiver arrays. Thus, due to added uncertainty and increased

complexity of non-stationary signal emmition and reception, the studies herein are not

directly applicable to dynamic components.

Though DOA estimation is applicable to both compact and distributed arrays, the ex-

periments done through the course of this work were focused on considerably compact

array geometries with a notably small number of sensor elements. Thus, the implications

of this study are not necessarily indicative of usage on a sizeable array geometry with

higher numbers of receiving sensors.

This work emphasizes the applications of real-world acoustic data and simulated radar

data. As such, the application of these methods can be done for both simulated and exper-

imental datasets. It should be noted that real-world data is subject to additional external

infuence than may be accounted for by simulated signals. Techniques perform optimally

in simulations of idealized signals and degrade in their performance for real-world appli-

cations where signals are subject to interference.

1.3 Work Overview

The work detailed herein applies to the development of improved and more robust tech-

niques for DOA estimation. These contributions were exploratory discoveries as well as
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technique advancements. The scope of this study is not limited to a singular application and

is rather a culmination of three individual studies which all contribute to the advancement

of DOA estimation techniques.

Throughout the course of this work, it was learned that there are several lacking areas

in the feld of DOA estimation techniques. Though there exist widely-used techniques

throughout the literature, these techniques are limited by their capacity to work with certain

signal expectations and array confgurations.

For the case where wideband signals arrive to an irregular array geometry, there are few

methods designed for that application. Two methods- generalized cross correlation (GCC)

and unconstrained least squares (ULS) were compared against one another for effcacy on

varied wideband acoustic sources. This study also examines the effects of using sub-arrays

of the irregular geometry.

Many other DOA estimators rely upon knowing the number of sources a priori to angle

estimation [45, 49]. In trying to improve upon number of source estimation techniques for

a radar application where all target signals exist in the same range bin, it was discovered

that there lacks an effective method which does not rely on eigenvalue decomposition to

estimate the number of sources. This discovery was found during the attempted develop-

ment of a neural network that exploits the eigenvalues to estimate the number of sources.

Given a particular set of radar data, the commonly-used methods were shown ineffective,

as was the proposed network. However, given different input data, the methods were suf-

fciently able to make the determination, thus exposing the problematic case where targets

exist in the same range bin.
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After evaluating that eigenvalue decomposition is insuffcient for number of source es-

timations, given the specifc radar case, a deep neural network (NN) was developed as a

solution to this problem. The NN was created such that it relies on both the eigenval-

ues as well as the covariance matrix to estimate an appropriate number of targets. This

novel method was compared against other methods in the literature and found to perform

signifcantly better.

Though a comprehensive and generalized solution is not yet created for a robust DOA

estimator, lacking discoveries have been found and milestones achieved to progress devel-

opment in this area towards a robust and generalized solution.

1.4 Contributions

The contributions in this thesis are relevant to signal processing applications, especially

those which are related to array processing and source localization.

The contributions of this thesis are:

1. A study on real-world impulsive acoustic signals for a conformal microphone array

geometry.

2. The exposure to a lacking area in number of source detectors for a radar application

where signals exist in the same range bin.

3. A proposed neural network that can be used to derive the number of sources detected

such that DOA methods which require a robust estimation of this quantity can be

utilized.
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The study presented in Chapter III has been published as part of the 174th conference

of the Acoustical Society of America in the Proceedings of Meetings on Acoustics [20].

The proposed method discussed in Chapter IV has been submitted to IEEE Access and is

currently under review for acceptance [21].

1.5 Organization

This thesis is organized in the following manner: Chapter 1 introduces the work of this

thesis. Chapter 2 is an extensive literature review that discusses the background relevant

to various aspects of DOA estimation. Chapter 3 details the experimentation and fndings

of statistical DOA estimation techniques for a conformal microphone array on impulsive

acoustic sources. Chapter 4 compares the proposition of two neural network approaches to

determine the number of targets present in a radar application. Chapter 5 summarizes the

contributions of this thesis and lists future work.
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CHAPTER II

BACKGROUND

2.1 Beamforming

The areas of most effective reception for a signal are characterized by the beam pattern

of a specifc array geometry, where the frequency-wavenumber response is computed for

all spherical angles about the array [55]. Elements of the array can be adjusted or weighted

such that they produce a desired beam pattern through beamforming techniques.

Given a signal received (y) at differing time delays at each element (such that W (θ) 

is a weighted vector which is a linear combination of all array elements’ signals and H is

the Hermitian transpose), with the sensor array geometry known, the beam pattern can be

determined when the received signal power (p) of all elements’ received signals is strongest

at a particular angle, θ 

p(θ) = |W(θ)H y|2 (2.1)

Use of beamforming is important in circumstances where one would like to transmit or

receive a signal from a particular direction with the optimal beam pattern. Beamforming

is also particularly useful in the case of DOA estimation, since the beam pattern optimally

defnes the source’s DOA, in the absence of noise [55].
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2.2 Acoustics

Acoustic signals are those signals which result from the vibration of molecules in a

propagation medium, onset initially by the movement of some given source. In most acous-

tic applications, the sounds of interest are typically that which span a broad spectrum of

frequencies, though singular tonal sounds do also exist [55]. These wide bandwidth sounds

are characterized by the summation of several singular longitudinal sinusoidal waves over

a spread of different amplitudes, phases, and frequencies [34].

Acoustic signals propagate from the initializing source in a cocentric manner, with the

sound waves radiating about the source in an outward direction. As the energy travels fur-

ther from the source of the sound, the waves become progressively less curved. Depending

on how close the receptive array is to the source will determine what kind of signal is

received.

A signal is said to exist in the near feld if the impinging wavefront is characteristic

of the circular curve. However, if the receivers are suffciently separated from the source,

the array will see a planar wavefront upon arrival. In the far feld, the sound pressure level

decreases as a function of the inverse square law [1].

Wideband signals can be complicated further by external infuences that act against an

idealized signal and propagation model. There are two primary factors which can alter how

a signal is received- propagation medium parameters and environmental characteristics.

In the acoustic realm of signal processing, the waves travel at the speed defned by a

given propagation medium. For the purposes of this work, air is assumed to be the propa-

gation medium and is subject to variance based on moisture content as well as temperature.
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While moisture levels produce a less-pronounced effect on the speed that can be consid-

ered negligible for most purposes, the temperature of the medium affects the speed in the

following manner: c = 332+0.6Tc, where c is the propagation speed in meters per second

(m/s) and Tc is the temperature in degrees Celsius (◦C). For most standard application,

it can be assumed that the propagation speed of a sound through air at 20◦C and 1 atmo-

spheric pressure is 343m/s [34].

The signal can be undesirably diminished by the environment in the propagation path

surrounding an acoustic event and the reception point. Reverberation and absorption are

both unavoidable in any realistic location. As such, the path of the waves are subject

to change, causing unwanted delay in a singular event, often so much that an echo may

be indistinguishable from a second arrival signal [1]. Obviously, with increased sound

sources, this problem becomes progressively more complex.

Moving sources are subject to additional consideration with array processing. With the

change in positioning of a sound-generating source, the signal becomes a product of the

Doppler affect, which manifests as a frequency change.

2.3 Array Geometries

The most commonly-used array geometries are that of uniformly-distributed nature

such as uniform linear arrays and uniform circular arrays, though more complex variations

of this uniformity have also been studied (uniform rectangular arrays, uniform planar ar-

rays, uniform spherical arrays, etc.) The least-often used array geometries are those which

follow a conformal, or non-uniformly spaced pattern [55, 56, 66, 61].
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Array geometries are defned by the placement of the same sensor at various positions

in space. They can be 1D, as in the case of linear arrays, 2D as in the case of planar arrays,

and 3D as in the case of spherical arrays [56].

The number of sensors plays an important role in the performance of a given geometry.

Too few elements does not allow for appropriate resolution, especially in cases where there

exist multiple signal sources. Oppositely, too many elements introduce coupling between

elements. Ultimately, the design is usually a trade-off between the desired performance,

the capacity of the system’s computational power, and the cost for such operation [55].

One-dimensional arrays are most often used in array processing and are simply com-

posed of elements in a singular line. Often these arrays are equispaced, where each element

is separated by the same distance from each consecutive element though nonuniform spac-

ing has surfaced recently in the literature [29]. Linear arrays are widely known for their

simplicity to implement and analyze [56].

Planar, or 2D, arrays are those array geometries which span both the X and Y direction

but do not change between the Z direction. Commonly used geometries of this type are

uniform circular arrays, uniform rectangular arrays. Circular arrays are desirable in that

they can provide uniformity of reception in the beam pattern over a 360 degree feld of

view [55].

Conformal array geometries are those where elements of the array typically conform to

some curved surface and compose a large portion of 3D arrays, where elements are placed

in the X,Y, and Z directions, respective to one another [56]. This geometry is not specifc

to any particular shape or placement and thus can be utilized in cases of randomly placed
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elements. Spherical and cylindrical arrays fall into this category. Of the few common con-

formal arrays, a pyramid/conical shape has shown to perform better than other geometries,

specifcally in DOA applications [32].

Array geometry design is beyond the scope of this work, though it should be noted how

critical the design of the array is for DOA applications, and that each geometry comes with

a balance of desirable and undesirable properties.

2.4 DOA Estimation

DOA estimation is determined by how a transmitted signal impinges on a receiving

element array. The DOA estimate is characterized by the angular estimate from which the

source of the data originated.

As with any array processing, the collected data is subject to outside infuences and

signal degradation. This propagation is affected by the surrounding environment, propaga-

tion medium parameters, and quality of the emitters and receiving elements. Furthermore,

signals will always be subject to noise introduced by the environment or the system itself.

Given an array ofM elements, the vector of the total received data x(t) can be modeled

as ⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

jwc(t−τ1)s(t − τ1)e 

jwc(t−τ2)s(t − τ2)e 

...

jwc(t−τM )s(t − τM )e 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

x(t) = (2.2)
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where each received signal s(t − τM ) at the Mth array element is refective of the trans-

mitted signal at time τM , ejwc(t−τM ) is the phase shift, and wc = 2πfc such that fc is the

carrier frequency of the signal. The delay of reception for each element is correlated to the

angles by which the source initially transmitted the signal [55].

This estimate is typically measured by the azimuth and elevation angles respective

to the centroid of the array. The azimuth angle is defned as ”the angle in the counter-

clockwise direction from the x-axis” and the elevation angle as ”the angle computed from

the positive z-axis” [55]. This concept is illustrated in Fig. 2.1 and 2.2. Thus, the di-

rectionality of a source can be found from any angular combination of the azimuth and

elevation or simply from one of these measurements, depending on the resolution neces-

sary. A defnitive source localization can be found from the triangulation of several sensor

arrays’ DOA estimates combined with one another. Otherwise, when a singular sensor ar-

ray is utilized, DOA estimates are limited to angular estimates and not a particular location

defned by distance.

Figure 2.1: Visualization of azimuth angle measurements.
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Figure 2.2: Visualization of elevation angle measurements.

The array is characterized by a, the array manifold, which describes the directional

properties by which each array element operates and is defned by the azimuth φ and zenith

θ angles such that

a(φ, θ) = [a1(φ, θ), . . . , aN (φ, θ)]T . (2.3)

The Cramer Rao bound defnes the limitations of which a DOA estimator can effec-

tively estimate a given source’s angular location for K snapshots of a signal for the deriva-

tive of the array manifold with respect to θ (ȧ(θ))

1 
CRB ≈ , (2.4)

2K ∗ SNR ∗ |ȧ(θ)|2 

where SNR is the signal-to-noise ratio received at each array element [55].

The mean square error (MSE) is the standard measure of performance for DOA esti-

mators.
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Several methods have been proposed and tested for varied array geometries and signal

types. The vast majority of these estimators were designed for usage on narrowband signals

which impinge a uniformly-spaced arrays.

2.5 Techniques

The most basic means to estimate the DOA of an acoustic signal is by maximum likeli-

hood methods which exploit the time difference of arrivals (TDOA) for a given signal upon

each array element. This estimate is often made by determining the maximum correlation

of each pair of sensors’ received signals to one another and making an angular estimate

via a least squares solution. Such approaches exhibited in the generalized cross correlation

(GCC) [35] method as well as the unconstrained least squares method (ULS) [6]. Both

methods are appropriate for usage on wideband signals as well as irregularly shaped array

geometries [55].

The formulation for the GCC R̂ 
y 
(g 
1
) 
y2 was defned by Knapp and Carter in [35] for signals

x1 and x2 to be:

Z ∞ 
ˆ(g) j2πfτ df Ry1y2(τ) = ψg(f)Ĝ 

x1x2(f)e (2.5)
−∞ 

j2πfτ such that Ĝ 
x1x2(f)e is the power spectral density function and ψ is defned by

ψg(f) = H1(f)H2 
∗ (f). (2.6)
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The flters H1 and H2 are non-specifc to this generalized formulation. For the particu-

lar formulation discussed in this thesis, the GCC with Phase Transform (GCC-PHAT) was

utilized, where ψ is defned by inverse of the absolute value of the transpose of Gx1x2(f) 

such that

1 
ψp(f) = . (2.7)

|Gx1x2(f)|0 

The ULS method is defned as the solution to the linear system of equations in the

matrix form Matrix form

φy = b (2.8)

where

⎤⎡⎤⎡ ⎤⎡T 

and b = 
1 
2 

⎢⎢⎢⎢⎢⎢⎣ 

||a1||2 − c2τ 2 
1,0 

...

⎥⎥⎥⎥⎥⎥⎦ 
(2.9)φ = 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 
y = 

a v11 ⎢⎢⎣ 
⎥⎥⎦ 
x . .. .. .
r 

T 2τ 2a vM ||aM ||2 − cM M,0 

where ai is the array element positioning for M elements, v is cτi,0 (propagation speed *

TDOA), x is the source location, and r is the source range from the array. The solution for

the unknown vector ŷ  is ŷ = φ‡b, where φ‡ is is the pseudo inverse of φ 

⎤⎡ 

ŷ = 
⎢⎢⎣ 
x̂⎥⎥⎦ = (φT φ)−1φT . (2.10)
r̂  
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By defning that the range r̂  and positioning x̂ of the source location are independent one

another, the range byproduct r̂  of the linear system of equations can be discarded, thus

defning the least squares estimate to be unconstrained by that parameter [27, 6].

Like GCC, the ULS estimate utilizes a linear least squares estimate. The difference

in this approach from GCC is that the propagation speed is assumed to be unknown and

estimated simultaneously to a defnitive source location. Further, it is assumed that the

arrays experience the curvature of the acoustic signal against the array elements, as the

method is intended for signals occurring in the near feld.

Other methods exist which are based on the separation of signal and noise subspaces

and subsequently known as subspace methods. Given a received signal, a subspace can be

estimated such that the signal subspace is composed of D components, where D is indica-

tive of the number of sources [56]. Because it is impractical for D to be known a priori,

this parameter must be estimated and, which is often written in terms of the respective

eigenvalues λi and eigenvectors φi, where the frst D values are those dimensions which

span the signal subspace and all remaining values span the noise subspace [56].

Popular subspace techniques to estimate the DOA for narrowband signals are MUlltiple

SIgnal Classifcation (MUSIC) and Estimation of Signal Parameter via Rotational Invari-

ance Technique (ESPRIT). There are several variants to these algorithms which extend

usage for varied application but they each follow the base algorithm described herein.
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MUSIC works by utilizing the estimated subspaces to determine a power estimate for

all angles of interest. The signal subspace is defned by

Û  
S = [φ̂ 

1, φ̂ 
2, . . . , φ̂ 

D] (2.11)

and the noise subspace defned by

Û 
N = [φ̂ 

D+1, φ̂ 
D+2, . . . , φ̂ 

N ] (2.12)

Approximating that there are D eigenvalues in the signal subspace, this estimation is

computed via

Q̂ 
MU (ψ) = v H [I − Û 

S Û 
s
H ]v(ψ) (2.13)

where v is the array manifold, I is the identity matrix, and ψ are the angular estimates un-

der investigation. H is indicative of the Hermitian operator. The DOA angles are defned

by the peaks found from this estimate, for the number of signals estimated to be present by

the subspace estimation step. MUSIC can easily be expanded for usage on arbitrary array

geometries by expanding ψ to [ψxψy]
T [56]. The computational complexity for this algo-

rithm is not small and should be considered where there is a constraint for computational

capacity.

In an effort to reduce the computation complexity of the MUSIC algorithm, Roy and

Kailath proposed ESPRIT [45]. The ESPRIT algorithm relies on pairs or doublets of array

elements to make an appropriate estimate. Thus, for low-element array geometries, this
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method is not appropriate. However, for larger arrays with suffcient equipment capacity,

the ESPRIT algorithm works by frst knowing the two signals A1 and A2 for each pair of

elements, where the elements for each subarray are accounted for by the selection matrices

J1 and J2 

A1(θ) = J1A(θ) (2.14)

and

A2(θ) = J2A(θ). (2.15)

The two received signals are related by Φ 

A2 = A1Φ (2.16)

where

j(2π/λ)dxsin(θ1) j(2π/λ)dxsin(θL)]Φ = diag[e , . . . , e (2.17)

There exists a matrix T such that the received signal A can be written in terms of the

signal subspace Us as in

A = UsT (2.18)

and the number of source signals is the number of columns in Us [56].The signal subspace

can be rewritten in terms of Us for each subarray to be

Us1Ψ = Us2 (2.19)
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where

Ψ = T ΦT −1 . (2.20)

Using a least squares estimate to minimize the difference between the received signals

Us, Ψ can be solved for, thus allowing for the solution of Φ which gives rise to the DOA

estimates θ [56, 55]. ESPRIT is particularly suitable for uniform linear arrays, due to the

reliance on the shift invariance between the sets of array elements [63].

2.6 Limitations

For arbitrary array geometries, the estimators currently implemented are considerably

more limited as most of them rely on some sort of uniformly spaced arrays. Some uniform

array geometries are subject to FOV limitations and side-of-the-array ambiguity, making

them insuffcient for DOA estimation over an entire FOV. Small-element arrays also limit

the capabilities of the estimators [55].

Further, most estimators were designed for usage on narrowband signals. Due to the

additional complexities introduced by wideband signal sources, many of these methods are

not directly applicable. Rather, there are additional signal manipulations that must be done

prior to usage of these narrowband methods such that the wideband signal is separated into

its narrowband counterparts [56, 55].

Many estimators rely on number of source estimation prior to the actual DOA estimate.

This value can be known a priori or can be computed by analyzing the data. Though

methods exist to determine this parameter, they are often error prone [55]. Because most of

the source number estimation techniques rely on strictly the eigenvalues of the correlation
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matrix to make a determination, some applications for DOA, particularly that of a radar

application where multiple targets exist in the same range bin, are prone to nonsensical

results.
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CHAPTER III

DOA ESTIMATION FOR CONFORMAL ARRAYS ON REAL-WORLD IMPULSIVE

ACOUSTIC SIGNALS

3.1 Introduction

Direction of arrival (DOA) estimation of singular stationary, impulsive, acoustic sources

via a single conformal microphone array is of current interest. DOA, as referenced in this

chapter, refers to the azimuth angle at which the acoustic signal wave impinges on the ar-

ray. The most common methods for DOA estimation were designed for use on narrowband

signals against a uniformly-spaced array [62].

Primarily, sensor array geometries used for DOA application are one-dimensional uni-

form linear arrays (ULAs), though two-dimensional uniform rectangular arrays (URAs)

and uniform circular arrays (UCAs) are also common [66]. Conformal arrays, or geome-

tries that do not follow a uniform spacing pattern and particularly those which span three

dimensions, are rarely studied and are underrepresented in the literature. Though the array

used in this study follows a pyramid geometry, the non-uniform element spacing qualifes

the setup as a conformal array [32].

Most popular DOA estimators were designed for usage on narrowband signals. Though

methods which extend the narrowband estimators into wideband estimators via separation
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of the signal into narrowband frequency bins have been proposed, few are done on confor-

mal arrays and thus do not provide a suffcient solution.

The contributions of this chapter are:

1. Exploring plausible solutions for DOA estimation of wideband signals on an arbitrarily-

spaced microphone array.

2. Studying the effects of array confguration manipulation on these solutions to de-

termine if employing sets of uniformly-spaced sub-arrays can achieve comparable

estimation.

3. Evaluating the effcacy of described methods on real-world, impulsive acoustic sig-

nals.

The contents of this chapter are as follows. Section 3.2 discusses the task of estimating

the DOA of a singular, impulsive acoustic signal using a conformal microphone array,

Section 3.3 outlines the methods which will be explored and compared in this publication,

Section 3.4 details the preliminary test experiments, and Section 3.5 reviews the results.

Finally, Section 3.6 provides conclusions and lists future work.

3.2 Background

The acoustic events of interest are expected to occur in an environment with a generally

clear and quiet surrounding to minimize reverberation and interference. Because of the

impracticality of knowing a priori the general angle of arrival, the estimator must be able
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to determine an appropriate azimuth angle, given a 360◦ feld of view. The array element

positioning is assumed to be known and supplied to each estimator.

The microphone array geometry referenced in this research was developed to balance

a cost-restricted minimum number of elements for optimum amount of performance and

accuracy. The geometry follows a pyramid-like pattern, composed of fve microphones

with four base elements. Each opposite base element is 1.3m from one another and the

apex of the array centered 1m above the cross-section of the lower elements, relative to the

East-West axis. The North-South axis sits 0.1m above the East-West axis. The entire array

is positioned 2m above the ground. This array geometry is shown in Fig. 3.1.

Figure 3.1: Five-microphone conformal array.

Given that the array is fxed and cannot be altered for this application, usage of methods

created for other array geometries is limited; only methods which are not geometry-specifc
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were considered. It is expected that the uniformly-spaced sub-arrays of the defned con-

formal array can be exploited to extend the applicable methods. Because ULAs and UCAs

are the most commonly used array geometries for DOA estimation, this property extends

the available estimators.

Uniformly-spaced arrays, particularly uniform linear arrays, are the most commonly

used array geometry confguration for DOA estimation because of their simplicity to im-

plement and analyze. However, they are subject to symmetric ambiguity properties, where

one cannot distinguish which side of the array the event occurred without prior knowledge

and thus are limited to a 180◦ feld of view [12]. UCAs, however, provide uniform per-

formance for a full 360◦ feld of view and are desirable for DOA because of this property

[12].

Despite the prevalence of wideband signals in real-world applications, most estimators

that have been designed for conformal array geometries are for narrowband signals and

are not suitable for wideband signals because these estimators assume a carrier frequency

that can be accurately aligned and precisely measured; this includes the widely-used MU-

SIC method and several beamforming techniques. Wideband signals span the frequency

spectrum such that narrowband methods that exploit phase differences amongst elements

cannot be directly used [56].

3.3 Methods

The methods discussed in this section were both designed for usage on wideband sig-

nals and employ the time difference of arrival (TDOA) measurements to derive an esti-
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mation. The frst method explored is the GCCEstimator from MATLAB’s phased array

toolbox (GCC). Its estimation outputs determine both the azimuth and elevation angles

[35] and it assumes the source to exist in the far-feld. The second method (ULS) derives

an estimated source location and propagation speed simultaneously and assumes the source

to exist in the near-feld [6]. From the estimated source location, a DOA is geometrically

estimated.

3.4 Experiments

Three experiments were conducted to highlight the effectiveness of GCC [35] and ULS

[6] in estimating the angle of arrival. Section 3.4.1 shows the estimators’ predictions for

four cases of varied angles and distance about the array, Section 3.4.2 explores sub-array

manipulation and its effects on the estimators, and Section 3.4.3 shows how the estimators

respond to additional real-world, impulsive acoustic signals.

The directionality described throughout experimentation is relative to the defnition of

the array geometry. For consistency amongst experiments, the array is positioned such that

the four base elements exist at the cardinal directions, if one were to aerially view the array.

The directionality is defned such that East corresponds to 0◦ , North corresponds to 90◦ ,

West corresponds to ±180◦, and South corresponds to −90◦ .

For the purposes of this set of experiments, there is assumed to be some error in the

initial measurements, and thus the expected values are denoted by ≈ θ, where ≈ indicates

an approximation. For the case of GCC, the propagation speed of the acoustic signals

is the standard 343m/s. This parameter varies with the temperature and humidity of the
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propagation medium and is likely offset due to the environment the tests were performed in.

Furthermore, the angular measurements were obtained via rudimentary instrumentation.

Approximate estimations are suffcient to determine effcacy.

The conformal microphone array is composed of fve omnidirectional microphones that

are simultaneously sampled at 40kHz. Each acoustic event sample is characterized by a

6s window where the onset of the acoustic event is centered at 3s. The GPS clock on-

board the array has an accuracy of ±200ns. The sample size for each collected acoustic

event is 240, 000 data points. The entire span of the event was considered in comparison

calculations.

3.4.1 General Accuracy

To simulate the expected impulsive, wideband event, a series of four tests were con-

ducted, where M-150 freworks were set off at differing distances and azimuth angles with

respect to the center of the microphone array, as shown in Fig. 3.2. Using all fve channels

of the data to compute the estimate, the angles of arrival were computed.

3.4.2 Altered Array Confguration

Due to the low number of elements restriction of the array, there are limited sub-

confgurations that it can be split into. The most inclusive case, detailed in Section 3.4.1,

utilizes all fve elements of the array. The second set most desirable geometry that can

be created from the base array is a UCA or URA. Because the base is composed of four

elements, the geometry is the same for these confgurations and is treated as such. Because

triangular geometries are not seen in the literature and because the triangular subsets are
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Figure 3.2: Expected source locations for general accuracy experiment.

not uniformly spaced, three-element confgurations were not considered. The smallest and

most fundamental subsets of the array geometry are those ULAs formed between all sets

of pairs.

Given the element labeling in the array confguration shown Fig. 3.3, the sub-arrays

described in Table 3.1 can be created.

Using the same dataset as the experiment in Section 3.4.1, each sub-array was used to

determine the DOA.

3.4.3 Other Acoustic Sources

Two additional sets of impulsive acoustic signals were generated by striking two scraps

of lumber and using a standard marine airhorn to evaluate how the estimators handled

proximity and source variance.
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Figure 3.3: Labeled array elements for sub-array extraction.

Table 3.1: Sub-Array Confgurations
Array Geo. Num. Elem. Elem. Labels
Conformal Arr. 5 1, 2, 3, 4,5
URA/UCA 4 1, 2, 3, 4
ULA (Opp. Ang.) 2 1, 2
ULA (Opp. Ang.) 2 3, 4
ULA (Adj. Ang.) 2 1, 3
ULA (Adj. Ang.) 2 1, 4
ULA (Adj. Ang.) 2 2, 3
ULA (Adj. Ang.) 2 2, 4
Angled ULA 2 1, 5
Angled ULA 2 2, 5
Angled ULA 2 3, 5
Angled ULA 2 4, 5

The claps were generated near the perimeter of the array at ≈ 1m from the array, while

the airhorn was blown ≈ 50m away. The general directionality was noted for each event

and thus approximate accuracy can be compared. The expected regions of interest (ROI)
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for each acoustic event are detailed in Table 3.2 and Table 3.3 and graphically shown in

Fig. 3.4.

Figure 3.4: Regions of interest with respect to the array, aerial view.

3.5 Results and Discussion

Although the methods compared both utilize the TDOA information to compute the

DOA, some variance in the initial estimation results exists.

3.5.1 General Accuracy Results

GCC estimates the direction, where the ULS approach estimates a defnitive location

that can be geometrically interpreted into an angle of arrival. Based on the results in Table

3.4 and the plot in Fig. 3.5. the geometric angle estimation from the estimated position

for ULS seems plausible, despite some discrepancies in the expected values for computed
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Table 3.2: Acoustic Source ROI- Lumber.
Direction Region
Northwest 90◦:180◦ 

Southwest −90◦:−180◦ 

South −45◦:−135◦ 

Southeast 0◦:−90◦ 

East −45◦:45◦ 

Northeast 0◦:90◦ 

Table 3.3: Acoustic Source ROI- Airhorn.
Direction Region
North 45◦:135◦ 

Northwest 90◦:180◦ 

West −135◦:135◦ 

Southwest −90◦:−180◦ 

South −45◦:−135◦ 

Northeast 0◦:90◦ 

distance. Note that red-colored estimates correspond to GCC and blue-colored estimates

correspond to ULS.

For three of the four test locations (2, 3, and 4), both methods compute the DOA

to nearly or exactly the same value, of which are appropriate for the expected values.

However, the ULS method incorrectly estimated the angle for the location 1 and instead

estimated an angle nearly 180◦ off, highlighted in Table 3.4.

3.5.2 Altered Array Confguration Results

From the sub-array confguration experiments, it was shown that as element reduction

occurred, performance decreased signifcantly. The uniformity of the base of the conformal

array provides adequate resolution for 360◦ azimuth angles, and thus performs well in the

four-element case. However, the sparsity of most of the two-element sub-arrays is not
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Table 3.4: DOA Estimations for General Accuracy.
Loc. GCC ULS Expected
1 −91◦ 89◦ ≈−90◦ 

2 1◦ 1◦ ≈0◦ 

3 4◦ 4◦ ≈5◦ 

4 21◦ 20◦ ≈25◦ 

Figure 3.5: Estimated angles of arrival relative to the array.
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suffcient enough to estimate a proper direction of arrival. ULS was unable to derive a

solution for any of the two-element sub-arrays and thus the results for these experiments

are not included. The DOA estimates for MATLAB’s GCC are shown in Table 3.5.

This experiment suggests sub-arrays may be employed with methods which require

ULA and UCA geometries.

Table 3.5: DOA estimations on sub-array geometries defned in Table 3.1.
Array Confguration Loc. 1 Loc. 2 Loc. 3 Loc. 4
1,2,3,4,5 - Expected ≈−90◦ ≈0◦ ≈5◦ ≈25◦ 

1,2,3,4,5 - Actual −91◦ 1◦ 4◦ 21◦ 

1,2,3,4 −91◦ 1◦ 4◦ 20◦ 

1,2 −180◦ 0◦ 0◦ 0◦ 

3,4 −68◦ 1◦ 3◦ 20◦ 

1,3 −45◦ −45◦ −45◦ −45◦ 

1,4 −135◦ 45◦ 45◦ 45◦ 

2,3 −135◦ 45◦ 45◦ 45◦ 

2,4 −45◦ −45◦ −45◦ −45◦ 

1,5 180◦ 0◦ 0◦ 0◦ 

2,5 0◦ 0◦ 0◦ 0◦ 

3,5 −34◦ −6◦ 0◦ 7◦ 

4,5 −12◦ 7◦ 2◦ 6◦ 

3.5.3 Additional Acoustic Source Results

Based on the primitive tests for this set of experiments, acoustic sources suffciently

separated from the array are estimated in the correct general region, as shown in Table 3.6

and Table 3.7. Acoustic events occurring too near the array are subject to error. This is

most likely due to the wavefront not being planar, as expected by the DOA estimators.
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Table 3.6: Additional Source Estimations- Lumber.
Expected Region GCC ULS
≈90◦:180◦ 130◦ −46◦ 

≈−90◦:−180◦ −145◦ −128◦ 

≈−45◦:−135◦ −92◦ −85◦ 

≈0◦:−90◦ −42◦ 158◦ 

≈−45◦:45◦ 3◦ 2◦ 

≈0◦:90◦ 51◦ 21◦ 

Table 3.7: Additional Source Estimations- Airhorn.
Expected Region GCC ULS
≈45◦:135◦ 90◦ 91◦ 

≈90◦:180◦ 124◦ 125◦ 

≈−135◦:135◦ 177◦ 177◦ 

≈−90◦:−180◦ −144◦ −127◦ 

≈−45◦:−135◦ −92◦ −94◦ 

≈0◦:90◦ 52◦ 52◦ 

3.6 Conclusions and Future Work

The literature for DOA estimators that work on both impulsive acoustic sources and

conformal array geometries is highly limited. Though there exist several techniques which

suffciently estimate a subset of these constraints i.e. narrowband signals with conformal

arrays or wideband signals with uniform arrays, the solutions available which accomplish

the task at hand with minimal computational complexity are scarce.

Utilizing GCC and its variants is an appropriate solution to determine the DOA of

a single wideband source. These methods are limited by the ability to localize a single

source.

Examining uniform subsets of the defned conformal array suggests that estimators

designed for these uniform confgurations may be plausible options. With each subset
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confguration, it was noted that accuracy decreased as elements were omitted. Ideally,

there would be more elements, but because of the constraint of the equipment, this is not an

option. Wideband methods which operate on the URA, UCA, and ULA sub-confgurations

to explore include the methods referenced in [40].

Other wideband methods for conformal arrays of interest to explore are IMUSIC for its

desirable properties on high SNR data, and TOPS for its unique subspace processing [46].

Narrowband methods that have been extended for use on wideband signals by parti-

tioning the wideband signals into their narrowband counterparts and averaging the results

from each frequency bin to approximate a wideband solution have been shown to reveal

promising results and thus should also be explored in future works [56].

Ultimately, the directionality of multiple events of this nature and of which may also

be non-stationary will be of interest. Pham and Sadler proposes a method (AMI-UCA

MUSIC) which is able to accomplish this on a UCA [42]. The method proposed in [61]

can distinguish multiple sources more precisely than IMUSIC. Because of the possible

sub-array extension, the approach may be appropriate.

35



CHAPTER IV

ROBUST ESTIMATION OF THE NUMBER OF RADAR SIGNAL SOURCES USING

DEEP LEARNING

4.1 Abstract

This chapter presents a deep-learning based approach to estimating the number of

sources in radar. This is an important problem in radar, sonar and communication sys-

tems, as many angle–of–arrival estimators require accurate estimates of the number of

sources. Herein, a robust method that performs well when all targets are in the same range

bin is developed. The standard estimators which base estimates on the number of large

eigenvalues of the covariance matrix, such as the Akike Information Criteria (AIC), Min-

imum Description Length (MDL) estimator, and MUltiple SIgnal Classifcation (MUSIC)

all fail when the targets are in the same range bin and are all illuminated by the same pulse,

so that the target information is mostly contained in the largest eigenvalue. The proposed

method is compared to the Minimum Variance Distortionless Response (MVDR) spectral

estimator, and the proposed method shows superior performance.

4.2 Introduction

Estimating the number of plane wave sources is an important problem in felds such as

radar, sonar, and communication systems. Traditional approaches often rely on the eigen-
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values of the covariance matrix, which limits their performance. These methods will fail

in the case where there are multiple targets at the same range bin, because the returns will

all be grouped into one eigenvalue. This paper introduces a deep-learning-based method

that utilizes the covariance information in addition to the eigenvalues to accurately esti-

mate the number of sources. The proposed method achieves excellent results, and works in

situations where typical methods such as the Akike Information Criteria (AIC) estimator,

Minimum Description Length (MDL) estimator, MUltiple Signal Classifcation (MUSIC),

and Minimum Variance Distortionless Response (MVDR) fail. To the best of our knowl-

edge, this is the frst deep learning network applied to the fusion of covariance data and

eigenvalues used to analyze the number of incoming target signals. Specifcally, the con-

tributions of this chapter are:

1. A robust deep learning system that achieves state-of-the-art results and far surpasses

traditional eigenvalue-based methods, which fail in the scenarios examined herein.

2. Fusion of the covariance matrix and the eigenvalues for joint analysis, which pro-

vides the best results.

3. This algorithm works even when the number of receivers and number of pulses in a

coherent processing interval are small.

The contents of this paper are as follows. Sec. 4.3 discusses background information.

Sec. 4.4 outlines the proposed method. Sec. 4.5 details our datasets, and sec. 4.6 discusses

our results. Finally, sec. 4.7 provides conclusions and lists future work.
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4.3 Background
4.3.1 Previous Work

The novel work presented in this study was infuenced by fndings in prior development

of a source number estimation technique for radar signals. The development of a neural

network (NN) based on Radial Basis Function (RBF) was expected to perform more accu-

rately than other current methods, due to the neural networks ability to adapt to the data.

For this study, simulated radar data was created based on the signal model defned in [59]

qX 
x(t) = A(φi)si(t) + n(t), (4.1)

i=1 

where A(φi) is a transformation which projects the signal across the array of receivers, si 

is the raw signal, and n(t) is the noise.

This RBFNN was designed to accept the eigenvalues as inputs to the network, such that

the network could be compared to other methods that rely on eigenspace decomoposition.

The eiegenvalues were extracted from the simulated data, which was designed such that

0-3 targets existed in the same range bin, for various test cases.

DOA estimation in radar signal processing occurs individually for each range bin con-

taining detections. Because range-based detections do not indicate the number of targets

in individual range bins, the number of sources in a single range bin must be estimated

for many DOA algorithms. Because of the nature of multiple targets existing in the same

range bin, the signals do not behave as desired when performing eigenanalysis, which is

typically used as the preferred method to estimate the number of sources. Each target sig-

nal is a refection of the transmitted pulse with a phase ramp across the receivers, relative

38



to differences in distance from the target to each receiver. Signals in the same range bin are

aligned in phase if the effect of the phase ramp is not considered. Because the receivers in

radar systems have very small element spacing, the phase ramp on the signal is similarly

small. Thus, signals refected by each target differ marginally from one another and act

as one signal- the equivalent of two sinusoids equal in phase and frequency. When eige-

nanalysis is performed on the simulated data, the signals for each target do not associate

with separate eigenvalues. Instead, the largest eigenvalue is approximately the sum of the

power of all signals and the noise variance.

After testing the RBFNN with the specifc variants of radar data, it was then discovered

that strictly-eigenvalue-based methods are insuffcient to fnd the number of targets in a

single radar range bin. As such, the motivation to design an approach to estimate the

number of targets that does not solely rely on eigenvalue analysis was begun.

4.3.2 Nomenclature

Table 4.1 gives the mathematical symbols used herein.

4.3.3 Conventional source estimation methods

In radar signal processing, estimating the number of signals present in noisy data is a

complex problem that has been extensively studied. It is often advantageous for the radar to

know how many sources are present in a signal, in order to facilitate better target detection

and tracking. Many angle of arrival (AOA) estimation algorithms such as MUltiple SIgnal

Classifcation (MUSIC) [49], Estimation of Signal Parameters by Rotational Invariance

Techniques (ESPRIT) [45], and the Maximum Likelihood Estimator (MLE) (especially
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Table 4.1: Mathematical Symbols and Notations
Variable Description
xm Receive data vector for m-th pulse
X Receive data matrix
RXX Covariance matrix
RXX (m, n) Covariance matrix m,n entry
λi Covariance matrix i-th eigenvalue
K Number of rows and columns in covariance matrix
P Number of pulses (independent realizations)
M Number of receiver channels
T True number of targets present
T̂ Estimated number of targets present
Δx Array element spacing (meters)
φk Azimuth angle of k-th target
nm Noise in the m-th receive channel
N Number of azimuth angles in MVDR FOV sweep
δ Diagonal loading for MVDR

the effcient implementation [65]) have been proposed to address this problem. These

techniques are called superresolution techniques because they can localize more accurately

than the Rayleigh Resolution [56].

However, MLE requires prior estimates of the number of sources. MUSIC, like MLE,

has to make a parameter sweep, and its computational complexity grows exponentially with

dimension. Moreover, these superresolution techniques require extensive computations

and are generally not suitable for real-time implementation [17]. Furthermore, algorithms

like MUSIC and ESPRIT can become unstable when the number of receiver channels are

small [33]. MUSIC is also susceptible to poor performance when the source signals are

coherent [36, 41], which is the case in this paper.
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The MVDR algorithm is both a beamformer and a superresolution AOA estimator.

The MVDR can be utilized to both estimate angles of arrival and to estimate the number of

sources, as long as the sources are separated adequately. Using MVDR as a AOA estimator

or a number of sources estimator requires a parameter sweep across the radar’s feld of view

(FOV). The MVDR response with a diagonal load added to the signal covariance matrix

[56] is

1 
MV DR (θ) = −1 (4.2)

vH (θ) (RXX + δI) v (θ) 

where δ is a small positive diagonal loading constant, which is used to help poorly-conditioned

covariance matrices; θ is an azimuth angle that takes on values θ ∈ {θ1, θ2, · · · , θN }, where

N are the number of points in the FOV sweep; and v (θ) is the array manifold vector for

the steering angle θ [56]. Moreover, it is still an open problem in radar to determine the

optimal diagonal loading parameter. This is typically done empirically. TheN theta values

for the FOV are called the pseudo-spectrum. The pseudo-spectrum is evaluated by utilizing

a peak fnding algorithm. The system must set some threshold for peaks, since noise with

no targets can also cause peaks in the MVDR pseudo-spectrum. The peak locations give

information about the signal strength and the target AOA relative to the radar.

Two disadvantages of this approach are that the numerator requires a [1 × M ] by

[M × M ] by [M × 1] matrix multiplication and a division for each azimuth value in the

FOV sweep, and a matrix inverse operation is required. The [M × M ] matrix inverse can

be pre-computed prior to the FOV sweep loop and can be implemented using Lower-Upper
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(LU) decomposition, singular value decomposition, Cholesky decomposition, or QR de-

composition [2]. Because a matrix inverse is required, enough data samples must be avail-

able or the inversion will be inaccurate (or a larger diagonal load will be required, which

will reduce the MVDR sensitivity).

Arguably the most common method for estimating the number of signals is the AIC

[4]. Rissanen points out that the AIC yields inconsistent estimates, and in radar, often

overestimates the number of signals [44]. To eliminate this behavior, he developed the

MDL estimator. However, the MDL can underestimate the signal subspace, especially

when the samples are small [43]. Both AIC and MDL utilize the covariance eigenvalues

to estimate the data dimensionality. Radoi et al. [43] utilized analysis of the covariance

matrix eigenvalues to more accurately estimate the number of signals present. They devel-

oped a discriminant function that estimates both the dimensionality of the signal and noise

subspaces, and combine these two discriminants into one estimator.

The covariance matrix eigenvalues are a complicated function of the signal strength,

distance between the signals, and the relative locations of the signals. The lower-valued

eigenvalues are generally associated with the noise, at least for high signal-to-noise ratios

(SNRs). With lower SNRs, the noise eigenvalues start taking on higher and higher lev-

els, and will eventually become virtually indistinguishable from the eigenvalues associated

with the signal subspace. Methods that only use the eigenvalues as inputs lose a signifcant

amount of signal information. There is another major issues with these methods when the

number of receiver channels is small: the receive array has a large Rayleigh resolution

[56], and multiple sources tend to blend together. The eigenvalue-based methods break
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down in these cases. Moreover, when there is one signal transmitted and the targets are in

the same range bin, the return information is mostly contained in the frst eigenvalue of the

covariance matrix. Therefore, these eigenvalue-based methods will fail in this case, and

alternate methods are needed.

4.3.4 Shallow Neural Networks

Neural networks (NNs) are loosely meant to mimic neurons in the brain. In a typical

shallow NN, each neuron has a number of inputs which are multiplied by weights and a

bias term is added to this sum. Then the activation function is usually a non-linear function

of the weighted inputs plus the bias. Multiple layers allows the NN to learn any complex

function of the inputs, provided enough neurons are present and there are at least two

layers [13]. NN are typically trained by backpropagation, which adjusts each weight in

the network according to the error criterion in the training function. Many authors have

developed NN approaches to AOA estimation in radar [30, 38, 60, 52, ?, 18, 17, 50, 8, 47,

48, 10, 31, 64, 58, 19, 33, 23, 41, 37, 3]. However, to the best of our knowledge, no one

has published a NN to estimate the number of sources. Herein, we briefy review some of

these papers.

El Zoohgby et al. in Ref. [16] utilized the covariance matrix and a radial basis func-

tion (RBF) NN to estimate the angles of arrival of multiple radar signals. The covariance

matrix contains detailed information about the incoming data signals. Du et al. [14] exam-

ines several NN architectures for antenna array signal processing: multilayer perceptrons,

Hopfeld networks, radial-basis function NN (RBFNN), PCA-based NN, and Fuzzy NN. It
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is relatively straightforward to implement a Hopfeld network in hardware, and the fuzzy

NN can achieve faster convergence with a smaller network size.

Amari and Cichocki [5] examine adaptive blind signal processing using NN, with one

goal for the algorithm to work when the number of sources is unknown. They employed

a fully-connected recurrent NN and provided a list of ten open questions in the feld. Sev-

eral papers noted that RBFNN outperforms MUSIC in accuracy and speed [8, 16, 15]. El

Zooghby [17] utilized a RBFNN for multiple source tracking in a smart antenna applica-

tion. Lo et al. used a RBFNN for AOA estimation and found it performed better than

MUSIC [38]. Tan et al. utilize a RBFNN to approximate an inverse function of the non-

linear mixing mapping and developed a contrast function to embed inside a RBFNN [54].

Solazzi et al. [51] developed a spline NN to address blind source separation. They utilized

this network to analyze speech data. All of these networks are not appropriate for radar

data because the data is complex. Complex NN have been studied for about 15 years now

[25, 26], but there is little published on radar processing using a complex NN.

Matsuoka et al. [39] put forth a NN and a learning algorithm for blind separation of

nonstationary signals. Kim and Ling utilized a network with multiple steered beams to

generate features used to track humans [33]. They frst perform digital beamforming to

generate 12 beams, and the AOA estimation utilizes the beam return power as a feature

vector for a multi-beam monopulse method. Ofek et al. designed a 2D AOA RBFNN esti-

mator by restricting subnetworks to small sectors, then performing analysis in the sectors

[41].
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Agatonovic et al. [3] designed a NN to estimate azimuth and elevation AOA for a 2D

space division multiple access communications array. The NN can learn and account for

array mutual coupling and measurement imperfections to some extent when trained with

measured data. Chang et al. implemented a NN MVDR beamformer using a Hopfeld-type

NN [11]. They converted the complex-valued constrained MVDR quadratic programming

problem into a real-valued problem which the NN can handle.

Shieh and Lin [50] wanted a lower cost (computationally) solution to AOA estimation

than MUSIC and MLE. They developed a self-constructing neural fuzzy inference network

(SONFIN), which automatically determines an economical network size. The network uses

sets of phase differences as inputs, and the internal nodes implement a fuzzy logic system.

Their system estimates one AOA, and is not suitable for multi-AOA problems.

Southall et al. utilize a multi-layer RBFNN to estimate AOA for one target [52]. The

proposed algorithm performed better than a competing NN. This system is limited to esti-

mating one AOA.

4.3.5 Deep learning

Deep learning has gained much attention in the research communities due to signifcant

performance gains of many deep learning systems over more standard (hand-crafted) fea-

ture systems (the so-called “shallow” systems). Although there is no hard-and-fast rule for

what constitutes a shallow versus a deep network, most researchers would agree networks

of 5–10 or more layers are considered deep. Deep networks can learn very complicated

features and decision boundaries from the training data, and can also learn hierarchical fea-
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tures. Deep networks are typically composed of many thin (not tall) layers, while standard

shallow neural networks are usually composed of few layers, and each layer can be very

tall (have a large number of neurons).

Shallow neural nets (of at least depth two), if given enough neurons, can approximate

any function to any desired accuracy [13]. Deep networks can also approximate any func-

tion, but they don’t generally require networks that are as tall as a shallow network would

have to be.

Grais et al. utilized a deep (fve layer) NN where the initial estimates were generated

using non-negative matrix factorization. Their system identifed the data source (source

one or source two) in speech processing [22]. Vesperini et al. put forth a deep learning sys-

tem that could handle multiple rooms and static and moving sound sources [57]. Although

these are not applications with radar signals, they do show that a deep learning system can

perform AOA analysis.

4.4 Proposed Method

The proposed method utilizes a deep NN whose inputs are the real and imaginary

portions of the covariance estimate, as well as the covariance eigenvalues. The network

optimally fuses these inputs to provide a robust solution to estimating the number of input

signals. To the best of our knowledge, this research is the frst to apply a deep NN to

analyze of the number of radar signals.

4.4.1 Signal Model

Herein, the following complex–valued radar signal model is utilized:
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" 
T � �#X f 

xm = ak exp −j2π Δxm sin (φk) + nm (4.3)
c 

k=1 

√ 
where j = −1, xm is the complex received signal at them–th receiver, T is the number of

sources, ak is the amplitude of the k–th source, φk is the azimuth angle of the k–th source

(in radians), Δx is the element spacing in meters, f is the radar frequency in Hz, c is the

speed of light in meters/second, and nm is IID complex white Gaussian noise associated

with the m–th receive channel (and is independent across channels). When there are no

sources, the summation will have value zero. The radar collects P pulses. The data from

pulse p is stored in the [K × 1] complex vector xp = [x1, x2, · · · , xK ]
T and the data from

all P pulses is stored in the [K × P ] receiver data matrix X = [x1, x2, · · · , xp]. The targets

are Swerling 1 targets, with signal-to-noise ratios (SNRs) ranging from -10 to 20 dB.

4.4.2 Radar parameters

The radar is a notional uniform linear array operating at f = 5.0 GHz with element

spacing Δx = λ/2. There are M = 10 receivers in the array, and this value was chosen

to present a small array (in order to challenge the algorithms). The number of pulses per

coherent processing interval is P = 10, which was also chosen to be a smaller number of

pulses in order to evaluate the proposed method with a smaller number of pulses.

4.4.3 Proposed deep learning network

Herein, a deep learning method is utilized which requires very few neurons and pro-

vides robust results. For a 10-channel receiver, there will be 210 inputs to the network.
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The network consists of three sets of fully-connected layers followed by the parametric

rectifed linear units (PReLUs) [24] and batch normalization layers. Then a dropout layer

is inserted to help mitigate overftting. Next, there is another set of fully-connected layers

followed by PReLU and a batch normalization layer, followed by softmax and classifer

layers. The deep learning architecture is described in table 4.2 below.

Table 4.2: Proposed deep network architectures. NW 1 is the proposed network.

Layer Type Size

1 FC 210

2 PReLU 210

3 BN 210

4 FC 210

5 PReLU 210

6 BN 210

7 FC 210

8 PReLU 210

9 BN 210

10 DR 50%

11 FC 4

12 PReLU 4

13 BN 4
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⎪⎪⎪
⎪⎪⎪

Table 4.2: (continued)

Layer Type Size

14 SM 4

15 CL 1

Note: FC = Fully Connected, PReLU = Parametric ReLU, BN = Batch Normalization,
DR = Dropout, SM = Softmax, CL = Classifer, NW = Network.

By utilizing the PReLU, performance is increased over a standard rectifed linear unit

(ReLU). The PReLU allows information to fow from when the input is negative, whereas

a Rectifed Linear Unit (ReLU) does not. The PReLU has the following transfer function

⎧ ⎪⎨x x ≥ 0 
f (x) = , (4.4)⎪⎩−αx x < 0 

where α is a parameter learned by the network. It allows negative activations to pass,

whereas a standard ReLU kills any negative input by forcing it to zero.

The fully connected layers compute a dot product of the input values with the neuron

weights and add a bias term. The weights are randomly initialized as zero-mean Gaussians

with variance 0.01 and the biases are initialized as zero. The batch normalization layers

provide a means to normalize the data (force the distribution towards a zero mean, unit

variance Gaussian) in order to allow the network to be deep [28]. The softmax layer in

conjunction with the classifcation layer learns a distribution to estimate the number of
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sources [9]. All layer coeffcient weights are learned using stochastic gradient descent

with momentum [9].

4.4.4 Data analysis

In order to estimate the number of sources, a combination of the estimates of the co-

variance matrix itself and the covariance matrix eigenvalues is used herein. For each case

analyzed, the [K × K] covariance data matrix is estimated using

RXX =
1 
XXH , (4.5)

M 

where the superscript H represent the Hermitian matrix transpose operator and X is the

[K × P ] receiver data matrix. Several possibilities for inputs to the proposed system were

examined: (1) covariance matrix (split into real and imaginary portions), (2) eigenvalues

of covariance matrix, (3) covariance matrix (split into real and imaginary portions) plus

eigenvalues.

Figures 4.1, 4.2, and 4.3 show PDFs of the frst three eigenvalues (where the eigenval-

ues are sorted in descending order) for zero, one, two and three targets, respectively. From

fgure 4.1 and 4.2, it is clear that the frst eigenvalue contains a mixture of all of the tar-

gets plus noise. The second eigenvalue has some separability from the one, two and three

target cases. It is noted that there is not clear indication of how many targets are present

from eigenvalues 2 or 3. This is why methods such as AIC, MDL, etc. that depend on the

eigenvalues will be useless in these cases and unable to estimate the number of refections.
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Figure 4.1: Eigenvalue PDF plot of frst eigenvalue.

Figure 4.2: Eigenvalue PDF plot of second eigenvalue.
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Figure 4.3: Eigenvalue PDF plot of third eigenvalue.
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Herein, the covariance matrix is unrolled to produce a [2K2 × 1] feature vector as fol-

lows:

⎤⎡ 

fR = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

real {RXX (1, 1)} 

real {RXX (2, 1)} 

...

real {RXX (K, 1)} 

...

real {RXX (K, K)} 

imag {RXX (1, 1)} 

imag {RXX (2, 1)} 

...

imag {RXX (K, 1)} 

...

imag {RXX (K, K)} 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

(4.6)

.

Note that rounding errors and using a fnite number of samples can cause the covariance

matrix estimate to have small imaginary entries. The eigenvalues are computed using the

Singular Value Decomposition (SVD) [7] as follows from the covariance matrix:

RXX = USUH , (4.7)
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where S is the diagonal singular–value matrix whose diagonals are the covariance matrix

eigenvalues: S = diag (λ1, λ2, · · · , λK ), where λ1 ≥ λ2 ≥ · · · ≥ λK . The eigenvalue

features are placed in the [K × 1] feature vector as follows

fλ = [λ1, λ2, · · · , λK ]
T . (4.8)

The fnal data feature is the [(2K2 + K) × 1] vector given by

⎤⎡ 

f = 
⎢⎢⎢⎣ 

fR ⎥⎥⎥⎦ . (4.9)

fλ 

4.4.5 Proposed algorithm description

The proposed algorithm, shown below in Algorithm 1, uses the complex [M × P ] re-

ceiver data matrix and estimates the number of sources present. This algorithm is designed

for the hard case of potential multiple targets in one range bin.

4.5 Data sets

Simulated data are utilized to test the proposed method and to compare to traditional

methods. Table 4.3 shows the various test cases utilized. In Table 4.3, rand [A, B] means

random values are selected in the range A ≤ x ≤ B and A : B means all integer values

are selected from {A, A + 1, · · · , B}. In Table reftable:Experiments, the SNR values are

per–pulse values.
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ALGORITHM 1
Estimate number of targets.

Input: X, [M × P ] receiver complex data matrix.
Output: T̂  , estimate of number of sources.

Extract feature vector :
1: Compute the covariance matrix using eq. 4.5.
2: Compute eigenvalues using 4.7.
3: Compute the covariance feature vector using eq. 4.6.
4: Compute the eigenvalue feature using eq. 4.8.
5: Create the fnal feature vector using eq. 4.9.

Estimate the number of sources :
6: Evaluate feature vector with network.

ˆ7: return T 

In each test case, there are zero to three targets present. For no targets present, the

signal is IID complex white Gaussian noise. When there is one or more signals present,

the target angles are randomly selected using a uniform PDF covering the radar’s FOV.

For this work, FOV ranges from −60◦ to 60◦ . When multiple targets are present, any two

targets are restricted to not to be closer to each other than Δφ = 0.5◦ , since the radar

would not be able to distinguish target this close together. The target signals are added to

the receiver noise, which is IID complex white Gaussian noise.

Test case 1 has all targets at 10 dB SNR. Taking test case 2 as an example, for training,

there are 20,000 cases for no targets, 20,000 cases for one target, 20,000 cases for two

targets, and 20,000 cases for three targets, for a total of 80,000 cases. For those training

cases with at least one target, the the frst target will have 10 dB SNR, and when there

are multiple targets, the target SNRs are randomly chosen from 0 to 20 dB SNR. This is

designed to see if the proposed method can handle a large dynamic range.
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Test case 3 trains all targets at 5 dB SNR, and in testing, multiple targets are randomly

chosen from 0 to 20 dB SNR. Test case 4 trains and tests the frst target at 5 dB SNR,

then others randomly in a similar way. So cases 1,2 and 3,4 are designed to see if random

training or fxed SNR training is more effective. Case 5 trains and tests all targets with

random SNRs from 0 to 10 dB. Case 6 trains all targets at 10 dB SNR and tests with one

target at 5 dB SNR, and two or three targets at 10, 11, · · · 20 dB SNR. Finally test case 7

trains all targets at 5 dB SNR, and tests all targets with randomly selected SNRs from -10

to 10 dB.

The SNR in dB is calculated as 10log10 of the ratio of signal power to noise power. The

noise is independent and identically distributed white Gaussian thermal noise.

Table 4.3: Experimental cases.

Case Training Testing

1

0: 20,000

1: 20,000 @ 10dB

2: 20,000 @ 10dB

3: 20,000 @ 10dB

Total: 80,000

0: 20,000

1: 20,000 @ 10dB

2: 20,000 @ 10dB

3: 20,000 @ 10dB

Total: 80,000
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Table 4.3: (continued)

Case Training Testing

0: 20,000 0: 20,000

1: 20,000 @ 10dB 1: 20,000 @ 10 dB

2 2: 20,000 @ Rand[0,20] 2: 20,000 @ Rand[0,20]

3: 20,000 @ Rand[0,20] 3: 20,000 @ Rand[0,20]

Total: 80,000 Total: 80,000

0: 20,000 0: 20,000

1: 20,000 @ 5 dB 1: 20,000 @ 5 dB

3 2: 20,000 @ 5 dB 2: 20,000 @ Rand[0,20] dB

3: 20,000 @ 5 dB 3: 20,000 @ Rand[0,20] dB

Total: 80,000 Total: 80,000

0: 20,000 0: 20,000

1: 20,000 @ 5 dB 1: 20,000 @ 5 dB

4 2: 20,000 @ Rand[0,20] dB 2: 20,000 @ Rand[0,20] dB

3: 20,000 @ Rand[0,20] dB 3: 20,000 @ Rand[0,20] dB

Total: 80,000 Total: 80,000
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Table 4.3: (continued)

Case Training Testing

0: 20,000 0: 20,000

1: 20,000 @ Rand[0,10] dB 1: 20,000 @ Rand[0,10] dB

5 2: 20,000 @ Rand[0,10] dB 2: 20,000 @ Rand[0,10] dB

3: 20,000 @ Rand[0,10] dB 3: 20,000 @ Rand[0,10] dB

Total: 80,000 Total: 80,000

0: 22,000 0: 22,000

1: 22,000 @ 10 dB 1: 22,000 @ 5 dB

6 2: 22,000 @ 10 dB 2: 22,000 @ 10:20 dB

3: 22,000 @ 10 dB 3: 22,000 @ 10:20 dB

Total: 88,000 Total: 88,000

0: 20,000 0: 20,000

1: 20,000 @ 5 dB 1: 20,000 @ Rand[-10,10] dB

7 2: 20,000 @ 5 dB 2: 20,000 @ Rand[-10,10] dB

3: 20,000 @ 5 dB 3: 20,000 @ Rand[-10,10] dB

Total: 80,000 Total: 80,000
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4.6 Results and Discussion

Herein, as discussed above, synthesized radar returns from the same range bin are

utilized in this study. Returns from different range bins can be processed separately (and

similarly for range/Doppler processing). Thus restricting the returns to lie in the same

range bin (but different azimuths) is a hard and challenging problem. Moreover, all the

eigenvalue-based methods, such as AIC, MDL, Radoi’s, etc. will fail here, since all of the

target returns look exactly the same, except for their return amplitudes and the phase ramp

across the array due to their azimuth location. So all of these methods are unsuitable for

this application. To compare results, the proposed method is compared to MVDR. MVDR

can analyze radar returns using a parameter sweep. The results are shown as confusion

matrices, and also summarized in terms of the overall accuracy, the percentage of correct

entries, underestimates and overestimates.

4.6.1 Training Parameters

Table 4.4 shows the training parameters used for the networks. Cases 5, 6 and 7 are

more diffcult so they utilized a larger learning rate and more epochs. A larger batch

size was also utilized for better mini-batch variance estimates in these cases. In all cases,

stochastic gradient descent with momentum [9] and a smallL2 regularization of 0.0001 was

used for backpropagation. Some of the tests cases are easier (e.g. the network converges

more quickly) than others, so the number of training times and epochs were empirically

adjusted. The hardest cases (5–7) also utilized larger mini-batch sizes.
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Table 4.4: Training parameters.

Case
Learning

Rate
Momentum

Max.
Epochs

Mini-batch
Size

1 0.02 0.92 2 500
2 0.01 0.92 2 500
3 0.01 0.92 2 500
4 0.01 0.92 4 500
5 0.10 0.92 20 2,000
6 0.10 0.92 20 2,000
7 0.15 0.92 70 2,000

4.6.2 Test Case Analysis

Table 4.6 shows the confusion matrix and table 4.7 shows the overall results for case

1, respectively. From these tables, the network makes no mistakes with no targets or one

target, and has a slight tendency to overestimate the targets. Table 4.6 can be interpreted

as follows: The correct entries are across the diagonals, and the true number of targets are

listed across the frst row. When there are two targets, 19,816 were correctly identifed as

two targets, and 184 were mistaken for three targets. These mistakes can happen due to

noise and overlapping distributions of the covariance matrix, and due to the interactions

caused by target amplitude and location variations.

The results for the MVDR were not even comparable. Table 4.5 shows the confusion

matrix for MVDR for case 1. The reason these results are poor are that the MVDR is really

not able to discern multiple targets due to the small number of receivers, which has a very

large Rayleigh resolution [56]. The results would improve and the MVDR would be able

to resolve better with a larger number of receiver elements. Figure 4.4 shows two cases
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of the MVDR response (normalized and plotted in dB), for two 10 dB targets located at

azimuths φ1 = 25◦ and φ2 = 28◦ . The noise level is 0 dB. In fgure 4.4a, the MVDR

estimate (plotted in dB) is shown for a 10-element receiver, and the response is plotted

in fgure 4.4b for a 41-element receiver. It is clear that MVDR is unable to discern the

two targets clearly in the 10-element receiver case. Hereafter, cases present considerably

harder results, and the MVDR results do not improve, so only the proposed method will be

evaluated.

Table 4.5: MVDR Case 1 test confusion matrix.
0 1 2 3

0 20,000 2,052 16,758 18,246
1 0 17,942 3,237 1,753
2 0 5 5 1
3 0 0 0 0

Table 4.6: Proposed Method Case 1 test confusion matrix.
0 1 2 3

0 20,000 0 0 0
1 0 20,000 0 0
2 0 0 19,816 4
3 0 0 184 19,916

The results for test case 2 are shown in Tables 4.8 and 4.9. Case 2 shows that there

were many errors between the two and three target cases, and that the testing data overall

accuracies were much lower than those of the training data, indicating that the network was
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(a) MVDR response with 10 receiver elements.

(b) MVDR response with 41 receiver elements.
Figure 4.4: MVDR plots (dB, normalized).

Note: Targets are 10 dB located at 25 and 28 degrees azimuth. The red lines indicate the
true target locations. (a) 10-channel receiver. (b) 41-channel receiver.
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Table 4.7: Proposed Method Case 1 overall results.
Case 1 Train Test

Overall Accuracy (%) 99.769 99.765
Underestimated (%) 0.001 0.005
Overestimated(%) 0.230 0.230

over-trained. The results from test case 3 are listed in Tables 4.10 and 4.11. These results

show that the network performed better when trained with a lower SNR target 1 (in case 3,

this was 5 dB; in case 2, 10 dB).

Test case 4 was designed to see if using random SNR levels for the second and third

targets versus constant levels would improve the results from case 3. This is clearly the

case, as shown in Tables 4.12 and 4.13.

Test case 5, whose performance is summarized in 4.14 and 4.15 restricts the targets to

10 dB, and shows excellent results. Figure 4.5 shows a 2D histogram of the errors in test

case 5, where the two dimensions are the second and third target SNR, respectively. The

errors in this case are concentrated mostly at the lowest SNR values, as would be expected.

Test case 6 examines results by training all targets at 10 dB SNR, and varying the test

case with a 5 dB SNR frst target, and second and thirds targets varying from 10 to 20 dB

SNR. The results are excellent, as shown in Tables 4.16 and 4.17.

Finally, in test case 7, the test scenario varies all three test targets randomly from -10

to 10 dB SNR, while the training is the same as test case 3, with all 5 dB SNR targets.

The algorithm still performs very well, even with the low SNR values, as shown in Tables

4.18 and 4.19. Figure 4.6 shows a 2D histogram of the errors in test case 7, where the two

dimensions are the second and third target SNR, respectively. As expected, the errors are
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much lower towards the upper right of the fgure, where the second and third target SNRs

are higher, and increases in the bottom left, where the SNRs are both at their lowest values.

Table 4.8: Proposed Method Case 2 test confusion matrix.
0 1 2 3

0 20,000 0 0 0
1 0 20,000 5,401 937
2 0 0 6,585 4,321
3 0 0 8,014 14,742

Table 4.9: Proposed Method Case 2 overall results.
Case 2 Train Test

Overall Accuracy (%) 99.981 76.659
Underestimated (%) 0.000 13.324
Overestimated(%) 0.019 10.018

Table 4.10: Proposed Method Case 3 test confusion matrix.
0 1 2 3

0 20,000 0 0 0
1 0 19,999 1,118 7
2 0 1 5,851 913
3 0 0 13,031 19,080
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Table 4.11: Proposed Method Case 3 overall results.
Case 3 Train Test

Overall Accuracy (%) 99.954 81.163
Underestimated (%) 0.019 2.548
Overestimated(%) 0.028 16.290

Table 4.12: Proposed Method Case 4 test confusion matrix.
0 1 2 3

0 20,000 0 0 0
1 0 19,994 555 2
2 0 6 17,400 4,913
3 0 0 2,045 15,084

Table 4.13: Proposed Method Case 4 overall results.
Case 4 Train Test

Overall Accuracy (%) 91.203 90.597
Underestimated (%) 6.545 6.839
Overestimated(%) 2.252 2.564

Table 4.14: Proposed Method Case 5 test confusion matrix.
0 1 2 3

0 20,000 0 0 0
1 0 19,865 422 4
2 0 135 18,352 2,414
3 0 0 1,226 17,582

Table 4.15: Proposed Method Case 5 overall results.
Case 5 Train Test

Overall Accuracy (%) 95.539 94.749
Underestimated (%) 3.076 3.550
Overestimated(%) 1.385 1.701
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Figure 4.5: 2D histogram of errors in case 5. Best viewed in color.

Table 4.16: Proposed Method Case 6 test confusion matrix.
0 1 2 3

0 20,000 0 0 0
1 0 21,999 300 2
2 0 1 21,684 411
3 0 0 16 21,587

Table 4.17: Proposed Method Case 6 overall results.
Case 6 Train Test

Overall Accuracy (%) 99.294 99.170
Underestimated (%) 0.699 0.810
Overestimated(%) 0.007 0.019

Table 4.18: Proposed Method Case 7 test confusion matrix.
0 1 2 3

0 20,000 0 0 0
1 0 19,557 1,306 38
2 0 443 14,710 5,126
3 0 0 3,984 14,836
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Table 4.19: Proposed Method Case 7 overall results.
Case 1 Train Test

Overall Accuracy (%) 89.230 86.379
Underestimated (%) 6.689 8.088
Overestimated(%) 4.081 5.534

Figure 4.6: 2D histogram of errors in case 7. Best viewed in color.

4.6.3 Architectural Trade–offs

One question to be answered is “how deep of a network is required?” To assess this,

the number of network layers was varied. Table 4.20 show the different confgurations.

Table 4.21 shows the training and testing results for data case 6 for the four networks

shown in table 4.20. From Table 4.21, the proposed network provided the best results. As

the number of layers was reduced, so was the performance of the network. Comparing

network 1 (the proposed network) to network 4 (which has no dropout), the results were

signifcantly lower for network 4. This indicates that the dropout forced network 1 to train

more robustly [53].
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Table 4.20: Deep network architectures. NW 1 is the proposed network.

NW 1 NW 2 NW 3 NW 4

Num Layers 15 12 9 14

1 FC FC FC FC

2 PReLU PReLU PReLU PReLU

3 BN BN BN BN

4 FC FC DR FC

5 PReLU PReLU FC PReLU

6 BN BN PReLU BN

7 FC DR BN FC

8 PReLU FC SM PReLU

9 BN PReLU CL BN

10 DR BN - FC

11 FC SM - PReLU

12 PReLU CL - BN

13 BN - - SM

14 SM - - CL

15 CL - - -
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Table 4.20: (continued)

Note: FC = Fully Connected, PReLU = Parametric ReLU, BN = Batch Normalization,
DR = Dropout, SM = Softmax, CL = Classifer, NW = Network.

Table 4.21: Architectural results on data for Case 6.
NW 1 NW 2 NW 3 NW 4

Train
Acc (%)

99.294 97.758 84.409 96.988

Test
Acc (%)

99.170 97.715 84.165 96.697

Note: NW = Network. The networks are defned in Table 4.20.
The best results are in bold.

Another question to be answered is “how will the network perform with only the co-

variance matrix or eigenvalues as inputs?” In order to address this question, the network

was modifed for (1) the covariance matrix only (input vector size of 100), and (2) eigen-

values only (input vector size of 10). The results are shown in Table 4.22. From this table,

it is clear that the eigenvalues are basically useful for separating the cases of noise only

from the case of one or more targets. Moreover, the best results occur when the covariance

matrix plus the eigenvalues are used. This justifes using both of these inputs.

4.7 Conclusion

Standard solutions for estimating the number of sources, such as MVDR, MUSIC, AIC

and MDL all fail in cases where the signals present do not spread into multiple eigenvalues

of the data covariance matrix. However, the eigenvalues do contain information that can be
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Table 4.22: Comparison of results for case 6 with different input combinations.
Inputs
(dim)

EIG
(10)

COV
(200)

COV+EIG
(210)

Train Test Train Test Train Test
OA (%) 60.649 60.555 99.157 98.982 99.294 99.170
UE (%) 18.608 18.684 0.787 0.936 0.699 0.810
OE (%) 20.743 20.761 0.056 0.082 0.007 0.019

Note: COV = Covariance matrix only (split into real and imaginary), EIG = eigenvalues
only, COV + EIG = Covariance matrix plus eigenvalues. OA = Overall Accuracy, UE =

Underestimated, OE = Overestimated. Best results in bold.

used to estimate the number of sources. Moreover, combining eigenvalues and covariance

matrix data and utilizing a deep network allows very robust estimation of the number of

sources, even when all of the sources are at the same range bin. The proposed deep learn-

ing system which fuses the covariance matrix and eigenvalues was found to accurately

estimate the number of sources, even when the number of receiver channels is small and

the number of pulses is also modest. The optimal network depth was found to be 15 layers,

and the system could estimate very closely–spaced (in azimuth) and very small (in terms of

SNR) targets (down to -10 dB). This is an important contribution, because signal-subspace

methods such as MUSIC and MLE require apriori estimates of the number of sources.

Also, the proposed method does not require matrix inversion (or adding diagonal loading

to make the covariance matrix better conditioned, and thus artifcially infating the noise

foor).

The proposed method worked well, even at low SNR values. There could be potential

electronic countermeasure (ECM) applications, such as detecting how many low power

radars are operating in an area. There is also potential for non–radar applications, such as
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modifying the method to not only estimate the number of sources, but also to estimate the

relative SNRs of the different sources. This would require adding additional NN regression

modules. This approach could have many applications in wireless communications,such

as estimating the number of radios talking simultaneously on a channel.

Future work includes (1) analyzing the network in the presence of receiver alignment

errors, phase and amplitude mismatches, (2) extending the results to wide-bandwidth sig-

nals, and (3) investigating denoising techniques (denoise the inputs before using the net-

work), (4) extending the work to also estimate the AOA of the sources, (5) extending the

solution from a uniform linear array to a 2D array, and (6) utilizing a complex–valued NN

to process the data.
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CHAPTER V

CONCLUSIONS

5.1 Conclusions

Array signal processing techniques which are prominent in the literature hold a strong

bias towards uniform array geometries and narrowband signals. Though current research

is being done to expand DOA processing techniques for arbitrary arrays and wideband

signals, there still exist areas lacking complete and robust solutions for DOA estimation.

Chapter III highlighted some of the pitfalls with existing techniques for DOA estima-

tion on conformal arrays for wideband acoustic signals, which included lack of methods

designed for such an application. It was further explored if sub array geometries could be

utilized to expand the algorithms available, though this study was inconclusive.

Chapter IV exposed a problematic area for number of source estimations in a radar

application where all targets exist in the same range bin. To the best of my knowledge,

there have been no solutions developed to account for this situation. Thus, a deep NN

approach was developed to handle this particular case and has shown promising results for

future usage.

This thesis exposes lacking areas in the feld of direction of arrival estimation as well

as provides building blocks to begin flling those gaps. While a novel DOA estimation

technique was not developed, a method to estimate the number of sources was. This ap-
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proach shows promising results which will enable algorithms that need this estimate to

have improved accuracies.

5.2 For Further Research

Because of the additional complexities that wideband acoustic signals introduce over

narrowband radar signals, clearly the next step is extending the deep learning approach for

number of source detections into the acoustic realm. On the same note, because estimating

the number of sources is a precursor to estimating an angle or direction of arrival, extending

the number of source estimation technique to DOA methods which are based on this a priori

knowledge will yield a signifcant contribution to the feld.
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