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Abstract 

Many embedded multi-core systems incorporate both dataflow applications with timing constraints and traditional 

real-time  applications. Applying real-time scheduling techniques on such systems  provides real-time guarantees 

that all running applications will execute safely without violating their deadlines. However, to apply traditional real-

time scheduling techniques on such mixed systems, a unified model to represent both types of applications 

running on the system is required. Several earlier works have addressed this problem and solutions have been 

proposed that address acyclic graphs, implicit-deadline models or are able to extract timing parameters 

considering specific scheduling algorithms.    In this paper, we present an algorithm for extracting real-time 

parameters (offsets, deadlines and periods) that are independent of the schedulability analysis, other applications 

running in the system, and the specific platform. The  proposed algorithm: 1) enables applying traditional real-time 

schedulers and analysis techniques on cyclic or acyclic Homogeneous Synchronous Dataflow (HSDF) applications 

with periodic sources, 2) captures overlapping iterations, which is a main characteristic of  the execution of 

dataflow applications, 3) provides a method to assign offsets and individual deadlines for HSDF actors, and 4) is 

compatible with widely used deadline assignment techniques, such as NORM and PURE. The paper proves the 

correctness of the proposed algorithm through formal proofs and examples. 
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Abstract—Many embedded multi-core systems incorporate
both dataflow applications with timing constraints and traditional
real-time applications. Applying real-time scheduling techniques
on such systems provides real-time guarantees that all running
applications will execute safely without violating their deadlines.
However, to apply traditional real-time scheduling techniques on
such mixed systems, a unified model to represent both types of
applications running on the system is required. Several earlier
works have addressed this problem and solutions have been
proposed that address acyclic graphs, implicit-deadline models
or are able to extract timing parameters considering specific
scheduling algorithms.

In this paper, we present an algorithm for extracting real-time
parameters (offsets, deadlines and periods) that are independent
of the schedulability analysis, other applications running in
the system, and the specific platform. The proposed algorithm:
1) enables applying traditional real-time schedulers and anal-
ysis techniques on cyclic or acyclic Homogeneous Synchronous
Dataflow (HSDF) applications with periodic sources, 2) captures
overlapping iterations, which is a main characteristic of the
execution of dataflow applications, 3) provides a method to assign
offsets and individual deadlines for HSDF actors, and 4) is
compatible with widely used deadline assignment techniques, such
as NORM and PURE. The paper proves the correctness of the
proposed algorithm through formal proofs and examples.

I. INTRODUCTION

Streaming applications are an increasingly important and
widespread category of embedded system applications. Many
streaming applications have high processing requirements and
timing constraints that must be satisfied, e.g., H.264 video
decoders [1]. The high processing requirements are satis-
fied through the adoption of parallelization models, such as
the dataflow model of computation (MoC) [2], that enabled
streaming applications to use massive computational power
[3]. Dataflow applications traditionally use static scheduling
techniques, i.e. Time Division Multiple Access (TDMA) [2],
[4]–[8], however, they have recently been shown to work well
also with real-time scheduling techniques [9]–[12], run-time
budget schedulers [13], [14] and non-starvation-free schedulers
[15].

Future real-time embedded systems incorporate mixed ap-
plication models with timing constraints running on the same
multi-core platform. These application models are dataflow
applications with latency and throughput constraints and tra-
ditional real-time applications modeled as independent tasks.
These future mixed embedded systems, e.g. Automotive and
Unmanned Air Vehicles [16], require real-time guarantees that
all running applications will execute safely without missing
their deadlines. An interesting choice is applying traditional

Dataflow(DF)
(WCET,P/C rates, )

represented inSDF,CSDF,...etc.

Non-Dataflow
(NDF)

Transformation toHSDF

and calculatedby
theproposedalgorithm

Nodes/Actors

ExtractReal-TimeParameters

Applications

EnableMappingandSchedulingon
Multi-\Many- CorePlatform

Arbitrary Deadline Tasks

Figure 1: Overview of the parameter extraction problem.

real-time scheduling algorithms and associated analysis tech-
niques to achieve these real-time guarantees for such mixed
systems.

Mapping and scheduling mixed real-time applications
(dataflow and non-dataflow) requires a unified model to rep-
resent both types of applications. Figure 1 illustrates this
problem. A task τi in a traditional real-time application (non-
dataflow) is represented by four parameters. These parameters
are execution time Ci, start/release time si, period of execution
Ti and Deadline Di. These parameters enable us to apply
efficient real-time analysis techniques to verify the system.
In contrast, an actor in a dataflow application is represented
by a different set of parameters. These parameters are Worst-
Case Execution Time (WCET), Production/Consumption rate
(P/C) of tokens and the throughput requirement ζ of the
application. We need a method to extract the real-time prop-
erties of the actors of dataflow applications in the form of
τi = (si, Ci, Ti, Di) to be able to apply traditional real-time
scheduling techniques, as shown in Figure 1.

In this paper, we propose an algorithm for extracting
timing parameters (offsets, deadlines and periods) of real-
time dataflow applications that assures real-time guarantees
for the system. The real-time dataflow applications are rep-
resented as cyclic HSDF with periodic sources. Earlier works
have already considered applications represented as Directed
Acyclic Graphs (DAGs) [10], [17], pipelines [18], task model
without deadlines [15] or limited to implicit-deadlines [10], or
application specific analysis [15], [19]. A main advantage of



this proposal is that the extraction of the timing parameters is
independent of the specific scheduler being used, or of other
applications running in the system or the particular platform.
The proposed algorithm: 1) enables applying traditional real-
time schedulers and analysis techniques on cyclic or acyclic
HSDF applications with periodic sources, 2) captures overlap-
ping iterations, which is a main characteristic of the execution
of dataflow applications, by modelling actors as tasks with
arbitrary-deadlines, 3) provides a method to assign offsets and
individual deadlines for real-time dataflow actors, and 4) is
compatible with widely used deadline assignment techniques,
such as NORM and PURE [18], [20], [21]. We also show
that our algorithm give the same results as earlier work in the
special case of pipeline applications.

The rest of this paper is organized as follows. Section II
provides an overview of related work. Afterwards, Section III
explains the main concepts necessary to understand the system
model and the proposed algorithm. The proposed algorithm
and its validation is detailed in Section IV and V, respec-
tively. Section VI provides the evaluation and discussion of
experimental results. Finally, we provide some conclusions in
Section VII.

II. RELATED WORK

Real-time embedded systems with mixed application mod-
els requires a unified model to enable applying traditional real-
time schedulers and analysis techniques. To reach a unified
model, we have to deal with the dependencies between differ-
ent actors in the graph to ensure that child actors do not exe-
cute before their parents. This section reviews techniques for
extracting timing parameters (unified model) of task graphs to
enable applying real-time schedulers and analysis techniques.

In [10]–[12], the authors provide an analytical frame-
work for computing timing parameters for actors of acyclic
Cyclo-Static Dataflow (CSDF) applications with single-input
streaming. The actors are considered as implicit-deadline and
constrained-deadline periodic tasks in [10] and [11], [12],
respectively. In contrast, the proposed approach is more general
and can deal with any HSDF graph (CSDF can be converted
to an HSDF), single/multiple input, and actors are modelled
as arbitrary-deadline tasks. Modelling the application actors
as arbitrary-deadline tasks allows capturing overlapping it-
erations, a main characteristic of dataflow applications that
increases the throughput.

Another solution for dealing with dependencies is pre-
sented in [18]. The authors presented a deadline assignment
approach called ORDER for dependent tasks composing real-
time pipeline applications executing on a multi-core sys-
tem. The proposed approach was considering the problem of
scheduling a pipeline such that the end-to-end deadline is met
and the amount of required resource capacity was minimal.
They evaluated their approach (ORDER) by comparing it
against two deadline assignment strategies called NORM and
PURE, proposed in [20], [21], and showed the improvement
in resource requirement of ORDER. Contrarily, in this paper
we consider the general problem of deadline assignment for
dependent tasks composing real-time application graphs, such
as DAGs and Directed Cyclic Graphs (DCGs), which are not
supported by [18], [20], [21].

In [17], the authors also address the problem of scheduling
periodic DAG tasks, each consisting of subtasks. They are
assigned individual deadlines and release times such that
all subtasks have equal densities. They are scheduled using

global Earliest Deadline First (EDF) and partitioned deadline
monotonic scheduling. Another approach presented in [19],
calculates offsets and deadlines for subtasks in a DAG task
based on computing the interference between each subtask and
the higher-priority subtasks of all DAG tasks running on the
system. In contrast, we consider a more general problem where
applications are represented as DCGs and the extraction of the
timing parameters is independent of the scheduling algorithm
being used. In addition, two different deadline assignment
strategies rather than just equal task densities [17] is supported
and the calculation of offsets and deadlines is not dependent
on other applications running on the system as in [19].

Another technique is presented in [22]. The authors pro-
pose an exact characterization of EDF-like schedulers that
can be used to correctly schedule dependent tasks, and show
how preemptive algorithms, even those that deal with shared
resources, can be easily extended to deal with dependencies.
This was done by modifying deadlines Di in a consistent
manner so that a run-time algorithm, such as EDF, could be
used without violating the dependencies. Also, [23] propose a
similar approach by modifying the timing parameters of the
tasks. However, this parameter modification is not only for
the deadline Di of the tasks, but also include modification
of the task start time si. However, both works consider task
parameters as already defined, which is not the case in our
problem. Moreover, they are only concerned with uniprocessor
platforms.

Also in [8], the authors present a method to calculate
individual deadlines of HSDF actors. The method is based on
an integer linear programming (ILP) optimization problem that
finds the amount of slack for each actor that makes it able to
extend its execution without violating the HSDF throughput
and timing constraints. However, their proposed method is
restricted to strongly connected HSDF graphs and the actor’s
offsets are calculated based on the static-order schedule of
the application. In contrast, our proposed algorithm is neither
restricted to strongly connected graphs nor does the offset
calculation require static-order scheduling.

In [15] the authors propose a temporal analysis for dataflow
application modeled as cyclic HSDF graphs under a non-
starvation-free scheduler i.e. static-priority preemptive sched-
uler (SPP). To apply the analysis they extract timing properties
like jitter (difference between best-case and worst-case offsets),
periods, and execution times, but not deadlines, since SPP
schedulers depend on periods not deadlines. The calculated
jitter is based on the interference from the set of high-priority
tasks with the task being analyzed running on the same
platform. This means that the timing parameters calculated are
dependent on the set of applications running on the platform.
Contrarily, our approach is independent of the scheduler being
used and other applications running on the same platform,
since our proposed algorithm transforms the HSDF actors
into a set of independent tasks that enables any bin-packing
heuristic to be applied for mapping them on the platform.

III. BACKGROUND / PRELIMINARIES

In this section, we present background material that is es-
sential for understanding the computational model, the system
model and the proposed algorithm.

A. Homogeneous SDF (HSDF)

The synchronous dataflow model of computation [2] is
widely used in modeling and analyzing streaming, Digital
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Figure 2: HSDF graph example.

Signal Processing (DSP) and concurrent multimedia applica-
tions [24], [25]. Its use has been increasingly considered for
designing applications for multi- and many-core processors
[26], [27]. A synchronous dataflow application graph is a data-
driven network of actors (nodes), where the same behavior
repeats in each actor every time it is fired. An actor fires
(executes) once all its input ports have the required tokens
(data) for consumption. Therefore, the firing pattern of an
actor depends on the arrival pattern of its input tokens. If the
arrival pattern of the input tokens is periodic the firing pattern
of the actor is also periodic, if it is sporadic the actor firing
pattern is sporadic, and so on. Each actor has production and
consumption rates associated with its ports that determine the
number of input and output tokens produced and consumed in
the firing process.

Homogeneous Synchronous Dataflow (HSDF) [2] is a
special case of synchronous dataflow graphs in which all
production and consumption rates associated with actor ports
are equal to one. Therefore, when each actor is fired once, the
distribution of tokens on all channels return to their initial state.
This is referred to as a complete cycle or a graph iteration.
Figure 2 shows an example of an HSDF graph.

Any HSDF application can be formally represented by a
Directed Cyclic Graph (DCG) G = 〈V,E, d〉, where V is the
set of nodes, E the edges connecting them and d the set of
delays (initial tokens) on the edges of the graph. Each node
in this graph is an actor and each edge is a communication
channel. An HSDF application has a throughput requirement
and a single or multiple latency constraints that must be
satisfied for the correct execution of the application. The
throughput requirement ζi is a performance measure that
determines the minimum output data rate of the application
(iterations per time unit). In contrast, the latency constraints
Dxy are defined as actor-to-actor deadlines (maximum timing
constraints) between firings of any two actors vx and vy in the
same iteration that have a single or multiple route(s) between
them, referred to as a time-constrained path P . Fundamentally,
the Dxy is required to be greater than or equal to the sum
of execution times Ci of all actors on the time-constrained
path for the application to be schedulable. Formally, a time-
constrained path P is defined as follows:

P = {〈vx, . . . , vy〉 : v ⊆ V } (1)

where, its latency constraint

Dxy ≥
y∑

i=x,
∀vi∈P

Ci (2)

If P is cyclic, it terminates in the last node before reaching an
already visited node. For example, in Figure 2 (a0, b0, c0, d0)
is not cyclic, because it starts at actor a0 and ends at actor
d0, while (b0, b1, b2) is cyclic because it terminates at actor b2

before repeating itself again. Each time-constrained path P has
a latency constraint Dxy , where x and y represent the indices
of the start and end actors, respectively. For example, assume
that the application in Figure 2 has two latency constraints
Da0d0 and Da1d0 . All time-constrained paths must start with
either actors a0 or a1 and end up with actor d0, any other
combinations are regular paths and are not further considered
in this paper.

Note that this work considers HSDF graphs with periodic
sources. Also, we consider initial tokens d on back edges
only. Other dataflow graphs, e.g. SDF [2] and CSDF [28] are
examples of more expressive models that can be converted to
an equivalent HSDF graph by using a conversion algorithm,
such as the one presented in [25]. This also enables these
models to be used with our approach.

B. Classical real-time model

This work considers extracting the timing parameters of
real-time applications modelled as HSDF graphs, which im-
plies changing its execution behaviour from being data-driven
to being time-triggered. This means that actors are activated at
their release time parameter si eliminating jitter effect in their
execution. Formally, we consider a system Ψ = 〈Π, A〉 based
on homogeneous symmetrical multi-core platform, represented
by the set Π = {π1, π2, . . . , πn}, where n is the number
of cores. The platform runs a set of m periodic applications
A = {A1, A2, . . . , Am}. In this model, we assume that all the
applications A have periodic input sources. Therefore, each
actor vj in any application Ai can be considered a periodic
task. All actors can be scheduled on Π using traditional real-
time schedulers.

A periodic task τi ∈ V is represented by the 4-tuple
τi = (si, Ci, Ti, Di), where si is a fixed offset that specifies the
start instant of an actor, Ci is the worst-case execution time, Ti
is the relative period and Di is the relative deadline of the task.
The absolute deadline Di of task τi is defined as Di = si+Di.
The utilization of task τi is denoted by Ui and is defined as
Ui = Ci/Ti, where Ui ∈ (0, 1]. Additionally, the density of
task τi is denoted by ρi and is defined as ρi = Ci/Di, where
ρi ∈ (0, 1]. All tasks are modelled as arbitrary-deadline tasks.
Other more recent task models, i.e. graph-based models [29],
may also be suitable for modelling HSDF graphs, but this will
be subject to future research.

C. Deadline assignment strategies

The problem of assigning individual deadlines to dependent
tasks of a pipeline application Ap, represented by the graph
Gp = 〈Vp, Ep〉, distributed on multiple processors using its
end-to-end deadline has been addressed in previous research
[18], [20], [21]. The pipeline application consists of a set of
tasks (actors) Vp that execute in sequence. The application
has a latency constraint Dxy that represents the end-to-end
deadline of Ap, where vx and vy is the start and end task
of Ap, respectively. Therefore, the pipeline application graph
Gp contains a single time-constrained path P with a latency
constraint Dxy . In this paper, we support two well-known
deadline assignment methods for pipelines that will be used
by our proposed algorithm. These methods are:

1) The NORM method [20], [21]: is an assignment
strategy to divide the end-to-end deadline Dxy of a pipeline
proportionally to the computation time of its tasks. Therefore,
the individual deadline of a task in a pipeline Di is computed



as follows:
Di =

Ci∑
∀vj∈P Cj

·Dxy (3)

From Equation (3), the NORM method assigns individual
deadlines Di to tasks with the same end-to-end deadline Dxy ,
such that all tasks have equal densities ρi.

ρi =
Ci
Di

=

∑
∀vj∈P Cj

Dxy
(4)

2) The PURE method [20], [21]: a different deadline
assignment strategy based on the distribution of the laxity ε
equally among all tasks of the pipeline, such that each task
have slack δ. The laxity ε on the time-constrained path P is
defined as follows:

ε = Dxy −
∑
∀vj∈P

Cj (5)

Then, the slack δ of the tasks is equal to:

δ =
ε

|Vp|
(6)

where |Vp| is the number of tasks in the pipeline. Therefore,
the individual deadline of a task in a pipeline Di is computed
as follows:

Di = Ci + δ (7)

Therefore,

Di = Ci +
Dxy −

∑
∀vj∈P Cj

|Vp|
(8)

From Equation (7), the PURE method assigns individual
deadlines Di, such that tasks have relative densities ρi. This
means, a task with high Ci have high ρi relative to a task with
small Ci.

ρi =
Ci
Di

=
Ci

Ci + δ
(9)

IV. TIMING PARAMETERS EXTRACTION ALGORITHM

The algorithm presented in this section is intended for
extracting the timing parameters (si, Ci, Ti, Di) of HSDF
applications with periodic sources. The algorithm, presented in
Section IV-C, is divided into two phases. The first phase, finds
all time-constrained paths in the graph, while second phase
extracts the timing parameters of individual actors. However,
before going into details, we introduce a key concept that our
algorithm is based on called path sensitivity (Section IV-A).
Then, we introduce two techniques for deriving latency con-
straints (Section IV-B) for cyclic paths and end-to-end latency
constraint in case it is unspecified for an application. These
techniques ensure that the throughput requirement ζi is satis-
fied after conversion to the unified model.

A. Path sensitivity

In this section, we define a key concept in our algorithm
called path sensitivity, that enables supporting general HSDF
graphs. Dealing with actors in general graphs implies that an
actor can be present on multiple time-constrained paths of the
graph. The path sensitivity parameter helps in addressing this
problem by determining the order in which to consider the
time-constrained paths when extracting the timing parameters.

Path sensitivity γ: is a measure of the criticality of a

time-constrained path with respect to a certain parameter,
e.g. utilization or density. In our case, the path sensitivity γ
represents the time-constrained path density. The density is
the measure of how tight the latency constraint Dxy is for a
time-constrained path P compared to its execution time. γ is
in the range (0, 1] (because of the relation in Equation (2)),
where higher values indicate higher sensitivity. It is calculated
as follows:

γ =
∑
∀vj∈P

Cj
Dxy

(10)

In case of NORM, substituting Equation (10) in Equation (3)
gives:

Di =
Ci
γ

(11)

by solving for γ and substituting Equation (4) in Equation (11)

ρi = γ (12)

This means that all tasks τi on the same time-constrained path
P have densities ρi equal to the path sensitivity γ.

In case of PURE, substituting Equation (10) in Equation (8)
gives:

Di = Ci + δ = Ci +
(1− γ) ·Dxy

|P |
(13)

by dividing Equation (13) by Di, then substitute by Equa-
tion (4) and solving for ρi

ρi = 1− δ

Di
= 1− (1− γ) ·Dxy

|P | ·Di
(14)

From Equations (11), (12), (13) and (14), we can draw two
conclusions. First, there is an inverse relation between the path
sensitivity γ and the task relative deadline Di for both NORM
and PURE. This conclusion is obvious from Equation (11).
In case of Equation (13), since 0 < γ ≤ 1, an increase in the
value of γ decreases the value of Di and vice versa, confirming
the inverse relation. Second, when the sensitivity γ of a time-
constrained path increases, the value of its task densities ρi
increases too. This is confirmed from Equations (12) and (14)
and the first conclusion.

B. Deriving latency constraints

In this section, we present two techniques for deriving
latency constraints for HSDF graphs. First, we derive latency
constraints for cyclic paths. We then derive end-to-end latency
constraints in case it is not specified in by the application.

1) Deriving cycle latency constraints: HSDF applications
can have several cycles in its graph. Each cycle requires a
latency constraint that satisfies the throughput requirement ζi
of the application. A quick choice for a cycle latency constraint
Dcycle
xy value is the period of the application Ai. However,

such a choice of latency constraint ignores the number of
tokens d involved in the cycle and limits possible pipeline
parallelism in the application. Therefore, the latency constraint
of a cyclic time-constrained path Dcycle

xy must take into account
the number of tokens involved in this cycle dcycle such that the
application throughput ζi is not violated. The latency constraint
for a cyclic time-constrained path is defined as follows [8]:

Dcycle
xy = Ccycle + (

1

ζi
− Ccycle
dcycle

) · dcycle =
dcycle
ζi

(15)



where Ccycle is the summation of execution times of the actors
involved in the cycle. The latency constraint of a cycle tells us
how much the execution of the actors on the cycle as a whole
can be extended while still guaranteeing the desired application
throughput ζi.

2) Deriving end-to-end latency constraint: Our proposed
algorithm requires an end-to-end latency constraint for each
HSDF application to satisfy the precedence constraints and
the throughput requirement. In case of an HSDF application
without a specified end-to-end latency constraint Dxy , we
derive it as follows:

Dxy = max {Ti, β ·
∑
∀vi∈CP

Ci} (16)

As we can notice Dxy is set to the maximum of two values.
The first, the application period Ti (extracted from the inverse
of its throughput requirement 1/ζi) which is used in case of
low-throughput applications where Ti ≥ β ·

∑
∀v∈CP Ci. The

second, is the sum of the Ci of actors in the critical path
(CP) of the application multiplied by a constant β, where the
critical path (CP) of an application is defined as its longest
execution path from input to output. In contrast, the second
value is used in case of high-throughput applications, where
Ti < β ·

∑
∀v∈CP Ci. The β constant has a value that

ranges [1,∞). Selecting β = 1 results in unnecessarily tight
actor deadline values and increases the total density of the
application that makes it more critical and hard to schedule
with other applications, since the actors in the application
CP have ρi = 1. On the other hand, selecting higher values
of β relaxes the criticality of the application and eases its
schedulability with other applications. A good tuning value
for β that we use in this paper is when the sensitivity of the
CP of the application γCP is equal to the maximum sensitivity
of all the cycles γcycle in the application,

max
∀cycle∈G

{γcycle} = γCP =
∑
∀vj∈CP

Cj
Dxy

=

∑
∀vj∈CP Cj

β ·
∑
∀vj∈CP Cj

(17)

At this value of β, the execution time of all cycles in the
application graph can be extended to the maximum possible
limit (latency constraint computed in Equation (15)) while
still satisfying its throughput requirement ζ. Therefore, from
Equation (17), β is defined as follows:

β =
1

max∀cycle∈G{γcycle}
(18)

The derived end-to-end latency constraint Dxy , shown in
Equation (16), is considered a lower bound using β computed
in Equation (18). Choosing a larger value will not affect the
throughput requirement of the application, but it increases the
schedulability of the application. However, it also delays the
first output by a latency equal to the chosen value of the end-
to-end latency constraint Dxy . It is up to the system designer
to choose a different larger value of β than Equation (18) if it
suits his system.

C. Proposed algorithm

In this section, we present our proposed algorithm for ex-
tracting timing parameters of HSDF applications with periodic
sources. The algorithm consists of two phases: 1) finding all
time-constrained paths and 2) extracting timing parameters.
The following sections explain these two phases in detail.
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1) First phase: Finding all time-constrained paths: In
this phase, we calculate all time-constrained paths for a
given HSDF in non-increasing order of sensitivities. A time-
constrained path in an HSDF can be between any two actors
that have a latency constraint.

The first phase of the algorithm is divided into two stages:
1) Creation of source and sink actors: First, we search the
graph G to find all input (output) actors. Actors associated
with the input (output) data stream are specified as the starting-
actors (ending-actors), respectively. A dummy source s (sink t)
actor that has a zero execution time is inserted at the beginning
(end) of the graph G, as shown in Figure 3. These two actors
(s, t) are connected with dummy links to starting and ending
actors, respectively. Adding these dummy actors with their
edges converts the graph into a canonical form, since all the
paths that traverse the graph from the input to the output of
the graph have a uniform form that starts with s and ends
with t. This is helpful when traversing multi-input/multi-output
graphs, as shown in Figure 3.
2) Path enumeration: This is an iterative process where all

time-constrained paths between source s and sink t actors in
the HSDF are generated. In case of having latency constraints
between two specific actors, the path enumeration phase gen-
erates all time-constrained paths between these two actors in
addition to the ones generated from s to t. The set of all time-
constrained paths between actors with latency constraints is
called P , which is arranged in non-increasing order of path
sensitivities γ. It is defined as follows:

P = {〈Pi, γi〉 : V, γi−1 ≥ γi, γ ∈ (0, 1]} (19)

The process starts by initializing P with a few partial paths.
In this case, these initial partial paths are all single hop paths
generated by combining the start actors with the elements in
their list of successor actors. The list of successor actors is
a set of child actors that are one hop away from their parent.
For example, in Figure 3, the list of successor actors for source
actor s is Succ(vs) = (a0, a1). The starting actors can be the
source actor s or any actor that starts a set of time-constrained
paths vx with a specific latency constraint Dxy . The list of
successor actors Succ(vx) is defined as follows:

Succ(vx) = (vx1
, vx2

, vx3
, . . . , vxl

) (20)



Algorithm 1: Extracting timing parameters of HSDF
Pi: A full time-constrained path in P set.
Di

xy : deadline constraint between actor vx and actor vy on a full
time-constrained path Pi.

P : totally ordered set of all time-constrained paths of an application ordered
according to γ, P = {Pi : γi−1 ≥ γi}.

P̂ : totally ordered set of time-constrained paths from s to t of an application
ordered according to Dxy , P̂ ⊆ P , P̂ = {Pi : vx = s, vy =
t, [Di−1

xy > Di
xy or {D

i−1
xy = Di

xy, γi−1 ≥ γi}]}.
PH

i : set of higher sensitivity time-constrained paths than Pi,
PH

i = {〈P1, . . . , Pi−1〉 : γi−1 ≥ γi}
Xi: set of shared actors between Pi with higher sensitivity time-constrained

paths set PH
i , Xi = {vk : vk ∈ Pi, vk ∈ Pj ∈ PH

i }
pi: partial path in time-constrained path Pi.

begin
// Actor deadline assignment
foreach Pi in P do

if (∀vj ∈ Pi, Dj = ∅) then
foreach vj in Pi do

Dj = dead_assign(Di
xy); // NORM/PURE

else // Xi ⊆ Pi

foreach vj in Pi −Xi do
Dj = dead_assign(Di

xy −
∑

∀vk∈Xi

Dk);

// NORM/PURE

// Actor offset assignment
foreach Pi in P̂ do

if (∀vj ∈ Pi, sj = ∅) then
s0 = 0;
foreach vj in Pi, j = 1..sizeof(Pi) do

sj = sj−1 +Dj−1;
Tj = 1/ζAi

else
Determine all pi ∈ Pi with sj = ∅.
Determine reference actor vr .
foreach pi in Pi do

if (pi is Head or Middle) then
foreach vj in pi do

vr = vj+1;
sj = sr −Dj ;
Tj = 1/ζA;

else
foreach vj in pi do

vr = vj−1;
sj = sr +Dr;
Tj = 1/ζA;

// Validation check
foreach Pi in P do

if (
∑
∀vj∈Pi

Dj ≤ Di
xy & sy +Dy − sx ≤ Di

xy) then

Algorithm Succeeds;
else

Algorithm Fails;

where l is the number of actors in Succ(vx). Then, the process
picks up a partial path Pi = 〈vx, . . . , vj〉 from P , where vj
is not equal to the end actor vy , and extends it to a full path
(Equation (1)) as shown in Figure 4. The extension process
starts by getting the Succ(vj) = (vj1 , vj2 , vj3 , . . . , vjl). Then,
it extends the partial path Pi to its l possible extended paths,
Pi1 = 〈vx, . . . , vj , vj1〉, Pi2 = 〈vx, . . . , vj , vj2〉, . . . , Pil =
〈vx,
. . . , vj , vjl〉. It then removes Pi and inserts its l possible
continuations in the P set in non-increasing order of sensitivity.
The path enumeration process continues until all partial paths
in P are extended to full time-constrained paths.

2) Second phase: Extracting timing parameters: The sec-
ond phase, shown in Algorithm 1, repeats for each application
in the application set A. It picks a time-constrained path

v0 v1 v2 v3 v4 v5

allocated

unallocated

Head
reference nodevr

ts

(a) Class Head partial path

v0 v1 v2 v3 v4 v5

Tail
vr

s t

(b) Class Tail partial path

v0 v1 v2 v3 v4 v5

Middle
vr

s t

(c) Class Middle partial path

Figure 5: Partial path classes for offsets setting

Pi in order of sensitivity from P . The selected path Pi
is checked whether or not it has actors vj with assigned
deadlines Dj . If Pi has no actors with assigned deadlines
(∀vj ∈ Pi), the algorithm assigns individual deadlines Dj for
the actors vj using dead_assign() function that implements
either NORM or PURE (Equations (3) or (8), respectively),
using the corresponding latency constraint Di

xy .
On the other hand, if Pi has a set of actors with assigned

deadlines Xi (shared actors vk with any previously processed
time-constrained paths), the algorithm assigns individual dead-
lines Dj to the unassigned actors vj using either NORM or
PURE based on the corresponding latency constraint, which
is the difference between Di

xy and the sum of individual
deadlines Dk already assigned to actors, (Di

xy−
∑
∀vk∈Xi

Dk).
In all cases, the period of the actor Tj is derived from the
throughput constraint ζA of the application. It is defined as
follows:

Tj = 1/ζA (21)

This follows naturally for an HSDF graph, since each actor
executes only once per iteration.

Once the application Ai actors relative deadline are
determined, the offset of the actors sj are calculated in a
similar fashion. Algorithm 1 generates a new set P̂ ⊆ P
containing time-constrained paths that include s and t actors
only. P̂ is arranged in a non-increasing order of Dxy . If two
paths have the same Dxy they are ordered in a non-increasing
order of γ. The algorithm picks a time-constrained path Pi
from P̂ . If the path has no actors with assigned offsets, it
assigns offsets sj for the actors vj on the path in the direction
from s to t as follows:

sj = sj−1 +Dj−1 (22)

If time-constrained path Pi has a set of actors with assigned
offsets (actors assigned in previously processed paths), the
algorithm traverses Pi in a search for partial path segments
pi of actors with unassigned offsets. Once they are listed, the
algorithm determines the reference actors vr and classify them
into one of three types: Head, Middle or Tail, as shown in
Figure 5. This information is used to calculate the offsets sj ,
as shown in Algorithm 1. If the partial path pi is of type Head
or Middle, the reference actor vr is always on the right hand
side of pi, as shown in Figures 5a and 5c, and the offsets of
pi actors are assigned using the following equation:

sj = sr −Dj (23)

Offset assignment of Head and Middle in this way instead
of traversing the path from s to t assigning offsets using
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Figure 6: HSDF example.

Equation (22), enables larger offset values to be assigned to
actors delaying their execution allow satisfying wider range of
latency constraints, as we show in Section IV-D.

If the partial path pi is type Tail, the reference actor vr
is always on the left hand side of pi, as shown in Figure 5b,
and the offsets of pi actors are assigned using the following
equation:

sj = sr +Dr (24)

After assigning deadline and offsets for the application actors,
the algorithm checks the application for the validity of the
assigned values and that they do not violate the latency
constraints specified.

Finally, we can conclude that Algorithm 1 preserves rela-
tive deadline values Dj computed from high-sensitivity time-
constrained paths. This is clear from determining the actors
with unassigned deadlines in Pi, and their corresponding la-
tency constraint (Di

xy−
∑
∀vk∈Xi

Dk), leaving the preassigned
set of actors Xi untouched. In case of using deadline-based
schedulers, this property makes actors in high-sensitivity time-
constrained paths have a higher priority compared to actors in
low-sensitivity time-constrained paths, since they have tighter
deadlines (as concluded from Equations (11) and (13)).

D. Example

In this section, we present an example, illustrated in
Figure 6, to show how to apply our proposed algorithm for
extracting the timing parameters of an HSDF graph applica-
tions step-by-step. The following paragraphs explains this in
detail.

Figure 6a shows an HSDF graph application comprising
six actors (a, b, c, d, e, f ) with execution times of all actors
equal to 1, throughput requirement ζ = 0.5, and two end-
to-end latency constraints, one is specified Ded = 3, while
the other Dad is not. The example HSDF graph is not trivial,
as it features multiple input actors a and e, a cycle, and
multiple initial tokens. Applying the first phase of our proposed
algorithm results in three time-constrained paths. The first
time-constrained path is P1 = 〈e, f, d〉 with an end-to-end
latency constraint D1

ed = 3 and sensitivity γ1 = 1. The
second time-constrained path is P2 = 〈b, c〉 which repre-
sents a cycle in the graph with a latency constraint D2

bc
calculated by substituting with Ccycle = Cb + Cc = 2,
ζ = 0.5 and number of tokens in the cycle d = 2 in
Equation (15), then D2

bc = 4. The sensitivity of P2 is hence
γ2 = 0.5 (Equation (10)). The third time-constrained path
is P3 = 〈a, b, c, d〉 with a latency constraint D3

ad equal to
the second end-to-end deadline, which is not specified by the
application. Therefore, we calculate D3

ad using Equation (16)
(β = 1/γ2 = 2, Equation (18)) that results in D3

ad = 8 and
its sensitivity is γ3 = 0.5. Therefore, the set of all possible
time-constrained paths is P = {〈P1, γ1〉, 〈P2, γ2〉 〈P3, γ3〉} =

{〈(e, f, d), 1〉, 〈(b, c), 0.5〉, 〈(a, b, c, d), 0.5〉}.
The second phase of the proposed algorithm picks up P1

and assigns individual deadlines to actors (e, f, d) equal to
(De = 1, Df = 1, Dd = 1,), respectively, for both NORM
and PURE. Picking up the next time-constrained path P2 for
deadline assignment results in (Db = 2, Dc = 2). Finally,
picking up the last time-constrained path P3 for deadline
assignment results in (Da = 3).

For offset assignment, the algorithm creates the set of
time-constrained paths that goes from source s to sink t,
ordered according to the constraint [Di−1

xy > Di
xy or {Di−1

xy =

Di
xy, γi−1 ≥ γi}], P̂ = {〈P3, D

3
ad〉, 〈P1, D

1
ed〉}. First, it picks

the time-constrained path with the longest delay P3 for offset
assignment. Since none of its actors have assigned offsets, the
actor offsets are (sa = 0, sb = 3, sc = 5, sd = 7). Then,
it picks P1 where one of its actors d has already assigned
offset sd equal to 7. It discovers a single partial path of type
Head in P1 which is p1 = (e, f). The reference actor for
p1 is actor d. Therefore, the offsets of actors e and f are
(se = 5, sf = 6), respectively. As noted, actor e is triggered
at time (se = 5) even though its input data is available from
time instance zero to satisfy the latency constraint (Ded = 3)
of the application. For the periods, (Ta = Tb = Tc = Td =
Te = Tf = 1/ζ = 2). Therefore, the extracted timing
parameters (si, Ci, Ti, Di) for the graph actors {a, b, c, d, e, f}
are {(0, 1, 2, 3), (3, 1, 2, 2), (5, 1, 2, 2), (7, 1, 2, 1), (5, 1, 2, 1),
(6, 1, 2, 1)}, respectively. These extracted parameters preserve
the precedence, throughput and latency constraints of the
HSDF application, indicated in the timing diagram in Fig-
ure 6b. The timing diagram also shows that multiple itera-
tions of the graph execute in parallel assuming at least three
processors are available.

V. VALIDATION OF THE PROPOSED APPROACH

This section validates the proposed algorithm by proving
that it assigns individual deadlines for actors of any application
graph such that it respects all its latency constraints. First,
we start by the following property driven from the inverse
relationship between γ and Dv (concluded from Equations (11)
and (13)):

Property 1. If there are two time-constrained paths Pi and
Pj , where γi > γj and there is a shared actor v between them.
The deadline value Di

v computed for actor v on Pi is less than
the value Dj

v computed for the same actor on Pj , Di
v < Dj

v .

Another important property of the deadline assignment
strategies NORM and PURE, derived from Equations (3)
and (8) is:

Property 2. A time-constrained path P with a latency con-
straint Dxy , whose actors vj are assigned individual deadlines
Dj , using NORM or PURE, has the following property:

Dxy =
∑
∀vj∈P

Dj (25)

From Property 2, it follows that applying Algorithm 1 on
any time-constrained path P , whose actors has no assigned
deadlines, results in a time-constrained path that satisfies its
latency constraints. This is for the simple case where the actors
in P has no assigned deadlines. However, when P shares
some actors with higher sensitivity time-constrained paths the



situation gets more complex. Lemma 1 proves the correctness
of this case.

Lemma 1. If a time-constrained path Pi with a latency
constraint Di

xy , has a set of actors Xi shared with higher
sensitivity time-constrained paths PHi = 〈P1, . . . , Pi−1〉 in
an application graph G, Algorithm 1 assures that the sum
of individual deadlines Dj of actors in Pi is equal to Di

xy =∑
∀vj∈Pi

Dj .

Proof: Let us assume a time-constrained path P ′i = Pi,
except that all its actors v′j have D′j = ∅. Assigning individual
deadlines D′j to the actors of time-constrained path P ′i using
either NORM or PURE (Equations (3) and (8)) and its latency
constraint Di

xy under the system model constraint specified in
Equation (2) then

∀v′j ∈ P ′i , D′j ≥ Cj , Di
xy =

∑
∀v′j∈P ′i

D′j (26)

The set of shared actors Xi in Pi has a sum of individual
deadlines equal to d.

d =
∑
∀vj∈Xi

Dj , ∀vj ∈ Xi, Dj ≥ Cj (27)

Here, d represents the value calculated from the higher sensi-
tivity time-constrained paths PHi . Let us assume d′ represents
the value calculated for the same set of actors Xi on time-
constrained path P ′i . Then, from Property 1:

d < d′ (28)

And,
Di
xy − d > Di

xy − d′ (29)

Again, let us assume that the sum of computation time of
actors in Xi is c.

c =
∑
∀vj∈Xi

Cj (30)

Then, from Equation (27)

d ≥ c (31)

And, since the summation of individual deadlines of actors in
P ′i such that v′j ∈ P ′i −Xi is∑

v′j∈P ′i−Xi

D′j = Di
xy − d′ (32)

Therefore, from Equations (26) and (29)

Di
xy − d > Di

xy − d′ ≥
∑
∀vj

Cj − c (33)

Also, it can be written as

Di
xy −

∑
∀vj∈Xi

Dj > Di
xy −

∑
∀v′j∈Xi

D′j ≥
∑
∀vj

Cj − c (34)

According to Equations (31) and (33), Di
xy − d and d follows

the system model constraint specified in Equation (2). Then,
applying NORM or PURE (Equations (3) and (8)) using the
corresponding latency constraint Di

xy−d, the sum of individual
deadlines of all the actors in Pi is∑
∀vj∈Pi−Xi

Dj +
∑
∀vj∈Xi

Dj = Di
xy − d+ d = Di

xy (35)

Therefore, Algorithm 1 assures that Di
xy =

∑
∀vj∈Pi

Dj even
when actors are shared across time-constrained paths.

After proving that in case of a time-constrained path P
sharing some actors with higher sensitivity time-constrained
paths, the proposed algorithm assures that P satisfies its
latency constraints. Here comes the main proof through Theo-
rem 1 that states the validity of the proposed approach and
assures that any type of application graph (DAG or DCG)
satisfies its latency constraints.

Theorem 1. Consider an HSDF DCG G = 〈V,E, d〉 with mul-
tiple latency constraints Di

xy . Assuming that G is represented
by a set of all possible time-constrained paths P ordered by
non-increasing order of sensitivity γ, Algorithm 1 assures that
the actors of G are assigned individual deadlines that makes
any P ∈ P not exceed its specified latency constraint.

Proof: For any time-constrained path Pi there are two
cases:
Case 1: Pi has no actors with assigned deadlines,

∀vj ∈ Pi, Dj = ∅ (36)

Therefore, Algorithm 1 applies either NORM or PURE stated
by Equations (11) or (13) under the system model constraint
Dxy ≥

∑
∀vj∈P Cj . Therefore, from Property 2:∑

∀vj∈Pi

Dj = Di
xy (37)

and, Pi does not exceed its specified latency constraint Di
xy .

Case 2: Pi has a set of shared actors Xi with a set of high-
sensitivity time-constrained paths PHi ,

∀vk ∈ Xi, Dk 6= ∅ (38)

Therefore, Algorithm 1 determines the set of unassigned
actors and their corresponding latency constraint (Di

xy −∑
∀vk∈Xi

Dvk ). Since Pi has a set of shared actors Xi with
a set of high-sensitivity time-constrained paths PHi , Lemma 1
assures that the sum of individual deadlines Dj of actors in
Pi is equal to Di

xy =
∑
∀vj∈Pi

Dj .
Therefore, Algorithm 1 assures that the assigned deadlines

of all actors in G are such that all latency constraints are
satisfied.

Finally, we would like to show that in the special case of
pipeline application graphs, the proposed algorithm behaves
identically to [18], [20], [21] and gives the same results. This
is proved in Corollary 1.

Corollary 1. In case of pipeline application graph G =
〈V,E, d〉, where G is a multiple actor graph with each actor
has a single input/output connected in sequence, applying the
proposed algorithm will lead to exactly the same results as
previous deadline assignment work for pipelines.

Proof: Let us assume that we have a pipeline application
graph G = 〈V,E, d〉, where G is a multiple actor graph, where
each actor has a single input/output connected in sequence.
Applying the first phase of the algorithm (finding all possible
time-constrained paths) on G results in a list P with a single
time-constrained path P = 〈s, v1, v2, . . . , vz, t〉, where z is
number of actors in G. Since it is a single time-constrained
path graph and its actors have no assigned deadlines, it will be
covered by the first case (1) in Theorem 1. Therefore, applying



Table I: Benchmarks used in evaluation

No. Application Name Ref
1 H.263 decoder

[30]

2 H.263 encoder
3 MP3 decoder (granule level)
4 MP3 decoder (block level)
5 Satellite receiver
6 Modem

the proposed algorithm will lead to exactly the same results as
previous deadline assignment work for pipelines, Equations (3)
and (8) will be applied in this case.

Corollary 1 is an important finding, since it shows that our
proposed algorithm is more general and deals with any types
of application graphs without any particular drawbacks.

VI. EVALUATION AND RESULTS

We implemented a tool that allocates a set of streaming
applications after extracting their timing parameters. These
streaming applications are taken from the SDF3 Benchmark
[30]. Our approach is independent of the used real-time sched-
uler, but we selected Partitioned EDF (PEDF) with partition
size of 1 core as the scheduling algorithm for our evaluation.
PEDF is optimal in our case since migration of tasks is not
allowed [31] in our system Ψ. Throughout the evaluation
experiment, all the actors of the streaming applications are
modelled as constrained-deadline tasks, where Di ≤ Ti. The
main reason is the non-existence of a feasibility scheduling
test in the case of Di > Ti for our asynchronous task model
τi = (si, Ci, Ti, Di), except for doing an actual simulation for
the application, which takes a prohibitively long time. In ad-
dition, the SDF3 benchmark does not have applications where
Di > Ti. The main objective of the implemented algorithm
is to extract the timing parameters of applications represented
as HSDF graphs (DAG or DCG). In addition, evaluating the
two deadline assignment strategies (NORM/PURE) in terms
of schedulability after extending them to cover general graphs
with cycles.

A. Experimental Setup

The evaluation process of the proposed approach involves
an experiment that compares the two deadline assignment
strategies (NORM/PURE) to each other in terms of schedu-
lability. The selected set of streaming applications used as
input for the experiment are presented in Table I in addition
to a set of eight streaming application graphs that is generated
randomly using the SDF3 benchmark tool. They represent
a mix of HSDF DAGs and DCGs. The timing constraints
(execution time Ci and throughput ζi) of these applications
have been scaled by a ratio R equal to one divided by the
minimum execution time Ci of all actors vi in the application
set A (Equation (39)). This is done to minimize the size of the
hyperperiod used by the demand bound function (dbf) [32] to
test the feasibility of an actor to be assigned to a specific core.

R =
1

min
∀vi∈A

{Ci}
(39)

The dbf is a computationally exhaustive feasibility test, due
to the direct relation between the number of checking points
that must be evaluated to test the schedulability of a task set
and the size of the hyperperiod. Therefore, the hyperperiod

size minimization speeds up the experiment and yet keep the
relative timing proportions between the applications the same.
Also, we do not consider this as a drawback of our approach,
since we aim to evaluate the contributions in this paper and
not the scalability of dbf.

In this evaluation, we carried an experiment to assess the
schedulability of NORM against PURE. The experiment basi-
cally randomly creates sets of HSDF applications. From each
set we create several application sets by changing two main
parameters. The first is the application set period percentage
T%, where the percentage of the period of the application sets
changes from 40% to 100% of the original period of the main
application set, which means that the throughput percentage of
the application set increases from 100% to 140%. The second
is the percentage of the overall platform utilization UΠ%,
where the application sets generated based on the utilization
limit of the platform. The UΠ% ranges from 69% to 99% of the
platform utilization. These application sets are allocated on the
platform and then we measure the schedulability success rate
of either NORM or PURE. The allocation of the application
tasks on the multi-core platform is done using a First Fit (FF)
approach. The acceptance of a new task to a specific core
is determined using the dbf feasibility test. The multi-core
platform is an 8x8, 64 core 2D mesh. It has been modelled
as a two-dimensional array, where each element represents a
core.

B. Experimental Results

The experimental evaluation for the proposed algorithm
is summarized in Figure 7. Whenever a task set undergoes
the dbf feasibility test and shows that it is schedulable, this
means that all the applications in the task set met their
throughput requirements, latency and precedence constraints.
Figure 7 shows that when the period of the applications
decreases (throughput increases) the schedulability of the task
set decreases no matter the value utilization limit of the
platform. This result is obvious, because when the throughput
increases the actors involved in the application cycles or CP
most likely have tighter deadlines and hence higher densities
that decreases their schedulability. Also, the results show
that the utilization limit of the platform UΠ% has a direct
relationship with T%. This means that UΠ% have an inverse
relationship with the throughput percentage of the application
set, when UΠ% decreases the schedulability of the task set
increases. However, this property is true for T% ranges from
100% to 70%. After that, the actors of the applications have
tighter deadlines and hence higher densities that decrease their
schedulability even if the platform utilization limit UΠ% is
very low. In addition, it shows that both of the deadline
assignment strategies (NORM/PURE) achieve almost similar
success rates with insignificant differences in most of the cases,
similarly to what has been reported in other evaluations [18].
However, NORM shows slightly better schedulability success
rate over PURE at higher platform utilization limit.

VII. CONCLUSIONS

In this paper, we propose an algorithm for extracting
the real-time properties of dataflow applications with timing
constraints. The algorithm can be applied on dataflow ap-
plications modelled as HSDF graphs with periodic sources.
The main novelty is that the HSDF graphs can be cyclic or
acyclic and the graph actors are modelled as arbitrary-deadline
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Figure 7: Results of scheduling sets using NORM and PURE

tasks. In addition, it enables applying traditional real-time
schedulers and analysis techniques on HSDF dataflow graphs,
a method to assign individual deadlines for real-time dataflow
actors and support for two deadline assignment techniques
(NORM/PURE) that are widely used in the literature.
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