3 research outputs found

    Generalized Extraction of Real-Time Parameters for Homogeneous Synchronous Dataflow Graphs

    Get PDF
    23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2015). 4 to 6, Mar, 2015. Turku, Finland.Many embedded multi-core systems incorporate both dataflow applications with timing constraints and traditional real-time applications. Applying real-time scheduling techniques on such systems provides real-time guarantees that all running applications will execute safely without violating their deadlines. However, to apply traditional realtime scheduling techniques on such mixed systems, a unified model to represent both types of applications running on the system is required. Several earlier works have addressed this problem and solutions have been proposed that address acyclic graphs, implicit-deadline models or are able to extract timing parameters considering specific scheduling algorithms. In this paper, we present an algorithm for extracting real-time parameters (offsets, deadlines and periods) that are independent of the schedulability analysis, other applications running in the system, and the specific platform. The proposed algorithm: 1) enables applying traditional real-time schedulers and analysis techniques on cyclic or acyclic Homogeneous Synchronous Dataflow (HSDF) applications with periodic sources, 2) captures overlapping iterations, which is a main characteristic of the execution of dataflow applications, 3) provides a method to assign offsets and individual deadlines for HSDF actors, and 4) is compatible with widely used deadline assignment techniques, such as NORM and PURE. The paper proves the correctness of the proposed algorithm through formal proofs and examples

    Integrating dataflow and non-dataflow real-time application models on multi-core platforms

    Get PDF
    Ferry Jules. Facultés des sciences. Rapports sur les travaux personnels des professeurs. In: Bulletin administratif de l'instruction publique. Tome 24 n°465, 1881. pp. 529-531

    Generalized strictly periodic scheduling analysis, resource optimization, and implementation of adaptive streaming applications

    Get PDF
    This thesis focuses on addressing four research problems in designing embedded streaming systems. Embedded streaming systems are those systems thatprocess a stream of input data coming from the environment and generate a stream of output data going into the environment. For many embeddedstreaming systems, the timing is a critical design requirement, in which the correct behavior depends on both the correctness of output data and on the time at which the data is produced. An embedded streaming system subjected to such a timing requirement is called a real-time system. Some examples of real-time embedded streaming systems can be found in various autonomous mobile systems, such as planes, self-driving cars, and drones. To handle the tight timing requirements of such real-time embedded streaming systems, modern embedded systems have been equipped with hardware platforms, the so-called Multi-Processor Systems-on-Chip (MPSoC), that contain multiple processors, memories, interconnections, and other hardware peripherals on a single chip, to benefit from parallel execution. To efficiently exploit the computational capacity of an MPSoC platform, a streaming application which is going to be executed on the MPSoC platform must be expressed primarily in a parallel fashion, i.e., the application is represented as a set of parallel executing and communicating tasks. Then, the main challenge is how to schedule the tasks spatially, i.e., task mapping, and temporally, i.e., task scheduling, on the MPSoC platform such that all timing requirements are satisfied while making efficient utilization of available resources (e.g, processors, memory, energy, etc.) on the platform. Another challenge is how to implement and run the mapped and scheduled application tasks on the MPSoC platform. This thesis proposes several techniques to address the aforementioned two challenges.NWOComputer Systems, Imagery and Medi
    corecore