11,058 research outputs found

    Phase transitions in Pareto optimal complex networks

    Full text link
    The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem finding phase transitions of different kinds. Distinct phases are associated to different arrangements of the connections; but the need of drastic topological changes does not determine the presence, nor the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.Comment: 14 pages, 7 figure

    Development of an automated aircraft subsystem architecture generation and analysis tool

    Get PDF
    Purpose – The purpose of this paper is to present a new computational framework to address future preliminary design needs for aircraft subsystems. The ability to investigate multiple candidate technologies forming subsystem architectures is enabled with the provision of automated architecture generation, analysis and optimization. Main focus lies with a demonstration of the frameworks workings, as well as the optimizers performance with a typical form of application problem. Design/methodology/approach – The core aspects involve a functional decomposition, coupled with a synergistic mission performance analysis on the aircraft, architecture and component levels. This may be followed by a complete enumeration of architectures, combined with a user defined technology filtering and concept ranking procedure. In addition, a hybrid heuristic optimizer, based on ant systems optimization and a genetic algorithm, is employed to produce optimal architectures in both component composition and design parameters. The optimizer is tested on a generic architecture design problem combined with modified Griewank and parabolic functions for the continuous space. Findings – Insights from the generalized application problem show consistent rediscovery of the optimal architectures with the optimizer, as compared to a full problem enumeration. In addition multi-objective optimization reveals a Pareto front with differences in component composition as well as continuous parameters. Research limitations/implications – This paper demonstrates the frameworks application on a generalized test problem only. Further publication will consider real engineering design problems. Originality/value – The paper addresses the need for future conceptual design methods of complex systems to consider a mixed concept space of both discrete and continuous nature via automated methods

    An O(1)-Approximation for Minimum Spanning Tree Interdiction

    Full text link
    Network interdiction problems are a natural way to study the sensitivity of a network optimization problem with respect to the removal of a limited set of edges or vertices. One of the oldest and best-studied interdiction problems is minimum spanning tree (MST) interdiction. Here, an undirected multigraph with nonnegative edge weights and positive interdiction costs on its edges is given, together with a positive budget B. The goal is to find a subset of edges R, whose total interdiction cost does not exceed B, such that removing R leads to a graph where the weight of an MST is as large as possible. Frederickson and Solis-Oba (SODA 1996) presented an O(log m)-approximation for MST interdiction, where m is the number of edges. Since then, no further progress has been made regarding approximations, and the question whether MST interdiction admits an O(1)-approximation remained open. We answer this question in the affirmative, by presenting a 14-approximation that overcomes two main hurdles that hindered further progress so far. Moreover, based on a well-known 2-approximation for the metric traveling salesman problem (TSP), we show that our O(1)-approximation for MST interdiction implies an O(1)-approximation for a natural interdiction version of metric TSP
    • …
    corecore