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Generalized Kernel-Based Visual Tracking
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Abstract—Kernel-based mean shift (MS) trackers have proven
to be a promising alternative to stochastic particle filtering track-
ers. Despite its popularity, MS trackers have two fundamental
drawbacks: 1) the template model can only be built from a single
image, and 2) it is difficult to adaptively update the template
model. In this paper, we generalize the plain MS trackers and
attempt to overcome these two limitations. It is well known that
modeling and maintaining a representation of a target object is
an important component of a successful visual tracker. However,
little work has been done on building a robust template model
for kernel-based MS tracking. In contrast to building a template
from a single frame, we train a robust object representation
model from a large amount of data. Tracking is viewed as a
binary classification problem, and a discriminative classification
rule is learned to distinguish between the object and background.
We adopt a support vector machine for training. The tracker
is then implemented by maximizing the classification score. An
iterative optimization scheme very similar to MS is derived for
this purpose. Compared with the plain MS tracker, it is now
much easier to incorporate online template adaptation to cope
with inherent changes during the course of tracking. To this
end, a sophisticated online support vector machine is used. We
demonstrate successful localization and tracking on various data
sets.

Index Terms—Global mode seeking, kernel-based tracking,
mean shift, particle filter, support vector machine.

I. Introduction

V ISUAL localization/tracking plays a central role for
many applications like intelligent video surveillance,

smart transportation monitoring systems, etc. Localization and
tracking algorithms aim to find the most similar region to the
target in an image. Recently, kernel-based tracking algorithms
[1]–[3] have attracted much attention as an alternative to
particle filtering trackers [4]–[6]. One of the most crucial dif-
ficulties in robust tracking is the construction of representation
models (likelihood models in Bayesian filtering trackers) that
can accommodate illumination variations, deformable appear-
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ance changes, partial occlusions, etc. Most current tracking
algorithms use a single static template image to construct a
target representation based on density models. For both kernel-
based trackers and particle filtering trackers, a popular method
is to exploit color distributions in simple regions (region-wise
density models). Generally, semi-parametric kernel density
estimation techniques are adopted. However, it is difficult
to update this target model [1], [2], [4], [7], and the target
representation’s fragility usually breaks these trackers over a
long image sequence.

Considerable effort has been expended to ease these diffi-
culties. We believe that the key to finding a solution is to find
the right representation. In order to accommodate appearance
changes, the representation model should be learned from
as many training examples as possible. Fundamentally two
methods, namely online and offline learning, can be used
for the training procedure. Online learning means constantly
updating the representation model during the course of track-
ing. Lim et al. [8] proposed an incremental eigenvector
update strategy to adapt the target representation model. A
linear probabilistic principal component analysis model is
used. The main disadvantage of the eigen-model is that it
is not generic and is usually only suitable for characteriz-
ing texture-rich objects. In [9], a wavelet model is updated
using the expectation maximization algorithm. A classifica-
tion function is progressively learned using AdaBoost for
visual detection and tracking in [10] and [11], respectively.
Han and Davis [12] adopted pixel-wise Gaussian mixture
models to represent the target model and sequentially up-
dated them. To date, however, less work has been reported
on how to elegantly update region-wise density models in
tracking.

In contrast, classification1 is a powerful bottom-up pro-
cedure: it is trained offline and works online. Due to the
training being typically built on very large amounts of train-
ing data, its performance is fairly promising even without
online updating of the classifier/detector. Inspired by image
classification tasks with color density features and real-time
detection, we learn offline a density representation model
from multiple training data. By considering tracking as a
binary classification problem, a discriminative classification
rule is learned to distinguish between the tracked object
and background patterns. In this way, a robust object repre-
sentation model is obtained. This proposal provides a basis
for considering the design of enhanced kernel-based trackers
using robust kernel object representations. A by-product of
the training is the classification function, with which the

1Object detection is typically a classification problem.
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Fig. 1. Examples of the initial position (dashed line) and the final convergence position (solid line). Squared dots show the optimization convergence
trajectory. The image size in all tests is 320 × 211. The object size is 60 × 50 for the first example and 35 × 25 for the other two. The bars under every test
image indicate the SVM score at each gradient-ascent iteration. The SVM score change is: (a) initial: −1.41, final: 2.77; (b) initial: −0.86, final: 1.41; and
(c) initial: −1.04, final: 1.62.

tracking problem is cast into a binary classification problem.
An object detector directly using the classification function is
then available. Combining a detector into the tracker makes
the tracker more robust and provides the capabilities of au-
tomatic initialization and recovery from momentary tracking
failures.

In theory, many classifiers can be used to achieve our
goal. In this paper, we show that the popular kernel-based
nonlinear support vector machine (SVM) well fits the kernel-
based tracking framework. Within this framework the tradi-
tional kernel object trackers proposed in [1] and [13] can
be expressed as special cases. Because we use probabilistic
density features, the learning process is closely related to
probabilistic kernels-based SVMs [14]–[17]. It is imperative to
minimize computational costs for real-time applications, such
as tracking. A desirable property of the proposed algorithm is
that the computational complexity is independent of the num-
ber of support vectors. Furthermore, we empirically demon-
strate that our algorithm requires fewer iterations to achieve
convergence.

Our approach differs from [18] although both use the SVM
classification score as the cost function. In [18], Avidan builds
a tracker along the line of standard optical flow tracking. Only
the homogeneous quadratic polynomial kernel (or kernels with
a similar quadratic structure) can be used in order to derive a
closed-form solution. This restriction prevents one from using
a more appropriate kernel obtained by model selection. An
advantage of [18] is that it can be used consistently with the
optical flow tracking, albeit only gray pixel information can be
used. Moreover, the optimization procedure of our approach
is inspired by the kernel-based object tracking paradigm [1].
Hence extended work such as [2] is also applicable here, which
enables us to find the global optimum. If joint spatial-feature
density is used to train an SVM, a fixed-point optimization
method may also be derived that is similar to [13]. The clas-
sification function of the SVM trained for vehicle recognition
is not smooth mis-registration (see Fig. 1 in [19]). We employ
a spatial kernel to smooth the cost function when computing
the histogram feature. In this way, gradient-based optimization
methods can be used. Using statistical learning theory, we
devise an object tracker that is consistent with mean shift
(MS) tracking. The MS tracker is initially derived from kernel

density estimation (KDE). Our work sheds some light on the
connection between SVM and KDE.2

Another important part of our tracker is its online re-
training in parallel with tracking. Continuous updating of
the representation model can capture changes of the target
appearance/backgrounds. Previous work such as [8], [9], [11],
and [12] has demonstrated the importance of this online update
during the course of tracking. The incremental SVM technique
meets this end [22]–[25], which efficiently updates a trained
SVM function whenever a sample is added to or removed
from the training set. For our proposed tracking framework,
the target model can be learned in either batch SVM training
or online SVM learning. We adopt a sophisticated online SVM
learning proposed in [24] for its efficiency and simplicity.
We address the crucial problem of adaptation, i.e., the online
learning of discriminant appearance model while avoiding
drift.

The main contributions of our work are to solve MS
trackers’ two drawbacks: the template model can only be built
from a single image; and it is difficult to update the model. The
solution is to extend the use of statistical learning algorithms
for object localization and tracking. SVM has been used for
tracking by means of spatial perturbation of the SVM [18].
We exploit SVM for tracking in a novel way (along the line
of MS tracking). The key ingredients of our approach are as
follows.

1) Probabilistic kernel-based SVMs are trained and incor-
porated into the framework of MS tracking. By carefully
selecting the kernel, we show that no extra computation
is required compared with the conventional single-view
MS tracking.

2) An online SVM can be used to adaptively update the
target model. We demonstrate the benefit of online target
model update.

3) We show that the annealed MS algorithm proposed in
[2] can be viewed as a special case of the continuation
method under an appropriate interpretation. With the
new interpretation, annealed MS can be extended to

2It is believed that statistical learning theory (SVM and many other kernel
learning methods) can be interpreted in the framework of information theoretic
learning [20], [21].
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more general cases. Extension and new discovers are
discussed. An efficient localizer is built with global
mode seeking techniques.

4) Again, by exploiting the SVM binary classifier, it is
able to determine the scale of the target. An improved
annealed MS-like algorithm with a cascade architecture
is developed. It enables a more systematic and easier
design of the annealing schedule, in contrast with ad
hoc methods in previous work [2].

The remainder of this paper is organized as follows. In
Section II, the general theory of MS tracking and SVM is
reviewed for completeness. Our proposed tracker is presented
in Section III. Finally, experimental results are reported in
Section IV. We conclude this paper in Section V.

II. Preliminaries

For self-completeness, we review mean shift tracking, sup-
port vector machine, and its online learning version in this
section.

A. Mean Shift (MS) Tracking

Mean shift tracking was first presented in [1]. In MS
tracking, the object is represented by a square region which
is cropped and normalized into a unit circle. By denoting
q as the color histogram of the target model, and p(c) as
the target candidate color histogram with the center at c, the
similarity function between q and p(c) is (when Bhattacharyya
divergence [1] is used)

dist(q, p(c)) =
√

1 − �(q, p).

Here �(q, p) =
√

qT √
p is the dissimilarity measurement. Let

{I�}n�=1 be a region’s pixel positions in image I with the center
at c. In order to make the cost function smooth—otherwise
gradient-based MS optimization cannot be applied—a kernel
with profile k(·) is employed to assign smaller weights to those
pixels farther from the center, considering the fact that the
peripheral pixels are less reliable. An m-bin color histogram
is built for an image patch located at c, q(c) = {qu(c)}mu=1,
where

qu = λ

n∑
�=1

k
(∥∥∥c − I�

h

∥∥∥2)
δ(ϑ(I�) − u). (1)

Here k(·) is the homogeneous spatial weighting kernel profile
and h is its bandwidth. δ(·) is the delta function and λ

normalizes q. The function ϑ(I�) maps a feature of I� into
a histogram bin u. c is the kernel center; and for the target
model usually c = 0. The representation of candidate p takes
the same form.

Given an initial position c0, the problem of localiza-
tion/tracking is to estimate a best displacement �c such that
the measurement p(c0 + �c) at the new location best matches
the target q, i.e.,

�c� = argmin�cdist(q, p(c0 + �c)).

By Taylor expanding dist(q, p(c)) at the start position c0 and
keeping only the linear item (first-order Taylor approximation),

the above optimization problem can be resolved by an iterative
procedure

c[τ+1] =

∑n
�=1 I�w̃�g(‖ c[τ]−I�

h
‖2)∑n

�=1 w̃�g(‖ c[τ]−I�

h
‖2)

(2)

where g(·) = −k′(·) and the superscript τ = 0, 1, 2 . . .,
indexes the iteration step. The weights w̃� are calculated as
w̃� =

∑m
u=1

√
qu

pu(c0)δ(ϑ(I�) − u). See [1] for details.

B. Support Vector Machines

We limit our explanation of the support vector machine
classifiers algorithm to an overview.

Large margin classifiers have demonstrated their advantages
in many vision tasks. SVM is one of the popular large margin
classifiers [26] which has a very promising generalization
capacity.

The linear SVM is the best understood and simplest to
apply. However, linear separability is a rather strict condition.
Kernels are combined into margins for relaxing this restric-
tion. SVM is extended to deal with linearly nonseparable
problems by mapping the training data from the input space
into a high-dimensional, possibly infinite-dimensional, feature
space, i.e., 	(·) : χ → F . Using the kernel trick, the map
	(·) is not necessarily known explicitly. Like other kernel
methods, SVM constructs a symmetric and positive definite
kernel matrix (Gram matrix) which represents the similarities
between all training datum points. Given N training data
{(xi, yi)}Ni=1, the kernel matrix is written as: Kij ≡ K(xi, xj) =〈
	(xi), 	(xj)

〉
, i, j = 1, . . . , N. When Kij is large, the labels

of xi and xj , yi and yj are expected to be the same. Here,
yi, yj ∈ {+1, −1}. The decision rule is given by sign (f (x))
with

f (x) =
NS∑
i=1

βiK(x̂i, x) + b (3)

where x̂i ∈ χ, i = 1, . . . , NS are support vectors, NS is the
number of support vectors, βi is the weight associated with
x̂i, and b is the bias.

The training process of SVM then determines the parame-
ters {x̂i, βi, b, NS} by solving the optimization problem

minimize
1

2
‖ω‖r

r + C

N∑
i=1

ξi

subject to yi(ω
T 	(xi) + b) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i (4)

where ξ = {ξi}Ni=1 is the slack variable set and the regularization
parameter C determines the trade-off between SVM’s gener-
alization capability and training error. r = 1, 2 corresponds to
1-norm and 2-norm SVM, respectively. The solution takes the
form ω =

∑N
i=1 yiαi	(xi). Here, αi ≥ 0 and most of them are

0, yielding sparseness. The optimization (4) can be efficiently
solved by linear programming (1-norm SVM) or quadratic
programming (2-norm SVM) in its dual. Refer to [26] for
details.
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C. Online Learning with Kernels

A simple online kernel-based algorithm, termed NORMA,
has been proposed for a variety of standard machine learning
tasks in [24]. The algorithm is computationally cheap at each
update step. We have implemented NORMA here for online
SVM learning. See Fig. 1 in [24] for the backbone of the
algorithm. We omit the details due to space constraint.

As mentioned, visual tracking is naturally a time-varying
problem. An online learning method allows updating the
model during the course of tracking.

III. Generalized Kernel-Based Tracking

The standard kernel-based MS tracker is generalized by
maximizing a sophisticated cost function defined by SVM.

A. Probability Product Kernels

Measuring the similarity between images and image patches
is of central importance in computer vision. In SVMs, the
kernel K(·, ·) plays this role. Most commonly used kernels
such as Gaussian and polynomial kernels are not defined on the
space of probability distributions. Recently various probabilis-
tic kernels have been introduced, including the Fisher kernel
[14], TOP [15], Kullback–Leibler kernel [16], and probability
product kernels (PPK) [17] to combine generative models
into discriminative classifiers. A probabilistic kernel is defined
by first fitting a probabilistic model p(xi) to each training
vector xi. The kernel is then a measure of similarity between
probability distributions. PPK is an example [17], with kernel
given by

K�
ρ(q(x), p(x)) =

∫
χ

q(x)ρp(x)ρdx (5)

where ρ is a constant. When ρ = 1
2 , PPK reduces to a special

case, termed the Bhattacharyya kernel

K�
1
2
(q(x), p(x)) =

∫
χ

√
q(x)

√
p(x) dx. (6)

In the case of discrete histograms, i.e., q(x) = [q1 · · · qm]T

and p(x) = [p1 · · · pm]T , (6) becomes

K�
1
2
(q(x), p(x)) =

√
q(x)

T √
p(x) =

m∑
u=1

√
qupu. (7)

When ρ = 1, K�
1(·, ·) computes the expectation of one

distribution over the other, and hence is termed the expected
likelihood kernel [17]. In [27], its corresponding statistical
affinity is used as similarity measurement for tracking.

The Bhattacharyya kernel is adopted in this paper due to
the following reasons.

1) The standard MS tracker [1] uses the Bhattacharyya
distance. It is clearer to show the connection between
the proposed tracker and the standard MS tracker by
using Bhattacharyya kernel.

2) It has been empirically shown, at least for image
classification, that the generalization capability of ex-
pected likelihood kernel K�

1(·, ·) is weaker than the

Bhattacharyya kernel. Meanwhile, nonlinear probabilis-
tic kernels including Bhattacharyya kernel, Kullback-
Leibler kernel, Rényi kernel, etc., perform similarly [28].
Moreover, Bhattacharyya kernel is simple and has no
kernel parameter to tune.

The PPK has an interesting characteristic that the mapping
function 	(·) is explicitly known: 	(q(x)) = q(x)ρ. This
is equivalent to directly setting x = q(x)ρ and the kernel
K�

ρ(xi, xj) = x	
i xj . Consequently for discrete PPK-based

SVMs, in the test phase the computational complexity is
independent of the number of support vectors. This is easily
verified. The decision function is

f (x) =
NS∑
i=1

βi

[
q(xi)

ρ
]T

p(x)ρ + b =

[
NS∑
i=1

βiq(xi)
ρ

]T

p(x)ρ + b.

The first term in the bracket can be calculated beforehand.
For example, for histogram-based image classification like
[29], given a test image x, the histogram vector p(x) is
immediately available. In fact, we can interpret discrete PPK-
based SVMs as linear SVMs in which the input vectors
are q(xi)ρ—the features nonlinearly3 extracted from image
densities. Again, one might argue that, since the Bhattacharyya
kernel is very similar to the linear SVM, it might not have
the same power in modeling complex classification bound-
aries as the traditional nonlinear kernels like the Gaussian
or polynomial kernel. The experiments in [28] indicate that
the classification performance of a probabilistic kernel which
consists of an exponential calculation is not clearly better:
exponential kernels like the Kullback–Leibler kernel and Rényi
kernel perform similarly as Bhattacharyya kernel on various
datasets for image classification. Moreover our main purpose
is to learn a representation model for visual tracking. Unlike
other image classification tasks—in which high generalization
accuracy is demanded—for visual tracking achieving very high
accuracy might not be necessary and may not translate to a
significant increase in tracking performance.

Note that PPKs are less compelling when the input data are
vectors with no further structure. However, even the Gaussian
kernel is a special case of PPK (ρ = 1 in (5) and p(x) is a
single Gaussian fit to xi by maximum likelihood) [17].

By contrast, the reduced set method is applied in [18] to
reduce the number of support vectors for speeding up the
classification phase. Applications which favor fast computation
in the testing phase, such as large scale image retrieval, might
also benefit from this discrete PPK’s property.

B. Decision Score Maximization

It is well known that the magnitude of the SVM score
|f (x)| measures the confidence in the prediction. The proposed
tracking is based on the assumption that the local maximum
of the SVM score corresponds to the target location we seek,
starting from an initial guess close to the target.

If the local maximum is positive, the tracker accepts the
candidate. Otherwise an exhaustive search or localization

3When ρ = 1, it is linear. The nonlinear probabilistic kernels induce
a transformed feature space (as the Bhattacharyya kernel does) to smooth
density such that they significantly improve classification over the linear kernel
[28].
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process will start. The tracked position at time t is the initial
guess of the next frame t + 1 and so forth. We now show how
the local maximum of the decision score is determined.

As in [1], a histogram representation of the image region
can be computed as (1).

With (3), (7), and (1), we have4

f (c) =
NS∑
i=1

βi

m∑
u=1

√
qi,upu(c) + b. (8)

We assume the search for the new target location starts
from a near position c0, and then a Taylor expansion of
the kernel around pu(c0) is applied, similar to [1]. After
some manipulations and putting those terms independent of
c together, denoted by �, (8) becomes

f (c) =
1

2

NS∑
i=1

βi

m∑
u=1

pu(c)
√

qi,u

pu(c0)
+ �

=
λ

2

NS∑
i=1

βi

n∑
�=1

wi,�k
(∥∥∥c − I�

h

∥∥∥2)
+ �

=
λ

2

n∑
�=1

ŵ�k
(∥∥∥c − I�

h

∥∥∥2)
+ � (9)

where

wi,� =
m∑

u=1

√
qi,u

pu(c0)
δ(ϑ(I�) − u) (10)

and

ŵ� =
NS∑
i=1

βiwi,� =
m∑

u=1

[∑NS

i=1 βi
√

qi,u

]
√

pu(c0)
δ(ϑ(I� − u)). (11)

Here (9) is obtained by swapping the order of summation.
The first term of f (c) is the weighted kernel density estimate
with kernel profile k(·) at c. It is clear now that our cost
function f (c) has an identical format as the standard MS
tracker.

Can we simply set ∇cf (c) = 0 which leads to a fixed-point
iteration procedure to maximize f (c) as the standard MS does?
If it works, the optimization would be similar to (2).

Unfortunately, ∇cf (c) = 0 cannot guarantee a local max-
imum convergence. This means that the fixed point iteration
(2) can converge to a local minimum. We know that only
when all the weights ŵ� are positive, (2) converges to a local
maximum—as the standard MS does. See the Appendix for
the theoretical analysis.

However, in our case, a negative support vector’s weight βi

is negative, which means some of the weights computed by
(11) could be negative. The traditional MS algorithm requires
that the sample weights must be non-negative. Collins [30]
has discussed the issue on MS with negative weights and
a heuristic modification is given to make MS able to deal

4We have used x to represent the image region. We also use the image center
c to represent the image region x. For clarity, we define notation qi,u ≡ qu(x̂i).

with samples with negative weights. According to [30], the
modified MS is

c[τ+1] =

∑n
�=1 I�ŵ�g(‖ c[τ]−I�

h
‖2)∑n

�=1 |ŵ�g(‖ c[τ]−I�

h
‖2)| . (12)

Here | · | is the absolute value operation. Alas this heuristic
solution is problematic. Note that no theoretical analysis is
given in [30]. We show that the methods in [30] cannot
guarantee converging to a local maximum mode. See the
Appendix for details.

The above problem may be avoided by using 1-class SVMs
[31] in which ŵ� is strictly positive. However the discrimina-
tive power of SVM is also eliminated due to its unsupervised
nature.

In this paper, we use a quasi-Newton gradient descent
algorithm for maximizing f (c) in (9). In particular, the L-
BFGS algorithm [32] is adopted for implementing the quasi-
Newton algorithm. We provide callbacks for calculating the
value of the SVM classification function f (c) and its gradient.
Typically, only few iterations of the optimization procedure
are performed at each frame. It has been shown that Quasi-
Newton can be a better alternative to MS optimization for
visual tracking [33] in terms of accuracy. Quasi-Newton was
also used in [34] for kernel-based template alignment. Besides,
in [2] the authors have shown that Quasi-Newton converges
around twice faster than the standard MS does for data
clustering.

The essence behind the proposed SVM score maximization
strategy is intuitive. The cost function (8) favors both the
dissimilarity to negative training data (e.g., background) and
the similarity to positive training data. Compared to the
standard MS tracking, our strategy provides the capability
to utilize a large amount of training data. The terms with
positive β in the cost function play the role to attract the
target candidate while the negative terms repel the candidate.
In [35], [36] Zhao et al. have extended MS tracking by
introducing a background term to the cost function, i.e.,
f (c) = λf K�

1
2
(q, p(c)) − λbK

�
1
2
(b(c), p(c)). b(·) is the back-

ground color histogram in the corresponding region. It also
linearly combines both positive and negative terms into track-
ing and better performance has been observed. It is simple
and no training procedure is needed. Nevertheless, it lacks
an elegant means to exploit available training data and the
weighting parameters λf and λb need to be tuned manually.5

The original MS tracker’s analysis relies on kernel prop-
erties [1]. We argue that the main purpose of the kernel
weighting scheme is to smooth the cost function such that iter-
ative methods are applicable. Kernel properties then derive an
efficient MS optimization. As observed by many other authors
[33], [37], the kernels used as weighting kernel density estima-
tion [38], [39]. We can simply treat the feature distribution as
a weighted histogram to smooth the cost function and, at the
same time, to account for the nonrigidity of tracked targets.

Note that: 1) the optimization reduces to the standard MS
tracking if NS = 1, and 2) other probability kernels like K�

1(·, ·)
5Zhao et al. [35], [36] did not correctly treat MS iteration with negative

weights, either, because they have used Collins’ modified MS (12).
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are also applicable here. The only difference is that wi,� in (10)
will be in other forms.

In previous content, we have shown that in the testing
phase discrete PPK’s support vectors do not introduce extra
computation. Again, for our tracking strategy, no computation
overhead is introduced compared with the traditional MS
tracking in [1]. This can be seen from (11). The summation in
(11) (the bracketed term) can be computed offline. The only
extra computation resides in the training phase; the proposed
tracking algorithm has the same computation complexity as
the standard MS tracker. It is also straightforward to extend
this tracking framework to spatial-feature space [13] which
has proved more robust.

C. Global Optimum Seeking

A technique is proposed in [2], dubbed annealed mean
shift (AnnealedMS), to reliably find the global density mode.
AnnealedMS is motivated by the observation that the number
of modes of a kernel density estimator with a Gaussian kernel
is monotonically non-increasing with respect to the bandwidth
of the kernel.

Here we re-interpret this global optimization and show that
it is essentially a special case of the continuation approach
[40]. With the new interpretation, it is clear now that this
technique is applicable to a broader type of cost functions,
not necessary to a density function.

The continuation method is one of the unconstrained global
optimization techniques which shares similarities with de-
terministic annealing. A series of gradually deformed but
smoothed cost functions are successively optimized, where the
solution obtained in the previous step serves as an initial point
in the current step. This way the convergence information is
conveyed. With sufficient smoothing, the first cost function
will be concave/convex such that the global optimum can be
found. The algorithm iterates until it traces the solution back to
the original cost function. We now recall some basic concepts
of the continuation method.

Definition 1: [40]. Given a non-linear function f , the
transformation 〈f 〉h for f is defined such that ∀ x

〈f 〉h (x) = Ch

∫
f (x′)k

(∥∥∥x − x′

h

∥∥∥2)
dx′ (13)

where k(·) is a smoothing function; usually the Gaussian
is used. h is a positive scalar which controls the degree
of smoothing. Ch is a normalization constant such that
Ch

∫
k(‖ x

h
‖2)dx = 1.

Note the similarity between the smoothing function k(·) and
the definition of the kernel in KDE. From (13), the defined
transformation is actually the convolution of the cost function
with k(·). In the frequency domain, the frequency response
of 〈f 〉h equals the product of the frequency responses of f

and k. Being a smoothing filter, the effect of k(·) is to remove
high frequency components of the original function. Therefore,
one of the requirements for k(·) is its frequency response must
be a low-pass frequency filter. We know that popular kernels
like Gaussian or Epanechnikov kernel are low-pass frequency
filters. This is one of the principle justifications for using
Gaussian or Epanechnikov to smooth a function. When h is

Fig. 2. Close look at the cost function of the first example in Fig. 1. (a) SVM
score. (b) Bhattacharyya distance of standard mean shift. Note that for the
standard mean shift, the target model is extracted from the same test image;
while for SVM, the target model is learned from a large number of training
images that do not contain the test image.

increased, 〈f 〉h becomes smoother and for h = 0, the function
is the original function.

Theorem 1: The annealed version of mean shift introduced
in [2] for global mode seeking is a special case of the general
continuation method defined in (13).

Proof: Let the original function f (x′) take the form of
a Dirac delta comb (also known as impulse train in signal
processing), i.e, f (x′) =

∑
i δ(x′ − x̂i), where x̂i is known.

With the fundamental property that
∫

F (x)δ(x − x̂)dx = F (x̂)
for any function F (·), we have 〈f 〉h (x) = Ch

∑
i k(‖ x−x̂i

h
‖2).

This is exactly the same as a KDE. This discovers that
AnnealedMS is a special case of the continuation method.
When f (x′) =

∑
i wiδ(x′ − b̂xi) with wi ∈ R (wi can be nega-

tive), the above analysis still holds and this case corresponds
to the SVM score maximization in Section III-B.

It is not a trivial problem to determine the optimal scale
of the spatial kernel bandwidth, i.e., the size of the target,
for kernel-based tracking. A line search method is introduced
in [30]. For AnnealedMS, an important open issue is how to
design the annealing schedule. Armed with an SVM classifier,
it is possible to determine the object’s scale. If only the color
feature is used, due to its lack of spatial information and
insensitive to scale change, it is difficult to estimate a fine scale
of the target. By combining other features, better estimates
are expected. As we will see in the experiments, reasonable
results can be obtained with only color. It is natural to combine
AnnealedMS into a cascade structure, like the cascade detector
of [41]. We start MS search from a large bandwidth h0. After
convergence, an extra verification is applied to decide whether
to terminate the search. If sign(f (I0)) = −1, it means h0 is too
large. Then we need to reduce the bandwidth to h1 and start
MS with the initial location I0. This procedure is repeated until
sign(f (Im)) = +1, m ∈ {0, · · · , M}. hm and Im are the final
scale and position. Little extra computation is needed because
only a decision verification is introduced at each stage.

IV. Experiments

In this section, we implement a localizer and tracker and
discuss related issues. Experimental results on various data
sets are shown.

A. Localization

For the first experiment, we have trained a face representa-
tion model. 404 faces cropped from CalTech-101 are used as
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Fig. 3. Face localization. The final decision is marked with a rectangle. The image size in all tests is 240 × 180. In the first test (a), the proposed cascade
localizer works very well. For the second one (b), the detected scale of the target is slightly big, but acceptable. The SVM scores for the first example are
also plotted (c). The first iteration at each bandwidth is marked with a solid circle.

Fig. 4. Face sequence 1. Tracking results of the proposed tracker (top row);
standard mean shift tracker (middle) and particle filtering (bottom row).
Frames 26, 56, 318, and 432 are shown. The video size is 320 × 240 and the
frame rate is 10 frames per second (f/s).

positive raw images, and 1400 negative images are randomly
cropped from images which do not contain faces. The image
size is reduced to 42 × 56 pixels. Kernel-weighted RGB color
histograms, consisting of 16 × 16 × 16 bins, are extracted
for classification. By default we use a soft SVM trained
with library for support vector machines (LIBSVM) (slightly
modified to use customized kernels). Test accuracy on the
training data is 99.5% (1795/1804); and 91.7% (2752/3000)
on a test data set which contains totally 3000 negative data.
Note that our main purpose is not to train a powerful face
detector; rather, we want to obtain an appearance model that
is more robust than the single-view appearance model. We
now test how well the algorithm maximizes the SVM score.
First, we feed the algorithm a rough initial guess and run MS.
See Fig. 1 for details.

The first example in Fig. 1 comes from the training data set.
The initial SVM score is negative. In this case, a single step
is required to switch to a positive score—it moves closely to
the target after one iteration. We plot the corresponding cost
function in Fig. 2. By comparison, the cost function of the
standard MS is also plotted (the target template is cropped
from the same image). We can clearly see the difference. The
other two test images are from outside of the training data set.
Despite the significant face color difference and variation in
illumination, our SVM localizer works well in both tests. To
compare the robustness, we use the first face as a template to

Fig. 5. Face sequence 2. Tracking results of the proposed tracker (top row);
standard mean shift tracker (middle), and particle filtering (bottom row).
Frames 86, 135, 204, and 512 are shown. The video size is 320 × 240 and
the frame rate is 10 f/s.

track the second face in Fig. 1, the standard MS tracker fails
to converge to the true position.

We now apply the global maximum seeking algorithm to
object localization. In [2], it has been shown that it is possible
to locate a target no matter from which initial position the MS
tracker starts. Here we use the learned classification rule to
determine when to stop searching. We start the annealed con-
tinuation procedure with the initial bandwidth h0 = (42, 56).
Then the bandwidth pyramid works with the rule hm+1 = hm

1.25 ,
m ∈ {0, · · · , M}. M is the maximum number of iterations. We
stop the search when for some m the SVM score is positive
upon convergence. The image center is set to be the initial
position of the search for these two tests. We present the results
in Fig. 3.

In the first test, our proposed algorithm works well; it
successfully finds the face location, and also the final band-
width well fits the target. Fig. 3(c) shows how the SVM
score evolves. It can be seen that every bandwidth change
significantly increases the score. If the target size is large and
there is a significant overlap between the target and a search
region at a coarse bandwidth, hm, the overlap can make the
cascade search stop prematurely (see the second test in Fig. 3).
Again this problem is mainly caused by the color feature’s
weak discriminative power. A remedy is to include more
features. However, for certain applications where the scale-size
is not critically important, our localization results have been
usable. Furthermore, better results could be achieved when we
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Fig. 6. Walker sequence 1. Tracking results of the proposed generalized kernel tracker. Frames 20, 40, 60, 90, 115, and 130 are shown. The video size is
384 × 288 and the frame rate is 25 f/s.

Fig. 7. Walker sequence 2. Tracking results of the proposed generalized kernel tracker. Frames 10, 55, 80, 105, 140, and 183 are shown. The video size and
frame rate are the same as Fig. 6.

Fig. 8. Walker sequence 3. Tracking results of the proposed generalized kernel tracker. Frames 20, 98, 152, 220, 444, and 553 are shown. The video is of
size 352 × 288 and frame rate 30 f/s.

train a model for a specific object (e.g., train an appearance
model for a specific person) with a single color feature.

B. Tracking
Effectiveness of the proposed generalized kernel-based

tracker is tested on a number of video sequences. We have
compared with two popular color histogram-based methods:
the standard MS tracker [1] and particle filters [4].

Unlike the first experiment, we do not train an offline
SVM model for tracking. It is not easy to have a large
amount of training data for a general object; therefore in the
tracking experiment, an online SVM described in Section II-C
is used for training. The user crops several negative data
and positive data for initial training. During the course of
tracking the online SVM updates its model by regarding the
tracked region as a positive example and randomly selecting
a few sub-regions (background area) around the target as
negative examples. A 16 × 16 × 16-binned color histogram
is used for both the generalized kernel tracker and standard
MS tracker. For the particle filter, with 1000 or 800 particles,
the tracker fails at the first few frames. So we have used 1500
particles.

In the first experiment, the tracked person moves quickly.
Hence, the displacement between neighboring frames is large.
The illumination also changes. The background scene is clut-
tered and contains materials with similar color to the target.
The proposed algorithm tracks the whole sequence success-
fully. Fig. 4 summarizes the tracking results. The standard MS
tracker fails at frame #57, recovers at frame #74, and then fails
again. The particle filter also loses the target due to motion
blur and fast movement. Our online adaptive tracker achieves
the most accurate results.

Fig. 9. Cubicle sequence 1. Tracking results of the proposed tracker (top)
and particle filtering (bottom). Frames 16, 30, 41, 45 are shown. The video
is of size 352 × 288 and 30 f/s.

Fig. 5 shows the results on a more challenging video. The
target turns around and at some frames it even moves out of the
view. At frame #194, the target disappears. Generalized kernel
tracker and particle filter recovers at the following frames
while the MS tracker fails. Again we can see the proposed
tracker performs best due to its learned template model and
online adaptivity. When the head turns around, all trackers
can lock the target because compared with the background,
the hair color is more similar to the face color. These two
experiments show the proposed tracker’s robustness to motion
blur, large pose change, and target’s fast movement over the
standard MS tracker and particle filter-based tracker. In the
experiments, to initialize the proposed tracker, we randomly
pick up a few negative samples from the background. We have
found this simple treatment works well.

We present more samples from three more sequences in
Figs. 6–8. We mark only our tracker in these frames. From
Figs. 6 and 7 we see that despite the target moving into
shadow at some frames, our tracker successfully tracks the
target through the whole sequences.
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Fig. 10. �1-norm absolute error (pixels) of the object’s center against the
ground truth on the Cubicle sequence 1. The two figures correspond to x, and
y-axis, respectively. The proposed tracker with online updating gives the best
result. As expected, the proposed tracker without updating shows a similar
performance to the standard MS tracker.

Fig. 11. Cubicle sequence 2. Tracking results of the proposed tracker (top)
and particle filtering (bottom). Frames 9, 55, 60, and 64 are shown. The video
is of size 352 × 288 and frame rate 30 f/s.

TABLE I

Average Tracking Error Against The Ground Truth (Pixels) on

the Cubicle Sequence 1. The Mean and Standard Deviation Are

Reported. We Also Report The Tracking Failure Rates

MS Particle
Filter

Ours (w/o Update) Ours
(Update)

Error 9.6±5.7 10.5 ± 5.8 8.5 ± 4.9 6.5±2.8
FR0.20 44.0% 44.0% 28.0% 6.0%
FR0.25 16.0% 34.0% 14.0% 0.0%

TABLE II

Running Time Per Frame (Seconds). The Stochastic Particle

Filter Tracker Has Run 5 Times and the Standard Deviation Is

Also Reported

Sequence MS Particle Filter Ours
Cubicle 1 0.0156 0.352 ± 0.025 0.0155
Walker 3 0.0169 0.331 ± 0.038 0.0142

TABLE III

Average Tracking Error Against the Ground Truth (Pixels) on

the Cubicle Sequence 2. The Mean and Standard Deviation Are

Reported. We Also Report the Tracking Failure Rates

MS Particle Filter Ours (w/o Update) Ours
(Update)

Error 5.7 ± 3.5 8.4 ± 3.4 5.5 ± 3.2 4.2±2.8
FR0.20 4.6% 15.4% 3.1% 0.0%
FR0.25 0.0% 3.1% 0.0% 0.0%

Fig. 12. �1-norm absolute error (pixels) of the object’s center against the
ground truth on the Walker sequence 3. The two figures correspond to
the x and y-axis, respectively. It clearly shows that the online update of
the generalized kernel tracker is beneficial: without online update, the error
is larger.

We have shown promising tracking results of the proposed
tracker on several video clips. We now present some quanti-
tative comparisons of our algorithm with other trackers.

First, we run the proposed tracker, MS, and particle filter
trackers on the Cubicle sequence 1. In Fig. 9, we show
some tracking frames of our method and particle filtering.
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Compared with particle filtering, ours are much better in terms
of accuracy and much faster in terms of the tracking speed. Our
results are also slightly better than the standard MS tracker.
But visually there is no significant difference, so we have not
included MS results in Fig. 9.

Again, the particle filter tracker uses 1500 particles. We have
run the particle filter five times and the best result is reported.
Fig. 10 shows the absolute deviation of the tracked object’s
center at each frame. Clearly the generalized kernel tracker
demonstrates the best result. We have reported the average
tracking error (the Euclidean distance of the object’s center
against the ground truth) in Table I, which shows the proposed
tracker outperforms MS and particle filter. In Table I, the error
variance estimates are calculated from the tracking results of
all frames regardless of the target is lost or not. We have also
proved the importance of online SVM update. As mentioned,
when we switch off the online update, our proposed tracker
would behave similarly to the standard MS tracker. We see
from Table I that even without updating, the generalized kernel
tracker is slightly better than the standard MS tracker. This
might be because the initialization schemes are different: the
generalized kernel tracker can take multiple positive as well
as negative training examples to learn an appearance model,
while MS can only take a single image for initialization.
Although we only use very few training examples (less than
10), it is already better than the standard MS tracker. In this
sequence, when the target object is occluded, the particle filter
tracker only tracks the visible region such that the deviation
becomes large. Our approach updates the learned appearance
model using online SVM. The region that partially contains
the occlusion is added to the object class database gradually
based on the online update procedure. This way our tracker
tracks the object position close to the ground truth.

We also report the tracking failure rate (FR) for this video,
which is the percentage of the number of failure frames
in the total number of frames. If the distance between the
tracked center and the ground truth’s center is larger than a
threshold, we mark it a failure. We have defined the threshold
as 0.20 or 0.25 of the diagonal length of the ground truth’s
bounding box, which results in two criteria: FR0.20 and FR0.25

respectively. The former is more strict than the latter. As shown
in Table I, our tracker with online update produces lowest
tracking failures under either criterion.

We also compare the running time of trackers, which is an
important issue for real-time tracking applications. Table II
reports the results on two sequences.6 The generalized kernel
tracker (around 65 f/s) is comparable to the standard MS
tracker, and much faster than the particle filter. This coincides
with the theoretical analysis: our generalized kernel tracker’s
computational complexity is independent of the number of
support vectors, so in the test phrase, the complexity is
almost the same as the standard MS. One may argue that the
online update procedure introduces some overhead. But the
generalized kernel tracker employs the L-BFGS optimization

6All algorithms are implemented in ANSI C++. We have made the codes
available at http://code.google.com/p/detect/. A desktop with Intel CoreTM

Duo 2.4-GHz CPU and 2-G RAM is used for running all the experiments.

Fig. 13. With negative weights, the modified mean shift proposed in [30]
may not be able to converge to the local maximum. In this case, it converges
to a position close to a local minimum (not the exact minimum). The standard
mean shift converges to the nearest minimum.

algorithm which is about twice faster than MS, as shown in [2].
Therefore, overall, the generalized kernel tracker runs as fast
as the MS tracker. Because the particle filter is stochastic, we
have run it 5 times and the average and standard deviation are
reported. For our tracker and MS, they are deterministic and
the standard deviation is negligible. Note the computational
complexity if the particle filter tracker is linearly proportional
to the number of particles.

We have run another test on Cubicle sequence 2. We show
some results of our method and particle filtering in Fig. 11.
Although all the methods can track this sequence successfully,
the proposed method achieves most accurate results. We see
that when the tracked object turns around, our algorithm is
still able to track it accurately. Table III summarizes the
quantitative performance. Our method is also slightly better
MS. Again we see that online update does indeed improve
the accuracy. We have also reported the tracking failure rates
on this video. Our tracker with online update has the lowest
tracking failures and the one without online update is the
second best. These results are consistent with the previous
experiments.

To demonstrate the effectiveness of the online SVM learn-
ing, we switch off the online update and run the tracker on the
Walker sequence 3. We plot the �1-norm absolute deviation of
the tracked object’s center in pixels at each frame in Fig. 12.
Apparently, at most frames, online update produces more
accurate tracking results. The average Euclidean tracking error
is 8.0 ± 4.9 pixels with online update and 12.7 ± 5.8 pixels
without online update.

Conclusion that we can draw from these experiments are:
1) the proposed generalized kernel-based tracker performs
better than the standard MS tracker on all the sequences that
we have used, and 2) online learning often improves tracking
accuracy.

V. Conclusion

To summarize, we have proposed a novel approach to kernel
based visual tracking, which performs better than conventional
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single-view kernel trackers [1], [13]. Instead of minimizing
the density distance between the candidate region and the
template, the generalized MS tracker works by maximizing
the SVM classification score. Experiments on localization and
tracking show its efficiency and robustness. In this way, we
show the connection between standard MS tracking and SVM
based tracking. The proposed method provides a generalized
framework to the previous methods.

Future work will focus on the following possible avenues.
1) Other machine learning approaches such as relevance

vector machines (RVM) [42] might be employed to learn
the representation model. Since in the test phrase, RVM
and SVM take the same form, RVM can be directly used
here. RVM achieves comparable recognition accuracy
to the SVM, but requires substantially fewer kernel
functions. It would be interesting to compare different
approaches’ performances.

2) The strategy in this paper can be easily plugged into
a particle filter as an observation model. Improved
tracking results are anticipated than for the simple color
histogram particle filter tracker developed in [4].

Appendix

Generally, Collins’ modified mean shift [30] (12) cannot
guarantee to converge to a local maximum. It is obvious that
a fixed point x∗ obtained by iteration using (12) will not satisfy

∇f (x∗) = 0.

f (·) is the original cost function. Therefore, generally, x∗ will
not even be an extreme point of the original cost function. In
the following example, x∗ obtained by Collins’ modified mean
shift converges to a point which is close to a local minimum,
but not the exact minimum.

In Fig. 13, we give an example on a mixture of Gaussian
kernel which contains some negative weights. In this case, both
the standard MS and Collins’ modified MS fail to converge to
a maximum.
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[4] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, “Color-based probabilis-
tic tracking,” in Proc. Eur. Conf. Comp. Vis., Copenhagen, Denmark,
Lecture Notes in Computer Science 2350, 2002, pp. 661–675.

[5] C. Shen, A. van den Hengel, and A. Dick, “Probabilistic multiple cue
integration for particle filter-based tracking,” in Proc. Int. Conf. Digital
Image Comput. Tech. Appl., Sydney, Australia, 2003, pp. 309–408.

[6] P. Pan and D. Schonfeld, “Dynamic proposal variance and optimal
particle allocation in particle filtering for video tracking,” IEEE Trans.
Circuits Syst. Video Technol., vol. 18, no. 9, pp. 1268–1279, Sep. 2008.

[7] H. Wang, D. Suter, K. Schindler, and C. Shen, “Adaptive object tracking
based on an effective appearance filter,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, no. 9, pp. 1661–1667, Sep. 2007.

[8] J. Lim, D. Ross, R.-S. Lin, and M.-H. Yang, “Incremental learning for
visual tracking,” in Proc. Adv. Neural Inf. Process. Syst., Vancouver, BC,
Canada, vol. 17. Dec. 2004, pp. 801–808.

[9] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi, “Robust online
appearance models for visual tracking,” in Proc. IEEE Conf. Comp.
Vis. Pattern Recognit., vol. 1. Kauai, 2001, pp. 415–422.

[10] O. Javed, S. Ali, and M. Shah, “Online detection and classification of
moving objects using progressively improving detectors,” in Proc. IEEE
Conf. Comp. Vis. Pattern Recognit., vol. 1. San Diego, CA, 2005, pp.
696–701.

[11] S. Avidan, “Ensemble tracking,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 29, no. 2, pp. 261–271, Feb. 2007.

[12] B. Han and L. Davis, “Online density-based appearance modeling for
object tracking,” in Proc. IEEE Int. Conf. Comp. Vis., vol. 2. Beijing,
China, Oct. 2005, pp. 1492–1499.

[13] A. Elgammal, R. Duraiswami, and L. S. Davis, “Probabilistic tracking
in joint feature-spatial spaces,” in Proc. IEEE Conf. Comp. Vis. Pattern
Recognit., vol. 1. Madison, WI, 2003, pp. 781–788.

[14] T. S. Jaakkola and D. Haussler, “Exploiting generative models in
discriminative classifiers,” in Proc. Conf. Adv. Neural Inf. Process. Syst.,
1998, pp. 487–493.

[15] K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.-R. Müller,
“A new discriminative kernel from probabilistic models,” Neural Com-
put., vol. 14, no. 10, pp. 2397–2414, Oct. 2002.

[16] P. J. Moreno, P. Ho, and N. Vasconcelos, “A Kullback–Leibler
divergence-based kernel for SVM classification in multimedia applica-
tions,” in Proc. Adv. Neural Inf. Process. Syst., Vancouver, Canada, 2003.

[17] T. Jebara, R. Kondor, and A. Howard, “Probability product kernels,” J.
Mach. Learn. Res., vol. 5, pp. 819–844, Dec. 2004.

[18] S. Avidan, “Support vector tracking,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, no. 8, pp. 1064–1072, Aug. 2004.

[19] O. Williams, A. Blake, and R. Cipolla, “Sparse Bayesian learning
for efficient visual tracking,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 8, pp. 1292–1304, Aug. 2005.

[20] R. Jenssen, D. Erdogmus, J. C. Principe, and T. Eltoft, “Toward a
unification of information theoretic learning and kernel methods,” in
Proc. IEEE Workshop Mach. Learning Signal Process., Sao Luis, Brazil,
2004, pp. 93–102.

[21] R. Jenssen, D. Erdogmus, J. C. Principe, and T. Eltoft, “The Lapla-
cian PDF distance: A cost function for clustering in a kernel fea-
ture space,” in Proc. Adv. Neural Inf. Process. Syst., vol. 17. 2004,
pp. 625–632.

[22] G. Cauwenberghs and T. Poggio, “Incremental and decremental support
vector machine learning,” in Proc. Adv. Neural Inf. Process. Syst., 2000,
pp. 409–415.

[23] G. Fung and O. L. Mangasarian, “Incremental support vector machine
classification,” in Proc. Soc. Ind. Appl. Math. Int. Conf. Data Mining,
Arlington, VA, 2002.

[24] J. Kivinen, A. Smola, and R. C. Williamson, “Online learning with
kernels,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2165–2176,
Aug. 2004.

[25] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, “Fast kernel classifiers
with online and active learning,” J. Mach. Learn. Res., vol. 6, pp. 1579–
1619, Dec. 2005.

[26] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[27] C. Yang, R. Duraiswami, and L. Davis, “Efficient spatial-feature tracking
via the mean-shift and a new similarity measure,” in Proc. IEEE
Conf. Comp. Vis. Pattern Recognit., vol. 1. San Diego, CA, 2005,
pp. 176–183.

[28] A. B. Chan, N. Vasconcelos, and P. J. Moreno, “A family of probabilistic
kernels based on information divergence,” Dept. Electr. Comput. Eng.,
Univ. California, San Diego, CA, Tech. Rep. SVCL-TR 2004/01, 2004.

[29] O. Chapelle, P. Haffner, and V. Vapnik, “SVMs for histogram-based
image classification,” IEEE Trans. Neural Netw., vol. 10, no. 5,
pp. 1055–1064, 1999.

[30] R. Collins, “Mean-shift blob tracking through scale space,” in Proc.
IEEE Conf. Comp. Vis. Pattern Recognit., vol. 2. Madison, WI, 2003,
pp. 234–240.

[31] B. Schölkopf, J. Platt, J. Shawe-Taylor, and A. Smola, “Estimating the
support of a high-dimensional distribution,” Neural Computation, vol.
13, no. 7, pp. 1443–1471, 2001.

[32] D. C. Liu and J. Nocedal, “On the limited memory method for large
scale optimization,” Math. Programming B, vol. 45, no. 3, pp. 503–528,
Dec. 1989.

[33] T. Liu and H. Chen, “Real-time tracking using trust-region methods,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 3, pp. 397–402,
Mar. 2004.

[34] I. Guskov, “Kernel-based template alignment,” in Proc. IEEE Conf.
Comp. Vis. Pattern. Recognit., vol. 1. New York, 2006, pp. 610–617.



130 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 1, JANUARY 2010

[35] T. Zhao and R. Nevatia, “Tracking multiple humans in crowded envi-
ronment,” in Proc. IEEE Conf. Comp. Vis. Pattern. Recognit., vol. 2.
Washington D.C., 2004, pp. 406–413.

[36] T. Zhao, R. Nevatia, and B. Wu, “Segmentation and tracking of multiple
humans in crowded environments,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 30, no. 7, pp. 1198–1211, Jul. 2008.

[37] M. Dewan and G. D. Hager, “Toward optimal kernel-based tracking,” in
Proc. IEEE Conf. Comp. Vis. Pattern Recognit., vol. 1. New York, Jun.
2006, pp. 618–625.

[38] M. P. Wand and M. C. Jones, Kernel Smoothing. London, U.K.:
Chapman and Hall/CRC Press, 1995.

[39] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 5, pp. 603–619, May 2002.

[40] Z. Wu, “The effective energy transformation scheme as a special con-
tinuation approach to global optimization with application to molecular
conformation,” Soc. Ind. Appl. Math. J. Optimization, vol. 6, no. 3, pp.
748–768, Aug. 1996.

[41] P. A. Viola and M. J. Jones, “Robust real-time face detection,” Int. J.
Comput. Vis., vol. 57, no. 2, pp. 137–154, May 2004.

[42] M. Tipping, “Sparse Bayesian learning and the relevance vector ma-
chine,” J. Mach. Learn. Res., vol. 1, pp. 211–244, Jun. 2001.

Chunhua Shen received the B.S. and M.S. degrees
from Nanjing University, Nanjing, China, in 1999
and 2002, respectively, and the Ph.D. degree from
the University of Adelaide, Adelaide, Australia, in
2006.

He has been working as a Research Scientist with
NICTA, Canberra Research Laboratory, Canberra,
Australia since October 2005. He is also an Adjunct
Research Fellow at Australian National University,
Canberra, Australia and an Adjunct Lecturer at the
University of Adelaide. His research interests in-

clude statistical machine learning and convex optimization, and their applica-
tion in computer vision.

Junae Kim received the B.S. degree from Ewha
Womans University, Seoul, Korea in 2000, the
M.S. degree from the Pohang University of Science
and Technology, Pohang, Korea in 2002, and the
M.Sc. degree from Australian National University,
Canberra, Australia in 2007. She is pursuing the
Ph.D. degree from the Research School of Informa-
tion Sciences and Engineering, Australian National
University.

She is also affiliated with NICTA, Canberra
Research Laboratory, Canberra, Australia. She was

a Researcher at the Electronics and Telecommunications Research Institute,
Daejeon, Korea, for five years before she moved to Australia. Her research
interests include computer vision and machine learning.

Hanzi Wang (M’05–SM’09) received the B.S. de-
gree in physics and the M.S. degree in optics
from Sichuan University, Chengdu, China, in 1996
and 1999, respectively. He received the Ph.D. de-
gree in computer vision from Monash University,
Melbourne, Australia, in 2004.

He is currently a Senior Research Fellow at the
School of Computer Science, University of Ade-
laide, Adelaide, Australia. He is the author of more
than 30 papers in major international journals and
conferences. His current research interests include

computer vision and pattern recognition, including robust statistics, model
fitting, optical flow calculation, visual tracking, image segmentation, funda-
mental matrix estimation, and related fields.


