15 research outputs found

    Quality-driven resource utilization methods for video streaming in wireless communication networks

    Get PDF
    This research is focused on the optimisation of resource utilisation in wireless mobile networks with the consideration of the users’ experienced quality of video streaming services. The study specifically considers the new generation of mobile communication networks, i.e. 4G-LTE, as the main research context. The background study provides an overview of the main properties of the relevant technologies investigated. These include video streaming protocols and networks, video service quality assessment methods, the infrastructure and related functionalities of LTE, and resource allocation algorithms in mobile communication systems. A mathematical model based on an objective and no-reference quality assessment metric for video streaming, namely Pause Intensity, is developed in this work for the evaluation of the continuity of streaming services. The analytical model is verified by extensive simulation and subjective testing on the joint impairment effects of the pause duration and pause frequency. Various types of the video contents and different levels of the impairments have been used in the process of validation tests. It has been shown that Pause Intensity is closely correlated with the subjective quality measurement in terms of the Mean Opinion Score and this correlation property is content independent. Based on the Pause Intensity metric, an optimised resource allocation approach is proposed for the given user requirements, communication system specifications and network performances. This approach concerns both system efficiency and fairness when establishing appropriate resource allocation algorithms, together with the consideration of the correlation between the required and allocated data rates per user. Pause Intensity plays a key role here, representing the required level of Quality of Experience (QoE) to ensure the best balance between system efficiency and fairness. The 3GPP Long Term Evolution (LTE) system is used as the main application environment where the proposed research framework is examined and the results are compared with existing scheduling methods on the achievable fairness, efficiency and correlation. Adaptive video streaming technologies are also investigated and combined with our initiatives on determining the distribution of QoE performance across the network. The resulting scheduling process is controlled through the prioritization of users by considering their perceived quality for the services received. Meanwhile, a trade-off between fairness and efficiency is maintained through an online adjustment of the scheduler’s parameters. Furthermore, Pause Intensity is applied to act as a regulator to realise the rate adaptation function during the end user’s playback of the adaptive streaming service. The adaptive rates under various channel conditions and the shape of the QoE distribution amongst the users for different scheduling policies have been demonstrated in the context of LTE. Finally, the work for interworking between mobile communication system at the macro-cell level and the different deployments of WiFi technologies throughout the macro-cell is presented. A QoEdriven approach is proposed to analyse the offloading mechanism of the user’s data (e.g. video traffic) while the new rate distribution algorithm reshapes the network capacity across the macrocell. The scheduling policy derived is used to regulate the performance of the resource allocation across the fair-efficient spectrum. The associated offloading mechanism can properly control the number of the users within the coverages of the macro-cell base station and each of the WiFi access points involved. The performance of the non-seamless and user-controlled mobile traffic offloading (through the mobile WiFi devices) has been evaluated and compared with that of the standard operator-controlled WiFi hotspots

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modied our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the eld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Traffic Scheduling in Software-defined Backhaul Network

    Get PDF
    In the past few years, severe challenges have arisen for network operators, as explosive growth and service differentiation in data demands require an increasing number of network capacity as well as dynamic traffic management. To adapt to the network densification, wireless backhaul solution is attracting more and more attentions due to its flexible deployment. Meanwhile, the software-defined network (SDN) proposes an promising architecture that can achieve dynamic control and management for various functionalities. In this case, by applying the SDN architecture to wireless backhaul networks, the traffic scheduling functionality may satisfy the ever-increasing and differentiated traffic demands. To tackle the traffic demand challenges, traffic scheduling for software-defined backhaul networks (SDBN) is investigated from three aspects in this thesis. In the first aspect, various virtual networks based on service types are embedded to the same wireless backhaul infrastructure. An algorithm, named VNE-SDBN, is proposed to solve the virtual network embedding (VNE) problem to improve the performance of the revenue of infrastructure providers and virtual network request acceptance ratio by exploiting the unique characteristics of SDBNs. In the second aspect, incoming traffic is scheduled online by joint routing and resource allocation approach in backhaul networks operated in low-frequency microwave (LFM) and those operated in millimetre wave (mmW). A digraph-based greedy algorithm (DBGA) is proposed considering the relationship between the degrees of vertices in the constructed interference digraph and system throughput with low complexity. In the third aspect, quality-of-service is provided in terms of delay and throughput with two proposed algorithms for backhaul networks with insufficient spectral resources. At last, as a trial research on E-band, a conceptual adaptive modulation system with channel estimation based on rain rate for E-band SDBN is proposed to exploit the rain attenuation feature of E-band. The results of the research works are mainly achieved through heuristic algorithms. Genetic algorithm, which is a meta-heuristic algorithm, is employed to obtain near-optimal solutions to the proposed NP-hard problems. Low complexity greedy algorithms are developed based on the specific problem analysis. Finally, the evaluation of proposed systems and algorithms are performed through numerical simulations. Simulations for backhaul networks with respect to VNE, routing and resource allocation are developed

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Efficient radio resource management for the fifth generation slice networks

    Get PDF
    It is predicted that the IMT-2020 (5G network) will meet increasing user demands and, hence, it is therefore, expected to be as flexible as possible. The relevant standardisation bodies and academia have accepted the critical role of network slicing in the implementation of the 5G network. The network slicing paradigm allows the physical infrastructure and resources of the mobile network to be “sliced” into logical networks, which are operated by different entities, and then engineered to address the specific requirements of different verticals, business models, and individual subscribers. Network slicing offers propitious solutions to the flexibility requirements of the 5G network. The attributes and characteristics of network slicing support the multi-tenancy paradigm, which is predicted to drastically reduce the operational expenditure (OPEX) and capital expenditure (CAPEX) of mobile network operators. Furthermore, network slices enable mobile virtual network operators to compete with one another using the same physical networks but customising their slices and network operation according to their market segment's characteristics and requirements. However, owing to scarce radio resources, the dynamic characteristics of the wireless links, and its capacity, implementing network slicing at the base stations and the access network xix becomes an uphill task. Moreover, an unplanned 5G slice network deployment results in technical challenges such as unfairness in radio resource allocation, poor quality of service provisioning, network profit maximisation challenges, and rises in energy consumption in a bid to meet QoS specifications. Therefore, there is a need to develop efficient radio resource management algorithms that address the above mentioned technical challenges. The core aim of this research is to develop and evaluate efficient radio resource management algorithms and schemes that will be implemented in 5G slice networks to guarantee the QoS of users in terms of throughput and latency while ensuring that 5G slice networks are energy efficient and economically profitable. This thesis mainly addresses key challenges relating to efficient radio resource management. First, a particle swarm-intelligent profit-aware resource allocation scheme for a 5G slice network is proposed to prioritise the profitability of the network while at the same time ensuring that the QoS requirements of slice users are not compromised. It is observed that the proposed new radio swarm-intelligent profit-aware resource allocation (NR-SiRARE) scheme outperforms the LTE-OFDMA swarm-intelligent profit-aware resource (LO-SiRARE) scheme. However, the network profit for the NR-SiRARE is greatly affected by significant degradation of the path loss associated with millimetre waves. Second, this thesis examines the resource allocation challenge in a multi-tenant multi-slice multi-tier heterogeneous network. To maximise the total utility of a multi-tenant multislice multi-tier heterogeneous network, a latency-aware dynamic resource allocation problem is formulated as an optimisation problem. Via the hierarchical decomposition method for heterogeneous networks, the formulated optimisation problem is transformed to reduce the computational complexities of the proposed solutions. Furthermore, a genetic algorithmbased latency-aware resource allocation scheme is proposed to solve the maximum utility problem by considering related constraints. It is observed that GI-LARE scheme outperforms the static slicing (SS) and an optimal resource allocation (ORA) schemes. Moreover, the GI-LARE appears to be near optimal when compared with an exact solution based on spatial branch and bound. Third, this thesis addresses a distributed resource allocation problem in a multi-slice multitier multi-domain network with different players. A three-level hierarchical business model comprising InPs, MVNOs, and service providers (SP) is examined. The radio resource allocation problem is formulated as a maximum utility optimisation problem. A multi-tier multi-domain slice user matching game and a distributed backtracking multi-player multidomain games schemes are proposed to solve the maximum utility optimisation problem. The distributed backtracking scheme is based on the Fisher Market and Auction theory principles. The proposed multi-tier multi-domain scheme outperforms the GI-LARE and the SS schemes. This is attributed to the availability of resources from other InPs and MVNOs; and the flexibility associated with a multi-domain network. Lastly, an energy-efficient resource allocation problem for 5G slice networks in a highly dense heterogeneous environment is investigated. A mathematical formulation of energy-efficient resource allocation in 5G slice networks is developed as a mixed-integer linear fractional optimisation problem (MILFP). The method adopts hierarchical decomposition techniques to reduce complexities. Furthermore, the slice user association, QoS for different slice use cases, an adapted water filling algorithm, and stochastic geometry tools are employed to xxi model the global energy efficiency (GEE) of the 5G slice network. Besides, neither stochastic geometry nor a three-level hierarchical business model schemes have been employed to model the global energy efficiency of the 5G slice network in the literature, making it the first time such method will be applied to 5G slice network. With rigorous numerical simulations based on Monte-Carlo numerical simulation technique, the performance of the proposed algorithms and schemes was evaluated to show their adaptability, efficiency and robustness for a 5G slice network

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Generalised proportional fairness scheduler for broadband orthogonal frequency-division multiple access systems with heterogeneous traffics

    No full text
    [[abstract]]The popular proportional fairness (PF) scheduler is very suitable for achieving a trade-off between system throughput and fairness, but the authors observed two issues while applying it to broadband networks with heterogeneous traffics. As the PF scheduler only considers average throughput and channel quality, it favours users with low-data rates. In addition, the credits of idle users accumulate because their average throughputs decrease with time during their idle periods. This study proposes a generalised PF scheduler that considers profit instead of average throughput, and it integrates a new mechanism for updating the utility functions to mitigate the issue of credit accumulation. Simulation results show that the proposed PF scheduler outperforms the traditional algorithms in terms of fairness and transient behaviour.[[note]]SC
    corecore