453 research outputs found

    Generating a full spherical view bymodeling the relation between two fisheye images

    Get PDF
    Full spherical views provide advantages in many applications that use visual information. Dual back-to-back fisheye cameras are receiving much attention to obtain this type of view. However, obtaining a high-quality full spherical view is very challenging. In this paper, we propose a correction step that models the relation between the pixels of the pair of fisheye images in polar coordinates. This correction is implemented during the mapping from the unit sphere to the fisheye image using the equidistant fisheye projection. The objective is that the projections of the same point in the pair of images have the same position on the unit sphere after the correction. In this way, they will also have the same position on the equirectangular coordinate system. Consequently, the discontinuity between the spherical views for blending is minimized. Throughout the manuscript, we show that the angular polar coordinates of the same scene point in the fisheye images are related by a sine function and the radial distance coordinates by a linear function. Also, we propose employing a polynomial as a geometric transformation between the pair of spherical views during the image alignment since the relationship between the matching points of pairs of spherical views is not linear, especially in the top/bottom regions. Quantitative evaluations demonstrate that using the correction step improves the quality of the full spherical view, i.e. IQ MS-SSIM, up to 7%. Similarly, using a polynomial improves the IQ MS-SSIM up to 6.29% with respect to using an affine matrix

    Information Visualization Of An Agent-Based Financial System Model

    Get PDF
    This paper considers the application of information visualization techniques to an agent-based model of a financial system. The minority game is a simple agent-based model which can be used to simulate the events in a real-world financial market. To aid understanding of this model, we can apply information visualization techniques. Treemap and sunburst are two such information visualization techniques, which previous research tells us can effectively represent information similar to that generated by the minority game. Another information visualization technique, called logical fisheye-lens, can be used to augment treemap and sunburst, allowing users to magnify areas of interest in these visualizations. In this paper, treemap and sunburst, both with and without fisheye-lens, are applied to the minority game, and their effectiveness is evaluated. This evaluation is carried out through an analysis of users performing various tasks on (simulated) financial market data using the visualization techniques. A subjective questionnaire is also used to measure the users’ impressions of the visualization techniques.Dynamic Models, Minority Game, Visualization

    Target Acquisition in Multiscale Electronic Worlds

    Get PDF
    Since the advent of graphical user interfaces, electronic information has grown exponentially, whereas the size of screen displays has stayed almost the same. Multiscale interfaces were designed to address this mismatch, allowing users to adjust the scale at which they interact with information objects. Although the technology has progressed quickly, the theory has lagged behind. Multiscale interfaces pose a stimulating theoretical challenge, reformulating the classic target-acquisition problem from the physical world into an infinitely rescalable electronic world. We address this challenge by extending Fitts’ original pointing paradigm: we introduce the scale variable, thus defining a multiscale pointing paradigm. This article reports on our theoretical and empirical results. We show that target-acquisition performance in a zooming interface must obey Fitts’ law, and more specifically, that target-acquisition time must be proportional to the index of difficulty. Moreover, we complement Fitts’ law by accounting for the effect of view size on pointing performance, showing that performance bandwidth is proportional to view size, up to a ceiling effect. The first empirical study shows that Fitts’ law does apply to a zoomable interface for indices of difficulty up to and beyond 30 bits, whereas classical Fitts’ law studies have been confined in the 2-10 bit range. The second study demonstrates a strong interaction between view size and task difficulty for multiscale pointing, and shows a surprisingly low ceiling. We conclude with implications of these findings for the design of multiscale user interfaces

    Spherical Image Processing for Immersive Visualisation and View Generation

    Get PDF
    This research presents the study of processing panoramic spherical images for immersive visualisation of real environments and generation of in-between views based on two views acquired. For visualisation based on one spherical image, the surrounding environment is modelled by a unit sphere mapped with the spherical image and the user is then allowed to navigate within the modelled scene. For visualisation based on two spherical images, a view generation algorithm is developed for modelling an indoor manmade environment and new views can be generated at an arbitrary position with respect to the existing two. This allows the scene to be modelled using multiple spherical images and the user to move smoothly from one sphere mapped image to another one by going through in-between sphere mapped images generated

    Immersive Gaming in a Hemispherical Dome Case study: Blender Game Engine

    Get PDF
    In the following we will discuss a cost effectiveimmersive gaming environment and the implementation inBlender [1], an open source game engine. This extends traditionalapproaches to immersive gaming which tend to concentrateon multiple flat screens, sometimes surrounding the player, orcylindrical [2] displays. In the former there are unnatural gapsbetween each display due to screen framing, in both cases theyrarely cover the 180 horizontal degree field of view and areeven less likely to cover the vertical field of view required tofully engage the field of view of the human visual system. Thesolution introduced here concentrates on seamless hemisphericaldisplays, planetariums in general and the iDome [3] as a specificcase study. The methodology discussed is equally appropriateto other realtime 3D environments that are available in sourcecode form or have a suitably powerful means of modifying therendering pipeline

    A framework for unifying presentation space

    Get PDF

    FishEYE: A Forensic Tool for the Visualization of Change-Over-Time in Windows VSS

    Get PDF
    For the digital forensic examiner, being able to perceive change-over-time supports the goal of being able to explain what happened. In our thesis, we focus on the improvements brought to digital forensic analysis by the visualization of forensic data and its application to digital forensic data that records change-over-time, specifically for a directory-tree structure and its content. By perceiving digital evidence visually, investigators are able to speed up the forensic analysis process, and at the same time better comprehend new unique relationships between data as well as more easily comprehend it in terms of its global context. To provide multiple snapshots of a directory-tree structure, we chose to utilize Shadow Copy (also known as Volume Snapshot Servie or Volume Shadow Copy Service or VSS), a technology included in Microsoft Windows which allows for the taking of manual or automatic backup copies or snapshots of data (including whole volumes) over regular intervals. VSS was chosen since it is a potential gold mine of forensic information, having been included in every version of Microsoft Windows since Windows XP. In this thesis, we propose and develop a tool to take advantage of the information contained within VSS by applying the fisheye focus+context visualization approach to the directory tree structure, with a series of segmented boxes for each to represent change-over-time for each directory/file, accomplishing our goal of providing investigators a clear picture of how a directory-tree structure has changed over time at a glance

    Enabling effective tree exploration using visual cues

    Full text link
    © 2018 Elsevier Ltd This article presents a new interactive visualization for exploring large hierarchical structures by providing visual cues on a node link tree visualization. Our technique provides topological previews of hidden substructures with three types of visual cues including simple cues, tree cues and treemap cues. We demonstrate the visual cues on Degree-of-Interest Tree (DOITree) due to its familiar mapping, its capability of providing multiple focused nodes, and its dynamic rescaling of substructures to fit the available space. We conducted a usability study with 28 participants that measured completion time and accuracy across five different topology search tasks. The simple cues had the fastest completion time across three of the node identification tasks. The treemap cues had the highest rate of correct answers on four of the five tasks, although only reaching statistical significance for two of these. As predicted, user ratings demonstrated a preference for the easy to understand tree cues followed by the simple cue, despite this not consistently reflected in performance results

    A review of data visualization: opportunities in manufacturing sequence management.

    No full text
    Data visualization now benefits from developments in technologies that offer innovative ways of presenting complex data. Potentially these have widespread application in communicating the complex information domains typical of manufacturing sequence management environments for global enterprises. In this paper the authors review the visualization functionalities, techniques and applications reported in literature, map these to manufacturing sequence information presentation requirements and identify the opportunities available and likely development paths. Current leading-edge practice in dynamic updating and communication with suppliers is not being exploited in manufacturing sequence management; it could provide significant benefits to manufacturing business. In the context of global manufacturing operations and broad-based user communities with differing needs served by common data sets, tool functionality is generally ahead of user application

    Spherical image processing for immersive visualisation and view generation

    Get PDF
    This research presents the study of processing panoramic spherical images for immersive visualisation of real environments and generation of in-between views based on two views acquired. For visualisation based on one spherical image, the surrounding environment is modelled by a unit sphere mapped with the spherical image and the user is then allowed to navigate within the modelled scene. For visualisation based on two spherical images, a view generation algorithm is developed for modelling an indoor manmade environment and new views can be generated at an arbitrary position with respect to the existing two. This allows the scene to be modelled using multiple spherical images and the user to move smoothly from one sphere mapped image to another one by going through in-between sphere mapped images generated.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore