47 research outputs found

    Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means

    Full text link
    Bayesian classification labels observations based on given prior information, namely class-a priori and class-conditional probabilities. Bayes' risk is the minimum expected classification cost that is achieved by the Bayes' test, the optimal decision rule. When no cost incurs for correct classification and unit cost is charged for misclassification, Bayes' test reduces to the maximum a posteriori decision rule, and Bayes risk simplifies to Bayes' error, the probability of error. Since calculating this probability of error is often intractable, several techniques have been devised to bound it with closed-form formula, introducing thereby measures of similarity and divergence between distributions like the Bhattacharyya coefficient and its associated Bhattacharyya distance. The Bhattacharyya upper bound can further be tightened using the Chernoff information that relies on the notion of best error exponent. In this paper, we first express Bayes' risk using the total variation distance on scaled distributions. We then elucidate and extend the Bhattacharyya and the Chernoff upper bound mechanisms using generalized weighted means. We provide as a byproduct novel notions of statistical divergences and affinity coefficients. We illustrate our technique by deriving new upper bounds for the univariate Cauchy and the multivariate tt-distributions, and show experimentally that those bounds are not too distant to the computationally intractable Bayes' error.Comment: 22 pages, include R code. To appear in Pattern Recognition Letter

    Estimating Mixture Entropy with Pairwise Distances

    Full text link
    Mixture distributions arise in many parametric and non-parametric settings -- for example, in Gaussian mixture models and in non-parametric estimation. It is often necessary to compute the entropy of a mixture, but, in most cases, this quantity has no closed-form expression, making some form of approximation necessary. We propose a family of estimators based on a pairwise distance function between mixture components, and show that this estimator class has many attractive properties. For many distributions of interest, the proposed estimators are efficient to compute, differentiable in the mixture parameters, and become exact when the mixture components are clustered. We prove this family includes lower and upper bounds on the mixture entropy. The Chernoff α\alpha-divergence gives a lower bound when chosen as the distance function, with the Bhattacharyya distance providing the tightest lower bound for components that are symmetric and members of a location family. The Kullback-Leibler divergence gives an upper bound when used as the distance function. We provide closed-form expressions of these bounds for mixtures of Gaussians, and discuss their applications to the estimation of mutual information. We then demonstrate that our bounds are significantly tighter than well-known existing bounds using numeric simulations. This estimator class is very useful in optimization problems involving maximization/minimization of entropy and mutual information, such as MaxEnt and rate distortion problems.Comment: Corrects several errata in published version, in particular in Section V (bounds on mutual information

    On a generalization of the Jensen-Shannon divergence and the JS-symmetrization of distances relying on abstract means

    Full text link
    The Jensen-Shannon divergence is a renown bounded symmetrization of the unbounded Kullback-Leibler divergence which measures the total Kullback-Leibler divergence to the average mixture distribution. However the Jensen-Shannon divergence between Gaussian distributions is not available in closed-form. To bypass this problem, we present a generalization of the Jensen-Shannon (JS) divergence using abstract means which yields closed-form expressions when the mean is chosen according to the parametric family of distributions. More generally, we define the JS-symmetrizations of any distance using generalized statistical mixtures derived from abstract means. In particular, we first show that the geometric mean is well-suited for exponential families, and report two closed-form formula for (i) the geometric Jensen-Shannon divergence between probability densities of the same exponential family, and (ii) the geometric JS-symmetrization of the reverse Kullback-Leibler divergence. As a second illustrating example, we show that the harmonic mean is well-suited for the scale Cauchy distributions, and report a closed-form formula for the harmonic Jensen-Shannon divergence between scale Cauchy distributions. We also define generalized Jensen-Shannon divergences between matrices (e.g., quantum Jensen-Shannon divergences) and consider clustering with respect to these novel Jensen-Shannon divergences.Comment: 30 page

    Revisiting Chernoff Information with Likelihood Ratio Exponential Families

    Full text link
    The Chernoff information between two probability measures is a statistical divergence measuring their deviation defined as their maximally skewed Bhattacharyya distance. Although the Chernoff information was originally introduced for bounding the Bayes error in statistical hypothesis testing, the divergence found many other applications due to its empirical robustness property found in applications ranging from information fusion to quantum information. From the viewpoint of information theory, the Chernoff information can also be interpreted as a minmax symmetrization of the Kullback--Leibler divergence. In this paper, we first revisit the Chernoff information between two densities of a measurable Lebesgue space by considering the exponential families induced by their geometric mixtures: The so-called likelihood ratio exponential families. Second, we show how to (i) solve exactly the Chernoff information between any two univariate Gaussian distributions or get a closed-form formula using symbolic computing, (ii) report a closed-form formula of the Chernoff information of centered Gaussians with scaled covariance matrices and (iii) use a fast numerical scheme to approximate the Chernoff information between any two multivariate Gaussian distributions.Comment: 41 page

    Quantifying the Similarity of Paleomagnetic Poles

    Get PDF
    An ability to compare paleomagnetic poles quantitatively is fundamental to paleogeographicreconstruction. The Fisher distribution provides a statistical framework for both constructing and relatingpaleomagnetic poles to enable comparison of estimated pole positions in paleomagnetic reconstructions.However, Fisher distribution-based confidence regions for paleomagnetic poles are often comparedusing empirical rules of thumb rather than by quantitative analysis of their full structure. Here wedemonstrate potential shortcomings of such comparisons and propose continuous metrics for quantitativecomparison of paleomagnetic poles. These metrics are simple to apply for Fisher distributions and can bemodified readily for a broad range of alternative distributions that may be more appropriate forrepresenting some paleomagnetic data sets. We demonstrate how our proposed metrics provide bothquantitative and probabilistic approaches to common tasks in paleomagnetic reconstruction, such ascomparing estimated mean pole positions with apparent polar wander paths.This work was supported by the Australian Research Council (Grant DP190100874

    Beyond scalar quasi-arithmetic means: Quasi-arithmetic averages and quasi-arithmetic mixtures in information geometry

    Full text link
    We generalize quasi-arithmetic means beyond scalars by considering the gradient map of a Legendre type real-valued function. The gradient map of a Legendre type function is proven strictly comonotone with a global inverse. It thus yields a generalization of strictly mononotone and differentiable functions generating scalar quasi-arithmetic means. Furthermore, the Legendre transformation gives rise to pairs of dual quasi-arithmetic averages via the convex duality. We study the invariance and equivariance properties under affine transformations of quasi-arithmetic averages via the lens of dually flat spaces of information geometry. We show how these quasi-arithmetic averages are used to express points on dual geodesics and sided barycenters in the dual affine coordinate systems. We then consider quasi-arithmetic mixtures and describe several parametric and non-parametric statistical models which are closed under the quasi-arithmetic mixture operation.Comment: 20 page

    The {\alpha}-divergences associated with a pair of strictly comparable quasi-arithmetic means

    Full text link
    We generalize the family of α\alpha-divergences using a pair of strictly comparable weighted means. In particular, we obtain the 11-divergence in the limit case α→1\alpha\rightarrow 1 (a generalization of the Kullback-Leibler divergence) and the 00-divergence in the limit case α→0\alpha\rightarrow 0 (a generalization of the reverse Kullback-Leibler divergence). We state the condition for a pair of quasi-arithmetic means to be strictly comparable, and report the formula for the quasi-arithmetic α\alpha-divergences and its subfamily of bipower homogeneous α\alpha-divergences which belong to the Csis\'ar's ff-divergences. Finally, we show that these generalized quasi-arithmetic 11-divergences and 00-divergences can be decomposed as the sum of generalized cross-entropies minus entropies, and rewritten as conformal Bregman divergences using monotone embeddings.Comment: 18 page
    corecore