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21020, Ispra, VA, Italy bstractThis paper is focused on the development of nonlinear models, using artificial neural networks, able to provide appropriate 
predictions when acting as process simulators. The dynamic behaviour of the heat transfer fluid temperature in a jacketed 
chemical reactor has been selected as a case study. Different structures of NARMA (Non-linear ARMA) models have been 
studied. The experimental results have allowed to carry out a comparison between the different neural approaches and a 
first-principles model. The best neural results are obtained using a parallel model structure based on a recurrent neural network 
architecture, which guarantees better dynamic approximations than currently employed neural models. The results suggest that 
parallel models built up with recurrent networks can be seen as an altemative to phenomenological models for simulating the 
dynamic behaviour of the heating/cooling circuits which change from batch installation to installation. © 1997 Elsevier Science 
S.A. 
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1. Introduction 

The rapid development of the chemical industry in 
the past decades has increased the complexity of chem-
ical plants, the diversity of products and the number of 
processes. This has produced. a parallel increase of 
batch reactors, which due to their versa ti lit y allow the 
production of special chemicals with very good yields in 
small amounts when compared to those of continuous 
processes and permit a rapid change from one process 
to other with minor modifications in the installation. 

However, batch processes are usually very complex, 
with reaction systems that normally are not entirely 
known, they have also strong non-linear dynamics and 
their parameters are varying with time. Furthermore, 
the fact that in a batch cycle there is no steady state 
implies that the operator must perform continuous 
corrections to control the process. 
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It has be en argued that due to the small production 
levels, time constraints and the enormous variety of 
processes, the understanding of the reactor dynamic 
behaviour is usualIy not economicalIy justified. How-
ever, we believe that there are a considerable number of 
advantages, the most important being the optimization 
of such processes. 

Mathematical modelling and dynamic simulation ap-
plied to these processes have proven to be useful tools 
to obtain optimum yields [1] and to carry out thermal 
hazard assessment [2,3]. However, this type of applica-
tions has been performed mainly for specific reactions 
in which the thermo-kinetic model was well-known. In 
the last years, due to the fast development of digital 
computers, on-line identification applications have ap-
peared [4-6]. These applications are based on the fact 
that the possibilities to optimize and to control this 
type of reactors are limited, because only few state 
variables or pararneters can be measured on-line and 
amongst these, only a few may be incorporated in the 
control orjand decision chains. However, if the state 
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variables and fundamental parameters can be inferred, 
these new data can be used to perform predictive 
calculations about the future behaviour of the reactor, 
to detect in advance dangerous situations, to improve 
the control algorithms, and to assist the plant operators 
in their decisions about the correct measures to be 
adopted under certaín situations. Therefore, the applí-
cation of mathematical modelling, estimation tech-
niques and numerical simulation is of great interest in 
this field [7]. 

In sorne cases, phenomenological or first-principle 
models, which are generated according to the physical 
laws governing the dynamic evolution of the system, 
are often not available and in many cases they are time 
consuming and extremely expensive to build up. Hence, 
the development of efficient methods for simulating 
nonlinear dynamic systems is of great value. 

The mathematical modelling of a batch reactor is 
based on the formulation of the mass and heat balances 
that leads to a set of algebraic-differential equations 
which, when sol ved, produce the temperature and con-
centration profiles as a function of time. One of the 
non-trivial problems when simulating isothermaI batch 
operations is the modelling of the heating/cooling cir-
cuits as well as their controllers which wiIl influence the 
dynamic behaviour of the reactor temperature as well 
as the safety of the process [8]. Furthermore, the heat-
ingjcooling circuits will change from instalIation to 
installation and hence a new mathematical mode! has 
to be deve!oped. On the other hand, once the thermo-
kinetic parameters of the chemical reaction have been 
found, the modelling of the internal reactor dynamics 
may be carried out in a more standard way. There are 
an extensive number of works in the literature dealing 
with mas s transfer and heat transfer scaling-up pro ce-
dures [9]. 

The present study is concerned with the generation of 
nonlinear models capable of acting, in an efficient 
fashion, as process simulators. That is, given the initial 
state of the system y(O) and the input signal u(k), the 
model should be able to predict the outputs of the 
process over a large number of sampling times. Situa-
tions where models have to act as process simulator are 
often presented in control applications. The use of 
neural models for temperature control of the heat 
transfer fluid temperature wilI be covered in the second 
part of this work. 

NARMA (Non-linear ARMA) models provide a 
unified representation for a wide class of nonlinear 
systems [10]. In a NARMA description the system is 
modelled in terms of a nonlinear functional expansion 
of lagged inputs and outputs. That functional can be 
very complex and its explicit form is usually unknown. 
However, the development of mathematical analysis 
has led to the discovery of important classes of approx-
imation functions which can be used to that end. These 

include polynomials, trigonometric series, orthogonal 
functions, splines, and artificial neural networks 
(ANNs) [11,12]. 

The application of ANNs to nonlinear dynamic pro-
cess modelling problem has been dominated by the 
static multilayer neural networks [13-15]. In these 
structures the processing of input patterns does not 
depend upon the order of presentation during the train-
ing. Moreover, the creatíon of cycles or loops among 
neurons is forbidden. Thus, the representation and 
processing of temporal information is not an intrinsic 
capability of these architectures, even if it is always 
possible to use static structures to encode temporal 
information. The approach consists in forming tapped 
delay line representations of applied ínputs and mea-
sured outputs. Thus, they can be used to generate 
NARMA models which are normaIly referred to as 
series-parallel models [16-19]. However, these models 
cannot act as process simulators because a discrete 
sequen ce of delayed measured output of the process is 
required. 

Narendra and Pathasarthy [20] have proposed a dif-
ferent structure of neural NARMA model which con-
sists in replacing the delayed measured output of 
process in the series-parallel mode! by the model pre-
dicted values at earlier time steps when a process simu-
lator is required. They are normally referred to as 
parallel models and they have the capability of simulat-
ing the dynamic system. However, in this paper it is 
shown that sínce its parameters have been identified 
using a multilayer feedforward network, the approxi-
mation of the dynamic beha viour of the process pro-
vided by this paralle1 structure could not be suitable. 

An alternative to built up neural nonlinear simula-
tors is the use of recurrent neural networks (RNN). 
RNN are characterised by the presence of feedback 
connections between the neurons of the same layer, 
including the originating node itself, and/or connections 
to nodes of preceding layers. It has been shown that the 
capabilíties, for temporal representation of recurrent 
networks, are considerably grater than those of purely 
static networks [21-25]. Furthermore, models built up 
with recurrent structures are capable of acting as pro-
cess simulators beca use any discrete sequence of de-
layed input and output pro ces s must be considered to 
represent temporal information. However, RNN are 
significantly more complex than feedforward neural 
networks and presently there is less experience with 
their operation. This complexity is due, principally, to 
the in crease in the adjustable parameters and to the 
problems found in generating efficient learning al-
gorithms to guarantee the convergence of the network 
weights. 

The neural network arcruteeture studied in this paper 
to build up nonlinear models able of acting as process 
simulators, is a particular architecture of RNN, which 
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is characterised by its low degree of complexity, i.e. 
equivalent to the complexity degree of the multilayer 
feedforward network. 

The paper is organized as follows. The experimental 
set-up of the pilot plant reactor, the control configura-
tion as well as the first principIes model are presented in 
the second section. The RNN architecture developed in 
this work as well as the dynamic backpropagation 
learning algorithm is described in the third section. The 
fourth section deals with the construction of neural 
NARMA modeIs. A series- parallel modeI identifica-
tion and two different paraIlel modeIs structures are 
presented. In the fifth section the parallel structures are 
tested and compared with the experimental data. In 
addition, their performances are compareª- with the 
phenomenological modeI. The results suggest that par-
allel models built up with recurrent networks can be 
seen as an alternative to phenomenological models. 

2. Experimental configuration and first principies model 

To test the neural NARMA models, the modeIling of 
a real process which describes the dynamic behaviour 
of the heat transfer fluid temperature circulating in the 
jacket of a batch reactor has been selected as a case 
study. In this section, sorne issues concerning to the 
reactor and the heating/cooling circuits are presented. 
Furthermore, to compare the neural simulation results 
a phenomenological model has been developed and 
their parameters characterized. 

2.1. Reactor and heating / cooling circuits description 

The FIRES (Facility for Investigation Runaway 
Events Safely) reactor [26,27] is a 100-1 stainless steel, 
glass-lined pilot reactor which is equipped with a stan-
dard cooling/heating jacket and is provided with con-
densers, to allow the study of reactions under reflux 
conditions. The overaIl experimental set-up is presented 
in Fig. 1 and the main specifications for the reactor, 
jacket and stirrer are listed in Table 1. 

Table l 
Main specifications of the reactor, jacket and stirrer 

Fig. 1. Schematic layout of the FIRES facility. 

Operation in various thermal modes, i.e. isothermal, 
isoperibolic or adiabatic, is achieved by appropriate 
control of the temperature of the heat transfer fluid. 

The cooling/heating systems, see Fig. 2, consist of 
two loops in which aSO/50 wt% glycol-water mixture 
circulates at high speed, i.e. 12 m3 h -l. The main 
circuit is connected to the reactor jacket and contains a 
heat so urce up to 40 kW of power. The secondary 
circuit pro vides cold fluid to the main loop and has a 
large capacity vesseI, 2 m3, connected to a refrigeration 
unit of 20 kW. The coolant is stored at a temperature 
between - 20 and - 25°C and it can be used for 
providing full cooling in emergency situations through 
a bypass valve. 

-- --

2.2. Description of the control configuration 

The control configuration is surnmarised in Fig. 2. 
When the process is carried out in isothermal condi-
tions, the reactor temperature is maintained at its de-
sired value, Tr'P, by adjusting the temperature set-point 
for the glycol-water mixture recirculating through the 
reactor jacket, Tesp. This is accomplished by the master 
controller. The temperature of the heat transfer fluid 

Reactor Jacket heat exchange Stirrer 

Volume: 
Diameter: 
Height: 
Body material: 
Thickness: 
Lining: 
Max. T: 
Max. P: 

100 l 
0.5 m 
0.5 m 
EH 21 HI 
12.0= 
Nucerite(3115), 1.5 = 
525 K 
16 bar 

Max. exchange area: 
Max. pressure: 
Max. temperature: 

0.9 m2 

16 bar 
525 K 

Type: 
Diameter: 
Max -----fuJeed: 
Baffles: 

Turbine 
0.23 m 
300 rpm 
4 
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Fig. 2. Schematic layout of the heating¡cooling circuits and cascade temperature controllers. 

which circula tes through the reactor jacket is controlled 
using a slave controIler. When the slave controlIer 
output is between 11 and 100% (equivalent to digital 
signal between 450 and 4095), the controlIer is in 
cooling mode. In this mode the controIler output i5 
used to open the control valve VI, while in paralleI the 
valve V2 is c10sed by the same percentage. When VI is 
open, the coolant at - 200 e enter5 to the main loop 
cooling the glycol-water mixture recirculating through 
the jacket. The correlation between the flow of the cold 
fluid, Qe, and the signal send by the slave controIler i5 
shown in Fig. 3a. For slave controIler output between O 
and 10% the controIler is in heating mode. The power 
generated, qh' measured during characterisation experi-
ments is shown in Fig. 3b as a function of the control 
action. As can be seen the control action is non linear in 
both cases. 

2.3. Experimental test cases 

Three different experimental data sets, summarised in 
Table 2, have been used to estima te the unknown 
parameters of the developed models (phenomenologicaI 
and neural) and to test their ability to track the dy-
namic behaviour of the heat transfer fluid temperature. 
These data sets have been obtained by manipulating 
directly the control signal u and, hence, without the 
intervention of the control system. The temperatures of 
the reactor (Tr) , inlet and outlet jacket (Te), ambient 
(Ta) and coolant reservoir (Te), at three different 
points, have been measured and recorded. Further-
more, the flow rates of the heat transfer fluid have also 
be en measured using a coriolis flow meter. The sam-
pling period time was lOs. 

The first experiment, Data l, was carried out at ambi-
ent temperature and empty reactor, i.e. no heat transfer 
between the reactor and jacket. This experiment has 
been used to adjust the unk.nown parameters in the 
neural and phenomenological models. 

However, in the development of the first principIe 
model additional information was required and, hence, 
characterization experiments [28] have been also used 
to estimate different values. e.g. power introduced by 
the pumps in the circuits, controIler characteristics, heat 

3.5 ¡ 
3.0 

2,5 

2.0 _ 

Qc 1.5 f 
1.0 t 
0.5 _ 

l. Experimental points 

0.0 :-.1 _-:::-~~~_~ __ +----¡.._-+----" o ~ I 1 I 500 1000 1S00 2000 2500 
control signa! 

(a) 3000 3500 4000 

45 

I • Experimental points I 
I 

40 
35 

30 

I 

~I 
I I 50 100 150 200 250 300 350 400 control signa! 

~¡ qh 
20 
15 

10 

~t 
O 

(b) 

Fig. 3. Correlation between the control signal, u, and (a) Qc; (b) qh' 
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Table 2 
Experimental data sets 

Reactor 

Data! Empty 
Data2 80 1. water 
Data 3 80 1. water 

Stirrer (rpm) 

o 
200 
300 

Te (initial) (oC) 

20 
20 
60 

losses, etc. Furthermore, the overal! heat transfer coeffi-
cient, UA, was measured using heat flow calorimetry 
[29]. 

The second and third experiments, Data2 and Data3, 
were performed with 80 1 of water inside the reactor, 
i.e. including heat transfer effects between reactor and 
jacket, and at different temperatures, i.e. different heat 
loses, and stirring speeds, to study the predictive capa-
bilities in the different model!ing approaches. 

2.4. First principles model 

To develop a phenomenological model, the heatingj 
cooling circuits, see Fig. 2, were divided in different 
thermally homogeneous subsystems and separate en-
ergy balances were applied. The division was effectu-
ated according to the characteristics of the system and 
after different tests. The subsystems identified are the 
following: the main loop Te, the insulation of the main 
loop Tp, and the cold reservoir Tc. During previous 
experiments inhomogeneities in the temperatures of the 
2 m 3 cold reservoir were observed. For this reason, it 
was divided into six equal thermal capacity parts. 

The followings considerations and simplifications 
have been taken into account: 
1. The electrical heating and the openingjclosing of the 

control valves are zero-time constant processes. 
2. The heat losses are modelled with constant transfer 

coefficients. 
3. The specific heat capacity, Cp, of the heat transfer 

fluid (50/50 wt% glycol-water mixture) is calculated 
as a function of the temperature. 

4. No secondary heat effects in the reactor have been 
considered, e.g. no heat losses, no power introduced 
by agitation, etc. 

5. No heat accumulation in the reactor wal! has been 
taken into account [30]. 

Energy balances in the subsystems allowed the 
time-profile of temperature to be written as follows: 

6. Energy balance in the main loop: 

dTe 1 dt = re [qrxn + qh + qp - Qe . CPe(Te - Tco)] 

+ Tp- T (1) 
reo 

7. Energy balance in the isolation of the main loop: 

dTp Te -Tp qL 

dt _cre~ ,~. 
(2) 

8. Energy balance in the cooling loop: 

dTc¡ 6 -
==- =~[Qe . CPe(Te - Tc) + Qk . Cpe(Tk - Tc¡)] clL __ ._L__ _ 

dTc¡ 6 
--=-QT' Cpe(Tc¡-Tc¡) 

dt re 
dTCQ. =6_QT . CpcCTc¡ - Tc

2
) 

dt re 
dTc3 6 
-- = -QT . CPe(T~ - Tc3) 

dt re 
dTc4 6 
--=-QT . CPe(Tc3 - Tc4) 

dt re 
dTco 6 -
-- = -QT . Cpe(Tc4 - Tco) 

dt re 
9. Energy balance in the reactor: 

dTr 
-._--dt = rr . qrxn 

2.A.1._Characterisation oi model parameters 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

In order to characterise the model parameters, differ-
ent experiments were performed [8]. The experiments 
have shown the following results: 
1. POlVer introduced by the recirculation pump (qp): The 

following correlation is used: 

(
352.6) qikW) = 1.38 exp ~ (lO) 

2. Flow circulating in the main loop (Qe): The flow is 
measured by a mass flow meter using coriolis force. 
Fig. 4 shows a typical operation. The main fluctua-
tions are produced when opening the controlvalves 
that regulate the flow distribution between the main 
loop and the cold reservoir. The physical model 
presented in this section is built up assuming the 
heat transfer fluid mas s flow has constant value 
equal to 197 kg s - ¡ . 

240 1 - -1 

230r ~Ul 
~, .. ~¡ L ... 
¡90~ r 
180 t 1 

170 ll-~_~ __ --+:-:---::-:-:_:::-::--::;::::--=;:-=· o ~ ~ ~ ~ ~ ~ ~ ~ ~ 
Time (x 10 s.) 

Fig. 4. Measured mass flow in the main loop during Data l. 
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Table 3 
Values of physical model parameters 

Parameter Value 

1156 (s) 
2504 (s) 

500 (s) 
605.35+ 1.28Te (kJ K- 1) 

9191 (kJ K-l) 

3. Control actions (Qe and qJ: They are calculated 
according to the control system output as shown in 
Fig.4. 

4. Flow circulating in the cryostat (QJ: A value 0.9 kg 
s - 1 was measured by a coriolis type flow meter. QT 
is obtained by the adding of Qe and Qk' 

5. Heat losses in the main loop (qJ: Using data from 
heatingjcooling experiments the following correla-
tion was obtained: 

qL(kW) = (0.46) - 9.56 . 10 - 4Te) . (Te - Ta) (11) 

6. Thermal capacities (r) and time constants (r): 
Firstly, they were approximated according to the 
total mass of the considered subsystem. Afterwards, 
they were optimised using the experimental data set 
Data 1 (empty reactor, qrxn = 0.0). The values ob-
tained are shown in Tab1e 3. For the simulation of 
the experiments Data2 and Data3, qrxn = UA(Tr-
Te). 

2.5. Comparison between experimental and simulated 
results 

The experimental and simulated temperature-time 
profiles for the jacket and cooling circuits (Te and Tc2) 

for the experiment Data 1 are shown in Fig. 5a whereas 
in Fig. 5b and c the experimental and simulated reactor 
and jacket temperatures, for experiments Data2 and 
Data3, are presented. Notice that the model cannot 
explain the magnitude of the temperature fluctuations 
in the heat transfer fluid when the control valve is 
opened to introduce cold fluid in the main loop; this is 
due to the fact, as can be seen in Fig. 4, that the flow 
circulating in the main loop (Qe), which is considered 
constant for the simulation, experiments fluctuations 
when the control valve to the cooling circuit is opened. 

3. Recurrent neural network 

3.1. Recurrent neural architecture 

The RNN is constructed by starting from a multi-
layer feedforward neural network and by adding feed-
back connections from the output neuron to the input 

(a) 4D I 

30 t 
20 ___ _ 

i~ 1: j' -Experimental Te 
I - -Predieted Te 

-la -Experimental Te 
, ... Predieted Te 

-20 b lOO 200 300 1 
400 500 600 

Time (xlOs.) 
700 800 900 

(b) 

~b:+ Te 
Tr 

, '- Experimental Te I 
10 1 --Predicted Te , - Experimental Tr 
5 . . . Predieted Tr 

O' I Joo O 100 100 300 500 
Time (dOs.) 

(e) 80 I 

70~ 

:1 ~--. ....:;r 
Te 
Tr 

:t -Experimental Te 
- -Predicted Te 
-Experimental Tr 
... Predicted Tr 

I 201 200 250 joo Joo O 50 100 150 350 
Tune (dOs.) 

Fig. 5. Te, Tr, Te time-profijes provided by first principIe model. (a) 
Data 1 (b) Data2 (e) Data3. 

layer, as it is shown in Fig. 6. The neurons in the RNN 
are divided in the input, hidden and output layers. The 
input layer is formed by two groups of neurons. The 
first group acts as the input to the network receiving the 
input patterns from the external world, I(k) = 
(l¡(k), ... , In¡Ck)). The second group is formed by the 
context neurons which memorise the output of the 
network associated to pattems previously presented. 

o(k) 

input layer hiddenlayer outputlayer 

Fig. 6. Recurrent neura! network architecture. 
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Introducing the vector to C(k) = (C¡(k), ... , Cn (k» in-
dicate the activation of context neurons, each ccompo-
nent is calculated as, 

C¡(k) = z-i(o(k», i = 1, , .. , nc (12) 

where o(k) is the network answer to the kth input 
pattern and :;-i is an operator defined as: given x(1), 
x(2), ... , x(n ), ... a discrete sequence, the operator z - ¡ 

delays by i terms that sequence, this is, z - ¡(x (n ) = 
x(n - i). Bence, when the kth input pattern is pre-
sented to the network each context node receives the 
output of the network associated to k - 1 th, k - 2th, ... , 
k - ncth input patterns previously presented. Notice 
that when the variable k is referred to as the discrete 
time, the context neurons receive the output of the 
network delayed by 1, 2, ... , nc unit time steps. 

Consider a RNN composed of L layers, with each 
1ayer containing nI neurons, for 1 = 1, ... , L. Referring 
s)(k) to as the activation of the jth node located at the 
lth layer of the RNN for the kth input pattern, the 
equations describing the activation of the RNN can be 
expressed as follows: 

s)(k)=l¡(k), j=l, .. ,n¡ 

¡ {tCk) k:::;'n c 
sj+n¡(k) = C/k) k ¿nc + l' 

j = 1, ... , ni' 1 = 1, ... ,L 

with t(k) the target output. 

s)(k) = O'et>')i . sj-¡(k) + fl)). 
j=l, ... ,n¡l=l, ... ,L 

o(k) = sf(k) 

where 

(13) 

(14) 

(15) 

(16) 

1. I(k) = (I¡(k), ... , In (k» is the kth input pattern. 
¡ 

2. W I = (wJ;) is the matrix weight associated to the 
connections between the nodes located at 1 - 1 th 
layer and lth layer; nI = !i) is the vector bias associ-
ated to the nodes of the lth layer. Both weights and 
bias are the adjustable parameters of the network. 

3. 0'0 is the activation function which is often chosen 
from smooth sigmoida1 functions. 

The RNN determines a correspondence from 91 n
¡ to 

91, denoted by Fk, C(k), W): 

o(k) = Fr(I(k), C(k), W) (17) 

3.2. Learning algorithm: dynamic backpropagation 

The learning procedure involves the determination of 
a vector W* which optimises the following perfor-
mance function E( W): 

E(W) = _1_. ~ (t(k) _ O(k»2 
2Np k= ¡ 

(18) 

where Np is the number of input-output patterns. The 
weights are adjusted along the negative gradient direc-
tion of local errors as: 

oo(k) 
w(k) = w(k - 1) + x . (t(k» - o(k» . -,,-, 

ow 

Vw, Vk = 1, ... , Np (19) 

Since recurrent connections appear in the RNN, the 
traditional backpropagation algorithm [13]-also re-
ferred in this study to as static backpropagation al-
gorithm-cannot be direct1y used to calculate the term 
oo(k)/ow in Eq. (19). The RNN output depends on 
earlier network activations and the total derivative con-
cept must be app1ied ¡. The learning a1gorithm proposed 
in this work to carry out the training of the RNN is a 
reworked version of dynamic backpropagation al-
gorithms developed in [20]. 

Considering that the vector C(k) is composed by 
RNN output delayed, Eq. (12), and applying the total 
derivative concept in Eq. (17), it follows that: 

ooCk) oFrCI(k), C(k), W) 
ow ow 

+ I OFr(IC~), C(k), W) . oC¡Ck) 
¡= ¡ oC¡(k) OW 

(20) 

where, oFr(I(k):C(k): W)/3w,- a~(ICk), C(k), W)/ 
3C¡(k) are the partial derivatives of the RNN output 
with respect to the parameter w and to the context 
neurone C¡Ck), respective1y. 

Taking account that C¡(k) = o(k-i), it follows: 

oC¡(k) oo(k - i) 

3w 
(21) 

OH' 
Denoting x(k) = oo(k)/ow, the variation of the kth 

pattern RNN output can be obútined as- the output at 
time k of a dynamic process governed by the following 
equation: 

x(k) 

3Fr(I(k), C(k), W) ~ 3FrC!(k), C(k), W) k 
= " + L.. . x( 

OH' ¡= ¡ oC¡Ck) 

- i) (22) 

with initia1 conditions x(O) = x(1) = ... = x(nJ = O 
Both terms oFr(I(k), C(k), W)/ow and 

3FrCI(k), C(k), W)/3C¡(k) have to be calcu1ated for 
each kth input pattern. Since the internal structure of 
the RNN is a feedforward network, those terms can be 
determined using the static backpropagation [31]. 

Therefore, at each time step, the output of the dy-
namic system given by Eq. (22) is calcu1ated and the 

¡ Given a function f(x(w), 11') where the first variable x depends 
aIso on the parameter 11', the total derfvative or total vanation of the 
function f respect to the parameter \V is offox . ox (0\1' + Of(OlV. 
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weights of the RNN are adjusted aceording to the 
following rule: 

W(k) = W(k -1) + ct' . (t(k) - o(k» . x(k), 

Vw, Vk= 1, ... , N p 

3.2.1. Remarks about the learning rule given by Eq. 
(23) 

(23) 

It is worth pointing out that the computational effort 
required by the dynamie learning rule, see Eq. (22), 
could beeome time-eonsuming in practical applieations, 
if the number of context neurons is high. In that case, 
it is possible to approximate the variations of the RNN 
output, oo(k)/ow, by the term aFrIf)w, see Eq. (20), 
obtaining the learning rule: 

al 
W{k) = W(k - 1) + ct' • (t(k) _ o(k» . _r, 

aw 

Vw, Vk= 1, ... , N p (24) 

If the term oFr/aw in the Eq. (20) is dominant with 
respeet to L7= laFr/aC;(k) . aC¡(k)¡aw, the learning rule 
given by Eq. (24) may perform quite satisfactorily. 

3.2.2. Accelerating (he a/gorithm convergence 
General1y the learning of RNNs presents sorne prob-

lems coneerning the algorithm eonvergence and the 
number of learning cycles to reach sorne minimal point. 
Due to the feedback conneetions, the training proce-
dure may be diffieult and arduous when the initial 
weights are set to random values. To accelerate the 
convergenee it is convenient to start from weights 
which are set to values with sorne information about 
the map that will be approximated. Due to the equiva-
lence between the multilayer feedforward network and 
the RNN used in this work, it is possible to obtain 
easily initial parameters for the last structure. The 
proeedure is the following: since the learning training is 
carried out in supervised form, the target output for 
each input pattern, t(k), is always available and, hence, 
its delayed values t(k - 1), t(k - 2), ... , t(k - ne). The 
weights obtained after the training of the multilayer 
feedforward network with input vector 
(l¡(k), ... , In/k), t(k -1), ... , t\k - nc» and the same 
number oflayer and neurons ID each layer as the RNN, 
can be used to initialise the recurrent strueture. 

4. NeuraI NARMA models design methodology 

4.1. Structures 01 neural narma models 

Consider a discrete nonlinear dynamic system gov-
erned by the following NARMA model: 

U(k)~Y(k+l) 

1~~~ 
1(k) ·~r y(k+l) 

Fig. 7. Series-parallel model structure. 

y(k + 1) = F(y(k), ... , y(k - ny), u(k - d) 

x , ... , u(k - d - nu) (25) 

where y(o) and u(o) are diserete sequenees for the system 
output and input respectively, d is the del ay of the 
process and F is sorne non linear unknown map. 

Introducing the vector l(k)=(y(k), ... ,y(k­
ny ), u(k - d), ... , u(k - d - nu» as the kth network in-
put pattern, the multilayer feedforward network can be 
used to approximate the map F obtaining the series­
parallel model, see Fig. 7: 

y(k + 1) = F(y(k), ... , y(k - ny),u(k - d) 

x, ... , u(k-d-nJ,Wj') (26) 

When the model has to simula te the dynamic of the 
process, the sequence of measured values 
y(k), ... , y(k - ny) is not available and the series-paral-
lel models identification given by Eq. (26) cannot be 
used. To solve this problem, Narendra and Pathasarthy 
[16] had proposed a different structure of neural model, 
referred to as para/le! model, see Fig. Sa. It consists in 
replacing the measured values in y(k), ... , y(k - l1y) Eq. 
(26) by the network predicted values y(k), ... , Y(k - ny). 
Denoting yp(k) as the output of this paral1e1 model, it 
can be written as, 

Yp(k + 1) = FUVk), ... , )'Vk -ny)' u{k - d) 

x, ... , u(k-d-nJ, Wj') (27) 

The parameters of this neural models are fixed to the 
series-parallel model set of weights, Wj', Eq. (26). 

On the other hand, the RNN deseribed in Section 3 
permits the generation of parallel models differing from 
mode1s given by the Eq. (27), see Fig. Sb. Considering 
the vector I(k) = (u(k - d), ... , u(k - nJ) as the input 
vector to the RNN and ny + 1 context neurons, it is 
possible to built up the following parallel model: 

Fig. 8. Parallel models structure. 

8
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yrCk+ 1) = FrCI(k), C(k), W¡.) 
r 

= Flu(k - d), ... , u(k - d - nJ, C¡(k) 

x, ... , Cn (k), W¡.) 
y r 

where C¡(k) = Yr(k + 1 - i), i = 1, ... , ny + 1. 

4.2. Analysis of parallel model.~ identificatíon 

(28) 

To have mode!s capab!e of simu!ating the dynamic 
behaviour of the process, paraIlel mode! structures 
have to be used. In the previous section two differ-
ent parallel models have been presented, Eqs. (27) 
and (28). At this point, the irnmediate question that 
arises concerns the choice of the approach to be 
used. 

Structures of both paralle! models, Eqs. (27) and 
(28), are identical because the context neurons memo-
rise the network output de!ayed by 1, 2, ... , ny time 
steps. However, there exists an important difference 
between them: the way to determine the set of 
parameters. The weights of the paraIlel model given 
by Eq. (27) are fixed to the set W¡. obtained after the 
training of the series-paralle! model. Thus,_tQeJ have 
been updated using the training data set {l(k) = 
(y(k), ... , y(k-ny ), u(k-d), ... , u(k - d - nJ), y(k + 1)}, 
Yk = d, ... , N - 1. However, the set W¡. captures - the 
map {l(k) = (u(k - d), ... , u(k - d - ~J), y(k + l)}, 
Yk = d, ... , N - 1. This fact produces different be-
haviours of mode!s when they are used to simulate 
the dynamic of the process. 

In this section it will be shown that to guarantee 
the best process simulator the second parallel model, 
Eq. (28), should be used. 

Let us assume for simplicity that ny = O and nu = O. 
The models can be re-written as: 

Y(k + 1) = F(y(k), u(k - d), W¡.) 

Yp(k + 1) = F(Yp(k), u(k - d), W¡.) 

with Yp(d) = y(d). 

(29) 

(30) 

The approximated outputs by the series-parallel 
model identification can be expressed as: 

y(k+ l)=y(k+ l)+Ek+l, k=d, ... , N-1 (31) 

where Ek + 1 is a real number indicating the local er-
ror associated to the input pattern I(k) = (y(k), u(k­
d». 

Definitíon: Given I(k) = (y(k), u(k - d» the kth in-
put pattern, Y(k + 1) the answer of the multilayer 
feedforward neural network with parameters W¡. and 
E a real number, the answer of that network for the 
input pattern l. (k) = (y(k) + E, u(k - d» is written as 
y(k + 1) + 3CE) where 3(E) is a real number evaluat-
ing the capability of the neural network to approxl-
mate the perturbed input pattern I.(k). 

Tacking account this definition and Eq. (31), the 
parallel model outputs given by Eq. (30) can be ex-
pressed as: 

(32) 

yp(k + 1) = y(k + 1) 

+ 3[Ek + 3(Ek_ 1 + 3(Ek -2 + ... + 3(Ed+ 1»)] 

=y(k+ l)+Ek+l 

+ 3[Ek + 3(Ek_ 1 + 3(Ek_2 + ... + 3(Ed+ 1»)] 

k=d+1, ... ,N-1 (33) 

where 3(ed+ 1), 3(ed+ 2 + 3(ed+ 1», ... , 3[ek + 3(ek -1 + 
3k- 2 + ... + 3(ed+ 1)"'»] are real numbers measuring 
the capability of multilayer feedforward neural network 
with parameters to respond to perturbations of 
the input patterns I(d + 1), ... , I(k), respectively. The 
validity of Eq. (33) can be proved by induction. 

From Eqs. (32) and (33) two different cases are 
deduced: 
1. If Ek are zero or closed to zero Yk = d + 1, ... , N then 

3(Ed+ 1), 3(Ed+2 + 3(Ed+ 1» 

x, ... , 3[EN + 3(EN _ 2 + ... + 3(Ed + 1»)] will be close 
to zero because multilayer feedforward networks, 
generaIly, filter the noise. Thus, the approximations 
Yp(k + 1) Yk = d, ... , N - 1 could be considered suit-
able predictions of the dynamic system. 

2. If there exists a natural number n such that the local 
error En is distant to zero, then the real number 
3 [En + 3(En_ 1 + 3(En_ 2 + ... + 3(Ed+ 1»)] is also dis-
tant to zero beca use multilayer neural networks can 
not correctly approximate input patterns different 
from patterns used during the training procedure. 
Hence, yp(n + l) is not an appropriate approxima-
tion of the measured value y(n + 1), see Eq. (34). 
Moreover, that error is propagated into the next 
approximations and the network will have to filter 
more and more higher errors. In this case, it is not 
possible to expect predictions yp(n + i) such that 
yp(n + i) ~ yen + i) for í = 2, ... , N - 1. 

Hence, errors occur in the series-parallel model, Eq. 
(26) produce input patterns to the parallel model given 
by Eq. (27) differing from the training data set. Thus 
the capability of the paraIlel mode! to simulate the 
dynamic process behaviour can be compromised. for 
sorne pattern, the capability of the parallel model given 
by Eq. (27) to simula te the dynamic prócess behaviour 
can be compromised. 

If the aim is to build-up models able to act as process 
simulators their parameters must be adjusted using the 
input patterns (u(k - d), ... , u(k - d - nJ). This implies 
that the parallel model must be built up using the RNN 
model given by Eq. (28). 

9
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5. Comparative modelling of the heat transfer fluid 
temperature in a jacketed batch reactor using nenral 
NARMA models 

To reproduce the dynamic behaviour of the heat 
transfer fluid temperature in the jacket, a model of 
heating/cooling circuits is necessary. The evolution over 
the time of the heat transfer fluid temperature in the 
jacket, Te, is given by the output of a nonlinear dy-
namic process. From the point of víew of input-output 
representation, it can be considered as a MISO (multi-
pIe input-single output) system whose input variables 
are: reactor temperature, Tr, cooling temperature, Te, 
ambient temperature, Ta, and the signal control u. The 
only manipulated input is the signal control and the 
rest of input variables can be seen as the output from 
other dynamic processes or environmental variables. 

To compare with the phenomenological model, the 
quadratic prediction errors, being y(k + 1) the heat 
transfer fluid temperature at discrete time k + 1 and 
Jíp(k + 1) the predicted temperature produced by the 
physical model, for each experimental data set are the 
following: Data!: EP = 4.99, Data2: EP = 1.08, Data3: 
EP = 0.42. 

5.1. Modelling phase 

To determine the structure of NARMA models rep-
resenting the dynamic behaviour of the heat transfer 
fluid temperature, the following considerations were 
made. Firstly, the lags in ambient and cooling tempera-
ture were considered equal to zero because both tem-
peratures tend not to vary radicalIy during the 
experiments. Moreover, the experiments ha ve shown 
that the dynamic process governing the heat transfer 
fluid temperature is an integrative process. That means 
the jacket temperature at time k + 1 depends on the 
jacket temperature at time k by a constant value practi-
cally equal to one. A first approximation of values n", 
ne, nr-representing the length of di serete sequences for 
input signal, heat transfer and reactor temperatures, 
respectively-was provided by the empírical knowledge 
about the process, resulting O .:::; nu .:::; 20, 1 :5;ne ::;; 2, O ::;; 
nr ::;; 1. The delay of the pro ces s was estimated around 
3 .:::; d.:::; 6. Thus, considering d = 3, nu = 20, ne = 2, nI = 
1 the following NARMA model may explaín the dy-
namic behaviour of the process (modell): 

Te(k + 1) = Te(k) 

+ F(Te(k -1), Te(k - 2), Tr(k), Tc(k) 

x , Ta(k), u(k - 3), ... , u(k - 23» (34) 

The model given by Eq. (34) has a large number of 
variables. To simplify this model it was believed conve-
nient to remove the least influential ones. The method 
used to eliminate so me variables in Eq. (34) consists on 

2.8---------------------, 
(a) I 

2.31 
mí 1.

8

1' 
1.3 

u Tr Te Te Ta 

Cb{OO¡ 
0.90 

nú ::~:1' 
0.60 

0.50 

0.40 

0.30~=""""'=""""'=_''''''-''==~-''''4'~'''_'_''''_'~'''''+'_''W....i;1.2; 
u(k-23) u(k-3) 

Fig. 9. mi values associated 10 (a) u, Tr, Te, Te, Ta (b) sequence 
u(k - 23), ... , u(k - 3). 

training multilayer feedforward networks and using the 
information from their weights. Given an input node 1i 
to the network and being w t j = 1, ... , 112 the weights 
corresponding that input once the training has be en 
finished, the value mi = l/n2 • :Ej:' llwtl is evaluated. It 
was observed during this study that mi values can be 
used to evaluate the importance of input variables on 
.áTe(k + 1). Hence, the input variables with lower mi 
were removed. 

The procedure was divided in two parts. Firstly, a 
multilayer feedforward network with inputs u, Tr, Te, 
Tc, Ta was trained to determine their importance. Fig. 
9a shows the mi values associated to each input. As can 
be seen, u and Te are the most important input vari-
ables. Secondly, a multilayer feedforward network with 
inputs u(k - 23), ... , tI{k - 3) was also trained. The ob-
tained mi values are shown in Fig. 9b. According to 
that information, the followil1g simplified NARMA 
model (modeI2) was chosen: 

Te(k + 1) = Te(k) 

+ F(Te{k - 1) - Tr(k - 1), Te(k - 2) 

- Tr(k - 2), u(k - 5), ... , u(k - 12) 

x , u(k - 15), u(k - 18) 

x , u(k - 21, u(k - 23)) (35) 

It should be notice that the use of Te-Tr instead of Te 
and Tr will guarantee good generalisation properties of 
neural models as it was pointed out in [32]. 

10
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Once the identification phase of models is realised, it 
will be possible to observe that models given by Eqs. 
(34) and (35) can provide similar representations of the 
dynamic process. Thus, the use of the information 
provided by the mi values to simplify the model given 
by Eq. (34), will be verified. 

5.2. Identificatían phase 

Once the lags in input variables have been deter-
mined, the functions F appearing in Eqs. (34) and (35) 
are approximated by neural networks. To verify the 
results presented in Section 3.2, firstly those functions 
are approximated using the multilayer feedforward neu-
ral network and the capability of respective parallel 
models, Eq. (27), to simulate the dynamic behaviour of 
the process is evaluated. Secondly, the RNN is used to 
genera te parallel models. 

5.2.1. Approximating F by rnultilayer feedforward 
networks 

The series-parallel models identification adopt the 
following expression: 

Te(k + 1) = Te(k) 

+ F(Te(k - 1), Te(k - 2), Tr(k), Tr(k - 1) 

x, Tc(k), Ta(k), u(k - 3), ... , u(k - 23) 

x ,~F) (36) 

Te(k + 1) = Te(k) 

+ F(Te(k - 1) - Tr(k - 1), Te(k - 2) 

- Tr(k - 2), u(k - 5), ... , u(k - 12) 

x, u(k - 15), u(k - 18), u(k - 21) 

x , u(k - 23), ~¡.) (37) 

They have been trained over the training Data 1 set 
using the static backpropagation algorithm and learn-
ing rule varying from 0.1 down to 0.001. After 6000 or 
7000 learning cycles the convergence of learning pro ce-
dure is reached. The identification errors as well as the 
architecture of multilayer feedforward networks and 
the number of adjustable parameters, are presented in 
Table 4. 

The respective parallel structures can be written as: 

Table 4 
Approximating F with multilayer feedforward networks: Data 1 

Architecture Number of E1(W¡) EP(w¡) 

Te 

(a) 

45 

35 

25 
--==.., 

15 

5 T 
~5LI __ ~ __ ~~~~~~~ __ ~ __ ~ __ ~ 

O 100 200 300 400 500 600 700 800 

35 I 
30 I 

25 

Time (x 1 Os.) 

20 1 Te 15 r 
10 _ ~ ________ --, 

1

- Experimental 
~ t - Predicted 

-5 Lt ---+---c::------:!-::-::---c::-::-~::_::_------;-=_----::-=______;;_;:;:;_I 
(b) O 100 200 300 400 500 600 700 800 

Time (x10s.) 

Fig. 10. Te time-profile p~~vided by parallel model of parameters W ¡ 
for Data1. (a) 1st model (b) 2nd model. 

Te(k + 1) = Te(k) 

+ F(Te(k - 1), Te(k - 2), Tr(k),Tr(k - 1) 

x, Tc(k), Ta(k), u(u - 3), ... , u(k - 23), ~t 

x (38) 

Te(k + 1) = Te(k) 

+ F(Te(K - 1) - tr(k - 1), Te(k - 2) 

- Tr(k - 2), u(k - 5), ... , u(k - 12) 

x ,u(k - 15), u(k - 18), u(k - 21) 

x , u(k - 23), ~t (39) 

where ~F denote the sets of weights previously ob-
tained for the different models, Eqs. (36) and (37), 
respectively. The prediction errors obtained by the par-
allel models, Eqs. (38) and (39) are presented in Table 
4. Figs. 10 and 11 shows the dynamic behaviour of the 
heat transfer fluid temperature predicted by each model 
when they are acting as process simulator. As can be 
observed, the first model does not provide an appropri-
ate approximation of the dynamic process, while the 
performance of the second model could be considered 
adequate. 

5.2.2. Appraximation F by the RNN 
Introducing the input vectors I(k) = (Tr(k), Tr(k-

1), Tc(k), Ta(k), u(k - 3), ... , u(k - 23» and I(k) = 
parameters 

Modell 27-28-1 812 1.9 . 10-2 359.84 

(u(k - 5), ... , u(k - 12), u(k - 18), u(u - 21), u(k - 23» 
-------------------~~~~~~ respectively, and considering two contex.t neurons, th'-e-----
Mode12 14-20-1 320 1.5 . 10- 2 9.81 RNN can be used to approximate the functions F 
-------------~~~~~-- --appearing in Eqs. (34) and (35): 

11
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5 

(b) 
100 200 300 400 500 600 700 800 900 

Time (xlOs.) 

Fig. 11. Te time-profile provided by paralIel model of parameters ¡V¡ 
for Data 1. (a) 1st model (b) 2nd model. 

Ter(k + 1) = Ter(k) 

+ FJTr(k), Tr(k - 1), Tc(k), Ta(k) 

x, u(k - 3), ... , u(k - 23), R¡(k), Rik) 

x, WFr (40) 

TerCk + 1) = TerCk) 

+ Fiu(k - 5), ... , u(k - 12), u(k -15) 

x, u(k -18), u(k - 21), u(k - 23), R¡(k) 

x, R2(k), Wi') (41) 

where R¡(k) = Ter(k - 1), Rik) = TerCk - 2) in Eq. (40) 
and R¡(k) = Ter(k -1) - Tr(k -1), R2(k) = Ter(k-
2) - Tr(k - 2) in the second model, Eq. (41). 

The new parallel structures have been initialised with 
the parameters obtained after 2000 learning cycles over 
the respective series-parallel models. SubsequentJy, the 
training of the RNNs is carried out according to the 
learning rule given by Eq. (23) and learning rate fixed 
to 0.00001. After 1000 learning cyc1es the convergence 
is reached. The prediction errors are shown in Table 5. 
In contrast to the results shown in Fig. 11, the parallel 
models built up with the RNN provide appropriate 
predictions of the heat transfer fluid temperature, see 

Table 5 
Approximating Fwith the RNN: Data! 

Modell 
Mode!2 

Number of parameters 

812 
320 

3.25 
2.48 

30.-______________________ ~ ________ _, 

25 

20 

Te 15 

10 ~l 1 = ~fili~::ntal 

: ~-----------+I-----+I-----+----~--~ 
100 200 300 400 500 (a) Time (x lOs.) 

o 
30,----------------------------------, 

25 

20 -r-_---"'~ 

Te 15 ~ 

10 

5 
1- Expt!rimental 
-- Predicted 

O~----+-----+_----+_----+_----__ --~ 
O 100 200 300 

(b) Time (xlOs.) 
400 500 

Fig. 12. Te time-profile provided by parallel model of parameters W¡ 
for Data2. (a) 1st model eb) 2nd model. 

Fig. 12. On the other hand, both model1 and model2, 
Eqs. (40) and (41) provide similar predictions. How-
ever, due to its simplified structure Eq. (41) is more 
convenient for practica! applications. The results also 
validate the method used in Ihis work for model sim-
plification. 

To test the generalisation (extrapolation) properties 
of the parallel models built up with the RNN, the 
prediction error was evaluated for the data sets Data2 
and Data3. These errors are shown in Table 6 and the 
simulated temperature- time profiles of the heat trans-
fer fluid temperature can be seen in Figs. 12 and 13, 
respectively. As can be observed in Fig. 13, the general-
isation properties of the first model are quite poor in 
comparison with the second model. This is due to the 
fact that context neurons in the second model memorise 
the differences Te-Tr instead of Te and Tr as in the 
first model. 

6. Discussion and conclusions 

As we have mentioned, physical models are difficult 
and time consuming to build up. Moreover, in sorne 

Table 6 
Generalisation capability of the parallel model built up with the 
RNN 

Modell 
Model2 

EP(W¡): Data2 

2.86 
0.77 

P(W¡): Data3 

685.4 
20.3 
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Fig. 13. Te time-pro fije provided by parallel model of parameters W¡­
for Data3. (a) 1st model (b) 2nd model. 

cases, they may be not suitable in real-time applications 
because the integration time may be higher than the 
sampling time when a high number of differential equa-
tions are requested to explain the dynamic behaviour of 
the process. On the other hand, models capable of 
simulating the nonlinear behaviour of real processes are 
essential for numerous control applications. 

The results presented in this work show that neural 
NARMA models can be used as suitable altematives, 
for predicting the dynamic behaviour of sorne process, 
to first principIe (phenomenological) models if they are 
built up in an appropriate way. If the objective is to 
generate process simulators, series-parallel models can-
not be used beca use they require tapped delay line of 
measured process output to approximate the current 
output. In this case, parallel modeIs are the adequate 
solution, since no information about the past measured 
process output is required. 

Furthermore, to develop a simulator of the process, 
the parameters or weights determining the paralleI 
model have to be identified, i.e. the prediction error has 
to be minimised. This implies the use of the RNN to 
approximate the functional determining the NARMA 
model and, hence, the best simulator of dynamic pro-
ces s belonging to the class of NARMA model is guar-
anteed. As can be seen in Fig. 5a and Fig. 11, process 
representations arisen from the parallel model built up 
with the RNN are similar to representations obtained 
by first principIe models, whereas predictions provided 
by the parallel model whose parameters has been iden-
tified to minimise the identification error are not ade-
quate. Moreover, the parallel structure proposed in this 

work re~ch the mínimal point of the prediction error in 
a smaller number of learning iterations, which is an 
interesting property, principally, when the identification 
phase of models has to be carried out in real time. 

The generalisation capacities of models built up with 
the RNN have also been evaluated. The temperature-
time profile prediction for Data2 provided by neural 
rnodels, Fig. 12, is satisfactory and similar to the pre-
diction obtainedby the phenomenological model, see 
Fig. 5b. However, the predictions are not so acceptable 
for IlataJ, see Fig. 5c and 13. In this case, the range of 
the heat transfer fluid temperature ( ~ 50- 70°C) differs 
from the temperature range used to train the neural 
model ( ~ lO-30°C). The consideration of temperature 
differences as input to the second neural model, Eq. 
(35), is an artefact to improve the extrapolation capac-
ities of neural networks. However, to obtain suitable 
extrapolation -propertíes -\vífh neUralm-üdelS; the traÍn-
ing data set may to cover a wide range of output 
process variable. -
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