4,236 research outputs found

    Functional Optimisation of Online Algorithms in Multilayer Neural Networks

    Full text link
    We study the online dynamics of learning in fully connected soft committee machines in the student-teacher scenario. The locally optimal modulation function, which determines the learning algorithm, is obtained from a variational argument in such a manner as to maximise the average generalisation error decay per example. Simulations results for the resulting algorithm are presented for a few cases. The symmetric phase plateaux are found to be vastly reduced in comparison to those found when online backpropagation algorithms are used. A discussion of the implementation of these ideas as practical algorithms is given

    Neural Network Modelling of Constrained Spatial Interaction Flows

    Get PDF
    Fundamental to regional science is the subject of spatial interaction. GeoComputation - a new research paradigm that represents the convergence of the disciplines of computer science, geographic information science, mathematics and statistics - has brought many scholars back to spatial interaction modeling. Neural spatial interaction modeling represents a clear break with traditional methods used for explicating spatial interaction. Neural spatial interaction models are termed neural in the sense that they are based on neurocomputing. They are clearly related to conventional unconstrained spatial interaction models of the gravity type, and under commonly met conditions they can be understood as a special class of general feedforward neural network models with a single hidden layer and sigmoidal transfer functions (Fischer 1998). These models have been used to model journey-to-work flows and telecommunications traffic (Fischer and Gopal 1994, Openshaw 1993). They appear to provide superior levels of performance when compared with unconstrained conventional models. In many practical situations, however, we have - in addition to the spatial interaction data itself - some information about various accounting constraints on the predicted flows. In principle, there are two ways to incorporate accounting constraints in neural spatial interaction modeling. The required constraint properties can be built into the post-processing stage, or they can be built directly into the model structure. While the first way is relatively straightforward, it suffers from the disadvantage of being inefficient. It will also result in a model which does not inherently respect the constraints. Thus we follow the second way. In this paper we present a novel class of neural spatial interaction models that incorporate origin-specific constraints into the model structure using product units rather than summation units at the hidden layer and softmax output units at the output layer. Product unit neural networks are powerful because of their ability to handle higher order combinations of inputs. But parameter estimation by standard techniques such as the gradient descent technique may be difficult. The performance of this novel class of spatial interaction models will be demonstrated by using the Austrian interregional traffic data and the conventional singly constrained spatial interaction model of the gravity type as benchmark. References Fischer M M (1998) Computational neural networks: A new paradigm for spatial analysis Environment and Planning A 30 (10): 1873-1891 Fischer M M, Gopal S (1994) Artificial neural networks: A new approach to modelling interregional telecommunciation flows, Journal of Regional Science 34(4): 503-527 Openshaw S (1993) Modelling spatial interaction using a neural net. In Fischer MM, Nijkamp P (eds) Geographical information systems, spatial modelling, and policy evaluation, pp. 147-164. Springer, Berlin

    Applications of recurrent neural networks in batch reactors. Part I: NARMA modelling of the dynamic behaviour of the heat transfer fluid

    Get PDF
    This paper is focused on the development of nonlinear models, using artificial neural networks, able to provide appropriate predictions when acting as process simulators. The dynamic behaviour of the heat transfer fluid temperature in a jacketed chemical reactor has been selected as a case study. Different structures of NARMA (Non-linear ARMA) models have been studied. The experimental results have allowed to carry out a comparison between the different neural approaches and a first-principles model. The best neural results are obtained using a parallel model structure based on a recurrent neural network architecture, which guarantees better dynamic approximations than currently employed neural models. The results suggest that parallel models built up with recurrent networks can be seen as an alternative to phenomenological models for simulating the dynamic behaviour of the heating/cooling circuits which change from batch installation to installation.Publicad

    Learning feedforward controller for a mobile robot vehicle

    Get PDF
    This paper describes the design and realisation of an on-line learning posetracking controller for a three-wheeled mobile robot vehicle. The controller consists of two components. The first is a constant-gain feedback component, designed on the basis of a second-order model. The second is a learning feedforward component, containing a single-layer neural network, that generates a control contribution on the basis of the desired trajectory of the vehicle. The neural network uses B-spline basis functions, enabling a computationally fast implementation and fast learning. The resulting control system is able to correct for errors due to parameter mismatches and classes of structural errors in the model used for the controller design. After sufficient learning, an existing static gain controller designed on the basis of an extensive model has been outperformed in terms of tracking accuracy

    Multi-step learning rule for recurrent neural models: an application to time series forecasting

    Get PDF
    Multi-step prediction is a difficult task that has attracted increasing interest in recent years. It tries to achieve predictions several steps ahead into the future starting from current information. The interest in this work is the development of nonlinear neural models for the purpose of building multi-step time series prediction schemes. In that context, the most popular neural models are based on the traditional feedforward neural networks. However, this kind of model may present some disadvantages when a long-term prediction problem is formulated because they are trained to predict only the next sampling time. In this paper, a neural model based on a partially recurrent neural network is proposed as a better alternative. For the recurrent model, a learning phase with the purpose of long-term prediction is imposed, which allows to obtain better predictions of time series in the future. In order to validate the performance of the recurrent neural model to predict the dynamic behaviour of the series in the future, three different data time series have been used as study cases. An artificial data time series, the logistic map, and two real time series, sunspots and laser data. Models based on feedforward neural networks have also been used and compared against the proposed model. The results suggest than the recurrent model can help in improving the prediction accuracy.Publicad
    corecore