24 research outputs found

    A Polymatroid Approach to Generalized Weights of Rank Metric Codes

    Get PDF
    We consider the notion of a (q,m)(q,m)-polymatroid, due to Shiromoto, and the more general notion of (q,m)(q,m)-demi-polymatroid, and show how generalized weights can be defined for them. Further, we establish a duality for these weights analogous to Wei duality for generalized Hamming weights of linear codes. The corresponding results of Ravagnani for Delsarte rank metric codes, and Martinez-Penas and Matsumoto for relative generalized rank weights are derived as a consequence.Comment: 22 pages; with minor revisions in the previous versio

    The Weight Hierarchies of Linear Codes from Simplicial Complexes

    Full text link
    The study of the generalized Hamming weight of linear codes is a significant research topic in coding theory as it conveys the structural information of the codes and determines their performance in various applications. However, determining the generalized Hamming weights of linear codes, especially the weight hierarchy, is generally challenging. In this paper, we investigate the generalized Hamming weights of a class of linear code \C over \bF_q, which is constructed from defining sets. These defining sets are either special simplicial complexes or their complements in \bF_q^m. We determine the complete weight hierarchies of these codes by analyzing the maximum or minimum intersection of certain simplicial complexes and all rr-dimensional subspaces of \bF_q^m, where 1\leq r\leq {\rm dim}_{\bF_q}(\C)

    The weight hierarchies and chain condition of a class of codes from varieties over finite fields

    Get PDF
    The generalized Hamming weights of linear codes were first introduced by Wei. These are fundamental parameters related to the minimal overlap structures of the subcodes and very useful in several fields. It was found that the chain condition of a linear code is convenient in studying the generalized Hamming weights of the product codes. In this paper we consider a class of codes defined over some varieties in projective spaces over finite fields, whose generalized Hamming weights can be determined by studying the orbits of subspaces of the projective spaces under the actions of classical groups over finite fields, i.e., the symplectic groups, the unitary groups and orthogonal groups. We give the weight hierarchies and generalized weight spectra of the codes from Hermitian varieties and prove that the codes satisfy the chain condition

    Weight hierarchies of a family of linear codes associated with degenerate quadratic forms

    Full text link
    We restrict a degenerate quadratic form ff over a finite field of odd characteristic to subspaces. Thus, a quotient space related to ff is introduced. Then we get a non-degenerate quadratic form induced by ff over the quotient space. Some related results on the subspaces and quotient space are obtained. Based on this, we solve the weight hierarchies of a family of linear codes related to f.f.Comment: 12 page

    Hamming weights and Betti numbers of Stanley-Reisner rings associated to matroids

    Full text link
    To each linear code over a finite field we associate the matroid of its parity check matrix. We show to what extent one can determine the generalized Hamming weights of the code (or defined for a matroid in general) from various sets of Betti numbers of Stanley-Reisner rings of simplicial complexes associated to the matroid

    Strong Singleton type upper bounds for linear insertion-deletion codes

    Full text link
    The insertion-deletion codes was motivated to correct the synchronization errors. In this paper we prove several Singleton type upper bounds on the insdel distances of linear insertion-deletion codes, based on the generalized Hamming weights and the formation of minimum Hamming weight codewords. Our bound are stronger than some previous known bounds. These upper bounds are valid for any fixed ordering of coordinate positions. We apply these upper bounds to some binary cyclic codes and binary Reed-Muller codes with any coordinate ordering, and some binary Reed-Muller codes and one algebraic-geometric code with certain special coordinate ordering.Comment: 22 pages, references update
    corecore