6 research outputs found

    Generalized Kernel-based Visual Tracking

    Full text link
    In this work we generalize the plain MS trackers and attempt to overcome standard mean shift trackers' two limitations. It is well known that modeling and maintaining a representation of a target object is an important component of a successful visual tracker. However, little work has been done on building a robust template model for kernel-based MS tracking. In contrast to building a template from a single frame, we train a robust object representation model from a large amount of data. Tracking is viewed as a binary classification problem, and a discriminative classification rule is learned to distinguish between the object and background. We adopt a support vector machine (SVM) for training. The tracker is then implemented by maximizing the classification score. An iterative optimization scheme very similar to MS is derived for this purpose.Comment: 12 page

    Generalized Kernel-Based Visual Tracking

    Get PDF
    Kernel-based mean shift (MS) trackers have proven to be a promising alternative to stochastic particle filtering trackers. Despite its popularity, MS trackers have two fundamental drawbacks: 1) the template model can only be built from a single image, and 2) it is difficult to adaptively update the template model. In this paper, we generalize the plain MS trackers and attempt to overcome these two limitations. It is well known that modeling and maintaining a representation of a target object is an important component of a successful visual tracker. However, little work has been done on building a robust template model for kernel-based MS tracking. In contrast to building a template from a single frame, we train a robust object representation model from a large amount of data. Tracking is viewed as a binary classification problem, and a discriminative classification rule is learned to distinguish between the object and background. We adopt a support vector machine for training. The tracker is then implemented by maximizing the classification score. An iterative optimization scheme very similar to MS is derived for this purpose. Compared with the plain MS tracker, it is now much easier to incorporate online template adaptation to cope with inherent changes during the course of tracking. To this end, a sophisticated online support vector machine is used. We demonstrate successful localization and tracking on various data sets

    Non-sparse Linear Representations for Visual Tracking with Online Reservoir Metric Learning

    Get PDF
    Most sparse linear representation-based trackers need to solve a computationally expensive L1-regularized optimization problem. To address this problem, we propose a visual tracker based on non-sparse linear representations, which admit an efficient closed-form solution without sacrificing accuracy. Moreover, in order to capture the correlation information between different feature dimensions, we learn a Mahalanobis distance metric in an online fashion and incorporate the learned metric into the optimization problem for obtaining the linear representation. We show that online metric learning using proximity comparison significantly improves the robustness of the tracking, especially on those sequences exhibiting drastic appearance changes. Furthermore, in order to prevent the unbounded growth in the number of training samples for the metric learning, we design a time-weighted reservoir sampling method to maintain and update limited-sized foreground and background sample buffers for balancing sample diversity and adaptability. Experimental results on challenging videos demonstrate the effectiveness and robustness of the proposed tracker.Comment: Appearing in IEEE Conf. Computer Vision and Pattern Recognition, 201

    An evolutionary particle filter with the immune genetic algorithm for intelligent video target tracking

    Get PDF
    AbstractParticle filter algorithm is widely used for target tracking using video sequences, which is of great importance for intelligent surveillance applications. However, there is still much room for improvement, e.g. the so-called “sample impoverishment”. It is brought by re-sampling which aims to avoid particle degradation, and thus becomes the inherent shortcoming of the particle filter. In order to solve the problem of sample impoverishment, increase the number of meaningful particles and ensure the diversity of the particle set, an evolutionary particle filter with the immune genetic algorithm (IGA) for target tracking is proposed by adding IGA in front of the re-sampling process to increase particle diversity. Particles are regarded as the antibodies of the immune system, and the state of target being tracked is regarded as the external invading antigen. With the crossover and mutation process, the immune system produces a large number of new antibodies (particles), and thus the new particles can better approximate the true state by exploiting new areas. Regulatory mechanisms of antibodies, such as promotion and suppression, ensure the diversity of the particle set. In the proposed algorithm, the particle set optimized by IGA can better express the true state of the target, and the number of meaningful particles can be increased significantly. The effectiveness and robustness of the proposed particle filter are verified by target tracking experiments. Simulation results show that the proposed particle filter is better than the standard one in particle diversity and efficiency. The proposed algorithm can easily be extended to multiple objects tracking problems with occlusions

    Incremental learning of 3D-DCT compact representations for robust visual tracking

    Get PDF
    Visual tracking usually requires an object appearance model that is robust to changing illumination, pose and other factors encountered in video. Many recent trackers utilize appearance samples in previous frames to form the bases upon which the object appearance model is built. This approach has the following limitations: (a) the bases are data driven, so they can be easily corrupted; and (b) it is difficult to robustly update the bases in challenging situations. In this paper, we construct an appearance model using the 3D discrete cosine transform (3D-DCT). The 3D-DCT is based on a set of cosine basis functions, which are determined by the dimensions of the 3D signal and thus independent of the input video data. In addition, the 3D-DCT can generate a compact energy spectrum whose high-frequency coefficients are sparse if the appearance samples are similar. By discarding these high-frequency coefficients, we simultaneously obtain a compact 3D-DCT based object representation and a signal reconstruction-based similarity measure (reflecting the information loss from signal reconstruction). To efficiently update the object representation, we propose an incremental 3D-DCT algorithm, which decomposes the 3D-DCT into successive operations of the 2D discrete cosine transform (2D-DCT) and 1D discrete cosine transform (1D-DCT) on the input video data. As a result, the incremental 3D-DCT algorithm only needs to compute the 2D-DCT for newly added frames as well as the 1D-DCT along the third dimension, which significantly reduces the computational complexity. Based on this incremental 3D-DCT algorithm, we design a discriminative criterion to evaluate the likelihood of a test sample belonging to the foreground object. We then embed the discriminative criterion into a particle filtering framework for object state inference over time. Experimental results demonstrate the effectiveness and robustness of the proposed tracker.Xi Li, Anthony Dick, Chunhua Shen, Anton van den Hengel, and Hanzi Wan

    A Stochastic Resampling Based Selective Particle Filter for Robust Visual Object Tracking

    Get PDF
    In this work, a new variant of particle filter has been proposed. In visual object tracking, particle filters have been used popularly because they are compatible with system non-linearity and non-Gaussian posterior distribution. But the main problem in particle filtering is sample degeneracy. To solve this problem, a new variant of particle filter has been proposed. The resampling algorithm used in this proposed particle filter is derived by combining systematic resampling, which is commonly used in SIR-PF (Sampling Importance Resampling Particle Filter) and a modified bat algorithm; this resampling algorithm reduces sample degeneracy as well as sample impoverishments. The measurement model is modified to handle clutter in presence of varying background. A new motion dynamics model is proposed which further reduces the chance of sample degeneracy among the particles by adaptively shifting mean of the process noise. To deal with illumination fluctuation and object deformation in presence of complete occlusion, a template update algorithm has also been proposed. This template update algorithm can update template even when the difference in the spread of the color-histogram is especially large over time. The proposed tracker has been tested against many challenging conditions and found to be robust against clutter, illumination change, scale change, fast object movement, motion blur, and complete occlusion; it has been found that the proposed algorithm outperforms the SIR-PF (Sampling Importance Resampling Particle Filter), bat algorithm and some other state-of-the-art tracking algorithms
    corecore