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Structured Abstract:
Purpose - The work presents a new computational framework to address future preliminary
design needs for aircraft subsystems. The ability to investigate multiple candidate technologies
forming subsystem architectures is enabled with the provision of automated architecture
generation, analysis and optimization. Main focus lies with a demonstration of the frameworks
workings, as well as the optimizer’s performance with a typical form of application problem.

Design/methodology/approach - The core aspects involve a functional decomposition, coupled
with a synergistic mission performance analysis on the aircraft, architecture, and component
levels. This may be followed by a complete enumeration of architectures, combined with a user
defined technology filtering and concept ranking procedure. In addition, a hybrid heuristic
optimizer, based on ant systems optimization and a genetic algorithm, is employed to produce
optimal architectures in both component composition and design parameters. The optimizer is
tested on a generic architecture design problem combined with modified Griewank and parabolic
functions for the continuous space.

Findings - Insights from the generalized application problem show consistent rediscovery of the
optimal architectures with the optimizer, as compared to a full problem enumeration. In addition
multi objective optimization reveals a Pareto front with differences in component composition as
well as continuous parameters.

Research Limitations - This paper demonstrates the frameworks application on a generalized
test problem only. Further publication will consider real engineering design problems.
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automated methods.
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I. Introduction
In the context of aircraft conceptual design, relying on a database of design parameters from past
vehicles is common practice when analysing new aircraft concepts [1][2][3]. By establishing
trend lines for important variables, such as thrust to weight ratio or wing loading, a design to
meet new mission requirements can be sized quickly and robustly. Utilizing these past concepts
and relying on proven technologies reduces the risk associated with the project and improves the
operational safety. Each newly evolved aircraft benefits from its predecessors design knowledge
and aims to bring improvements, such as reduced fuel burn and structural mass.
However this conventionalism also tends to avoid advancement of revolutionary concepts and
has resulted in familiar configurations of civil transport aircraft over the past five decades.
Similarly in subsystem design such historical and empirical relationships also significantly limit
the design space to existing and well documented technologies. If one wishes to venture away
from the conventional, usually a number of “fudge factors” are employed to adjust the empirical
trend lines.
The challenge engineers face during the initial phases of a design cycle is somewhat paradoxical;
little is known about the problem, but full design freedom is available. The main focus is on
exploring numerous potential solutions and concepts, while keeping them as changeable as
possible. As concepts mature and analysis knowledge is gained, the commitment to these designs
grows. Hence an increasing resource allocation takes place, making its costly to implement
major design changes. Figure 1 demonstrates these trends for current and future design
processes.

Figure 1: Current and future design processes based on [4]

Increased concept knowledge and keeping design options open, may delay the rise of committed
cost during the design process. Such features require flexible design methods to deal with a
multitude of potential solutions. Another challenge is to provide a framework which has low
development time requirements when applied to new design problems.
In aircraft subsystem conceptual design there is generally more information available since the
subsystem design cycle initiates later within the overall aircraft design process. First estimates of
subsystem design metrics, such as mass and power requirements are often based on empirical
equations established from design experience and past design data [5][6]. The underlying
assumption implicit in the use of such a model is that the subsystem’s architecture will be similar
to past designs. This substantial restriction on the design freedom may not allow for the
exploration of architectures which include novel technology components and different structural
configurations.
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Hence in the spirit of pushing trends as shown in Figure 1, a change in design approach is
beneficial. An approach comparable to aircraft design’s multi-disciplinary optimization (MDO)
seems appropriate with adaptations specific to subsystem design. Such adaptations will
accommodate tasks of generalizing subsystems to represent a wide concept space, with not only
varying parameters, but also different architectures.
One technique for facilitating this generalized formation of architectures is the functional
decomposition of the design problem [7][8][9]. These functional requirements are general
enough to be linked to various physical component models, making up the architecture concept.
Such a process, combined with an intelligent framework, of component filtering, functional
reconfiguration and input/output variable linkages, is flexible enough to allow the consideration
of a diverse range of architecture types [11]. Combined with model based approaches and
moving away from empirical methods, an extended design space is available.
Past research has built parametric disciplinary models for the array of aircraft subsystems
[12][13]. Using expert knowledge and physical relationships, power consumption,
transformation, distribution as well as generation systems was modelled for both sizing and
performance execution. Even though it proved beneficial for model based engineering
simulations, the problem setup and concept generation was not automated.

A few other approaches looked specifically at automating the setup of the systems architecture
models from individual component elements [14][15][16]. They incorporated a feedback
between subsystem sizing and the aircraft level performance. This makes it possible to study and
optimize subsystems for both aircraft and subsystem level objectives.
The other challenging element is the optimization strategy for the subsystem design space.
Combining such new architecture flexible methods with gradient based optimizer methods can
be difficult since the cost function is often nonlinear and non-uniform for changes in architecture
analysis model structures. Past research have used heuristic based optimizers, such as genetic
algorithms and ant colony optimization to deal with this mixed continues and discrete system
design space.[18][19][20]

The presented work focuses on combining elements of architecture definition, multidisciplinary
modelling, and design space optimization. Aspects of work by multiple authors are composed
into a single framework and supplemented by novel method developments. This setup is able to
achieve an improved cycle of concept design space expansion and contraction, as demonstrated
via a theoretical design problem. Section II will describe the framework’s theoretical processes
and their integrated function. This includes a substantial subsection on the hybrid optimization
procedure to make the reader familiar with its requirements in a mixed design space. Section III
will demonstrate the frameworks optimizer performance with a theoretical architecture design
problem comparable to an aircraft subsystem.

II. Framework Formulations

An overview of the framework is presented in Figure 2. Initially information is required to
accurately define the system design problem and its setting in the overall aircraft concept. This
establishes a clear boundary between elements considered part of the subsystem and other
aircraft elements. Requirements, both functional and performance are extracted and associated to
component models and operational scenarios.
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With any approach to a design problem, the first step involves capturing the design requirements,
from various sources. These could be received from the customer itself, often formulated in the
form of performance requests, setting the design within the current and future marketplace.
With aircraft subsystem design requirements are also handed down from higher disciplines
within the design hierarchy, such as structural and aerodynamic considerations. Additionally,
certification and regulation standards play an important part in framing requirements
appropriately.

Figure 2: Framework outline & Function tree structure

A. Functional Decomposition and Knowledge Database

The captured requirements are linked to the main functionalities of the concept over its defined
boundary. The boundary serves to differentiate the subsystem from the rest of the aircraft
concept and the external environment. It also clarifies which interactions need to be considered
between these regions during later analysis of design concepts. Boundary functions are linked to
multiple possible component solutions which in turn induce further functional and performance
requirements for the system concept.

Such a functional breakdown of the design problem generates a “tree structure” of possible
solutions and functions [9]. It represents the broad potential space of unique assemblies of
components forming the aircraft system concepts. A three level function struture is shown in
Figure 2 together with its morpholical matrix representation.
Information related to the functional breakdown is collected in a knowledge database. Both
compositional and connectivity information is required as it is used during the analysis methods.
Additionally sizing scenarios need to be provided for the component options where appropriate.
These scenarios drive the analysis procedure with a root finding mechanism to automatically
assign the appropriate component parameters to achieve the specified performance targets at
given operational conditions.
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B. Enumeration Procedure

A complete database may contain prohibitively large numbers of functions and solutions for an
enumeration. Hence two possible options are available for system architects. Either a down
selection of component solutions takes place a priori, or the complete database is optimized with
user defined objectives. The optimization option will be described in section E. An enumeration
produces all unique combinations of component solutions present in the function tree, while
taking into account user constraints to exclude infeasible technology combinations.
The matrix containing the possible solution choices is referred to as a morphological matrix,
often encountered during idea generation in engineering design processes [21][22]. For a simple
combinatorial analysis of a morphological matrix M of component solutions, the computation
gives the matrix of combinations N with ncmb columns, for A rows in M and B entries per row A.

� = �
��� ��� ������ ��� .
��� ��� ���

� 						� = �
��� ��� ��� ��� …
��� ��� ��� ��� …
��� ��� ��� ��� …� ���� = ∏ �∑ ��,�

��
��� ��

���

Equation 1: Enumeration of a morphological matrix

Figure 3: Function tree example for a landing gear system

Figure 4: Multi level enumeration for landing gear problem
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The number of combinations may be computed with Equation 1 and depends on the dimension
and number of elements in matrix M. This concept is extended to a multi branched function tree
by decomposing it into a dynamic matrix structure. The combinatory approach is now applied in
conjunction with the progression through the levels within the function tree, which implies a
variation in matrix M. By executing the enumeration for each new Matrix M, constructed by the
solution components satisfying the induced functions from the column entries in the previous
results matrix N, the complete tree structure is considered. Figure 3 shows a system design
example with two induced functions. The resulting changing morphological matrices M based on
previous choices in the solution matrix N are shown in Figure 4. The total architecture
combinations are then assembled from the individual N matrix entries providing the global
collection of architectures enumerated in a component compositional sense.
Such a dynamic approach has a few advantages over past methods [7][8][9], where the function
tree is rewritten as a large single morphological matrix, combined with an incompatibility matrix
to exclude choice combinations. Due to the generation of individual matrices per level, their size
is significantly smaller than a single global matrix. User defined combination filters will apply
immediately during the enumeration, preventing the generation of infeasible results. Both of
these two aspects allow a large problem to be enumerated with relatively small memory and
computational requirements.

C. Analysis Process

The generated architectures that are feasible in terms of functionality are analyzed for their
performance through performance modeling and sizing of all their constituted components
individually. Component models should be of low to medium fidelity to keep execution times
acceptable. As long as the interface conditions for each component model are satisfied, its
content can be decided upon relatively freely by the technology experts. The database population
and problem decomposition frequently produces updates in interfaces and variable exchanges as
the design processes advances; hence the connectivity between models is reviewed continuously.
Once a sufficient level of confidence is reached, the rest of the analysis will be fully automatic,
spanning across the three main levels; aircraft, architecture and component. This concept is
shown on the right side of Figure 5 with an example for an architecture level block diagram of
the landing gear example on the left.

Figure 5: Analysis levels & landing gear example architecture diagram
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Depending on the top level design requirements and the architectural interfaces with the external
world, relevant mission profiles need to be provided. For a civil airliner, these may be built up
from the conventional, taxi, take-off, climb, cruise, descent and landing segments. The flight
profile is an input to the aircraft level models. Calculations on this level can be either empirical
or analytical to determine the profiles of input variables to the relevant subsystem interfaces of
the architectures. For the landing gear example the main aircraft level outputs will be wheel
forces, moments and rotational velocities at current ground/flight conditions.
The analysis process on the architecture level starts by assigning initial values to the model and
architecture parameters. The overall architecture model is then constructed from all individual
component models with the use of the available connectivity information. Each component
model is executed in turn, drawing on and modifying a global design structure matrix (DSM) of
current input/output (I/O) conditions [10]. This is a fixed point iteration procedure, a common
technique employed in multi-disciplinary analysis, tracking and computing models through the
architectural setup. In the example architecture on the left side of Figure 5, example exchange
variables include force interactions between the wheel and the damping component, the
hydraulic power provision to the retraction mechanism and the performance of the gear.
Figure 6 shows an example of such a design structure matrix. Data in any given entry represents
an input to its row ID and an output to its column ID. Hence each entry represents a connection
between components. Depending on the type of connection, multiple variables may need to be
passed to the next model; therefore entries are vectors of values.

Figure 6: Fixed point iteration for DSM I/O balance

The architecture itself has I/O variables over its boundary to establish information flow to the
aircraft and external levels. These values are assigned to the corresponding positions within the
DSM, representing a single point performance condition of the architecture in steady state. The
algorithm then computes the component models which vary their individual input conditions
until the architecture flow of variables converges. Convergence is defined by the DSM error
value which computes the summation of changes between all entries in the matrix after
component model updates.
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Once this iterative procedure converges it is repeated for each change in architecture I/O
condition. This represents the performance of the architecture during a time varying mission
profile, by the assuming that it can be modeled as a discrete set of steady state point performance
results.
With the architecture mission performance evaluation, the reverse operation is undertaken, to
size towards specific performance. In order to achieve this, re-computation of the architecture for
sequentially adjusted parameters is necessary. However, individual component adjustment
effects on performance are not separable from the architecture as a whole, making it necessary to
follow a strategy which takes multiple targets into account.
The sizing process evaluates the component outputs and states for a representative mission and
parameter settings. A root finding procedure then drives the parameter adaptation of a single
component until a design performance is reached. Apart from the standard mission profile, the
evaluation of mission critical failure scenarios also needs to be considered, since they size the
backup components and systems. This process is repeated for all components, until there is no
further change in sizing adaptations across all components for a single iteration as shown in
Figure 7. The individual components, sized in equilibrium to each other, are a representation of
the sized subsystem architecture. Due to the strong feedback between aircraft and architecture
level models, further iteration is required to re-compute the changed mission profiles input to the
architecture. Mass estimation and subsystem input power requirements tend to be the feedbacks
of primary importance, however this may vary depending on the design problem at hand. This
leads to a large update looping structure as shown in Figure 7, with the architecture variable
balance per mission time step at the lowest level and the architecture concept at the highest.

Figure 7 Sizing process with multiple sequential iterations & overall looping structure

Hence the fixed point iteration procedure described in Figure 6 takes place on the lowest two
levels, followed by the component sizing and aircraft level feedback loop as shown in Figure 7.
This represents the analysis & sizing of a single architecture concept, followed by the highest
step, the architecture enumeration.
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D. Ranking Process

The pool of enumerated architectures needs to be evaluated and down-selected to take a reduced
set forward in the design process. Apart from choosing such solutions visually with the help of
sliced trade-off diagrams, it is also possible to combine metrics to a single composite with the
help of weighting factors.
After enumeration all feasible solutions are known and no re-evaluation computation is
necessary. Hence a weighted objective method is quickly executed. A mathematical description
of this weighted ranking procedure can be found in [11]. Once the concept space is reduced the
remaining solutions can be re-computed for a range of component, architecture or aircraft level
parameters. This provides insights for performance variations as well as other design metrics
changes. Such parameter sweep scenarios help to evaluate concept competitiveness due to future
development in technology values of subsystem components.

E. Optimization method

Alternatively to the enumeration and ranking an optimization method can be employed to
identify best concepts. Additionally to the discrete concept space continuous parameters for
components, mission profile and aircraft level also need to be included in the optimization. This
yields a mixed continuous and discrete optimization problem which is effectively tackled with a
hybrid combination of an ant systems optimizer and a genetic algorithm.
The function tree used to construct architectures can be represented as a graph problem, similar
to the travelling salesman problem (TSP), illustrated in Figure 8. Solutions are constructed by
passing through the required route points, with each choice affecting the competitiveness of the
solution. Similarly the choice of components from the function tree, results in different objective
function values of the constructed architecture.

Figure 8: The TSP problem and a system architecture function tree equivalent

Such optimization problems have been successfully approached with the ant colony optimization
(ACO) method [23][24]. It is particularly suitable to problems where discrete jumps in cost
function are present, as well as a hierarchical problem choice structure. Individual ant agents
initially move at random across the tree continuously depositing pheromones on path segments.
Ants decide which route to follow based on the amount of pheromone they encounter. Hence a
positive feedback effect emerges, leading to more and more ants following a given attractive
path. At the same time all paths will slowly lose their pheromone levels through a simulated
natural evaporation.
This behaviour is applied to a graph problem as shown in Figure 8 by utilizing multiple agents
which generate paths through the function tree and deposit pheromone values on each segment of
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the total path. At each junction in the function tree the segment choice is probabilistic with the
likelihood given as a function of current pheromone values on each segment and the number of
segment choices. Equation 2 shows this relationship for a segment probability ��� from point i to
j, with N total possible segments. The amount of pheromone deposition ��ℎ���� is a function of
the actual competitiveness of a path as evaluated by its objective function	����������. This is the
common ACO approach encountered in the literature [25]. The segment increment definition is
shown in Equation 2 to Equation 6 which includes a separate operation for updates which have a
lower objective value than all previously encountered paths. Such highly desirable paths then
receive a boost equal to a multiple of the equilibrium pheromone level	�ℎ�����, assuring their
higher probability in regeneration in subsequent ant choices. This is a framework specific
modification to encourage faster convergence of strong concept paths. In order to prevent early
overall convergence natural pheromone evaporation with rate ������ is incorporated by
reducing all pheromone matrix (PHM) values by a certain percentage after iterations, as shown
in Equation 7.

��� =
�ℎ��

∑ �ℎ���
���

Equation 2: Segment choice probability

��																																																																						 �min(�������	���)����������
� > 1

Equation 3: Cut-off condition for pheromone boost

�ℎ����� =
� �
��������

�
� �
��������

�− 1

Equation 4: Boost pheromone increment

��ℎ���� = � ∗ �ℎ�����
����

��ℎ���� = �min(�������	���)����������
�

Equation 5: Standard pheromone increment

���
�ℎ���� = �ℎ���� + ��ℎ����

Equation 6: Addition of increment to path

�ℎ��� = �ℎ��� ∗ (1 − ������)
Equation 7: Evaporation of path

As an extension a population set of concept paths was considered during each generation, rather
than single solution updates. The implementation is based on work presented in [26]. Each
population set of generated paths is produced with the current pheromone values and then
assessed for its best objective member path. This improves the effectiveness of the algorithm,
since a more diverse range of solutions can be reached earlier in the process, eventually
converging towards the optimal. Additionally, the separable nature of the population member
computations, allows for parallelized executions. For multi objective applications of the ACO, a
separate PHM is assigned to each objective, and updated according to the relevant objective
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values. The probability of path segment choices is then produced with a weighted method of
entries in all matrices as shown in Equation 8 for ���� Objectives with a weighting factor	���.

��� =
∑ ��� ∗ �

����
∑ �����
���

�
�

����
���

∑ ���
����
���

Equation 8: Multi objective pheromone deposition with weighting factors

Coupled to this ACO method, which deals with the discrete architecture component choices, is a
real value genetic algorithm (RGA). It utilizes aspects of survival of the fittest, gene crossover
and a population pool as proposed in [27], to attain a global optimal parameter combination of
the architecture values. The process begins by generating a set of random parameter
combinations which forms the population’s gene/trait pool. Once the population has achieved its
desired size, breeding begins to generate offspring.
As a modification, the number of parents required for breeding can be user defined. The chosen
parents are always the best members from the current population pool and breed with a further
randomly generated candidate. Their parameter traits are then combined by probabilistic
crossover to form one offspring. The amount of weighting for the random agent during the
crossover determines the likelihood of inherited or mutated traits of parameters to be passed on
to the offspring. A candidate in the GA population pool is a path choice in the function tree. Each
of these paths contains certain parameter traits. For example the path shown in Figure 9
generates a solution of four components with three continuous component parameters:

�̅ = [x12 . x33 x44]

Other paths will have different characteristics in the component composition resulting in other
entries in the parameter vector.

Figure 9: ACO solution path and its GA parameter traits
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Figure 10: GA crossover and mutation process
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For each parameter the probability of inheriting the value from one of the members of the
breeding process depends on their objective value ��� as given by Equation 9. Figure 10 shows
this process visually for 2 breeding parents and a random agent. The random agent uses the
mutation rate �����, which is converted to an objective value by solving the equality in Equation
10 and the quadratic in Equation 11. ��� is the final objective value of the random agent to reach
the desired mutation rate. Each breeding partner with the same parameter has the chance to pass
on his parameter to the offspring, based on their objective values. Hence if high mutation rates
are chosen random agents have a higher probability to pass on their parameters, due to the
resulting high objective value as shown in Figure 9.

�� =
���

∑ ����
���

Equation 9: Inheritance probability

����� =
∑ ����
��� ����

���

�∑ ∑ ����
��� ����

���
�
��� �+ ∑ ����

��� ����
���

Equation 10: Equality for random agent objective value

� =������� ∗
1
���

�
�

���
									� = ����� +������ ∗ �∑ ����

��� �
���

�

�
− 1											� = �����

�

���
∗ ������ 	− 	����

�

���

��� =
−� +�(�� − 4 ∗ � ∗ �)

2 ∗ �

Equation 11: Quadratic to solve for random agent objective value

In addition to this offspring trait mutation through a random agent, a global mutation rate was
introduced. This rate introduces further variability on all parameter traits of the offspring,
through Equation 12.

������ = ������ ∗ ��1 − ������ + ���(���) ∗ �2 ∗ �������
Equation 12 GA global mutation

The breeding process is repeated to fully populate the required parameter of each path contained
in the ACO pool. Each parent set only has a specific number of offspring at a time. This provides
the ability for population members with poorer objective values to also induce some of their
parameter traits to future candidates. Once a large enough set of offspring is generated, they are
then incorporated into the current population, by replacing the equivalent number of dominated
members of the set. The link between the ACO and GA algorithm, occurs during the path
generation, which accounts for the past evaluated paths through the pheromone values. The GA
then provides information about the parameter combinations which were successful in the past
for the given concept paths. The resulting objective values are fed into the pheromone update
function. Figure 11 shows the overall flow of processes of the hybrid optimizer.
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Figure 11: ACO-GA hybrid procedure

Since realistic engineering problems are trade-offs, a multi-objective optimization capability was
deemed necessary. Specifically in aircraft systems design objectives such as weight, cost, power
and efficiency are often conflicting and lead to a trade-off design. The adaptations to the hybrid
approach include a non-dominant sorting method and assignment of a dummy objective based on
the position and distribution of the discovered Pareto front points. This is a posterior approach
resulting in Pareto fronts or surfaces, which can subsequently be used to select a solution with
the most appropriate trade-offs between objectives, based on its shape.

The identification of the non-dominated points is done efficiently with a novel matrix method,
presented here for a generalized n-dimensional space of data points as shown in Equation 13 to
Equation 16. Consider an example of a two dimensional dataset ���� of n points.

���� =
�� �� �� ��
�� �� �� ��

Equation 13 A two objective dataset

����� =

⎣
⎢
⎢
⎢
⎢
⎡ 1 0 0 ��⃗
1 0 0 .
0 1 0 .
0 1 0 .
0 0 1 .
2�����⃗ . . . ⎦

⎥
⎥
⎥
⎥
⎤

�� =

⎣
⎢
⎢
⎢
⎢
⎡�� �� … ��⃗
�� �� … .
�� �� … .
�� �� … .
�� �� … .
�� �� … ��⃗ ⎦

⎥
⎥
⎥
⎥
⎤

	�� =
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⎢
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�� �� �� ��
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����� = �� − ��
Equation 14 Difference equation

������ = ����� > 0
Equation 15 Differences to binary indices

������ = ��������� ∗ �������
����

���

Equation 16: Summation of indices to form non-dominated indices

The matrices P1 and P2 are reshapes of the data set to facilitate the matrix subtraction in Equation
14. Matrix	�����, is populated by entries of ones along the diagonal, corresponding to the
number of dimensions in the dataset. The subtraction represents the difference between all points
in all dimensions. The results are then converted to a binary matrix	������, which has entries of
1 for differences larger than zero and zero for others. By summing these indices over the
dimensions, with a matrix multiplication of the transposed index matrix and �����, the indices of
the points which are non-dominated ������ are produced through a further summation over the
number of dimensions of the datasets. Figure 12 shows this application, by evaluating a two
objective data point set of randomly generated points in the interval 0.2 and 1.2.

In addition to the front identification, an environment measure of the point spread in the fitness
assignment process is required. This is achieved by degrading fitness value ���� of each point i,
by an amount equal to the reciprocal of the distances �� between the test point �� and its nearest
neighbor Pj. Equation 17 shows this process for Np points in the test environment on the front.

����� =� 1
��

��

���

Equation 17: Fitness degradation with root mean square distance between points

An even point distribution is achieved by degrading points, and hence moving the search
direction towards more sparsely populated regions. The overall fitness assignment for the ith
point on Pareto front k is given by Equation 18.

���� = �� 1
��

��

���
�+�� ∗ �

Equation 18: Fitness assignment for combined front and spacing

The choice of optimization parameters is heavily dependent on the problem to be solved and
required discretion by the user. Table 1 gives an overview of important parameters and their
expected effects.

Table 1: Optimizer parameter effects

Parameter Global mutation
rate

Cross over
mutation rate

Population
pool size

Parents for
crossover

Evaporation
rate

Paths per
iteration

Range 1 – 3% 15 – 30% 30 – 100 2 - 4 10 – 30% 4 – 8
Effects Determines

degree of
randomness for
all parameters

Determines
degree of
randomness
per offspring

Determines
max points
on pareto
front

Increases
information
sharing
across pool

Increases
random choices
for paths in the
ACO

Increases the
search width per
computation step
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Figure 12: Pareto front identification of a random point cloud

III. Verification & Validation

The framework has been applied to aircraft subsystem design case studies [28][29], showing
promise for large scale conceptual design space generation and selection. The intention of this
section is to focus on a more generalized problem statement and testing the optimizer for the
ACO, GA and the combined approach. The problem formulation is representative of a large scale
design problem with multiple component alternatives and design metric implications.

One such relevant example may be the system power architecture of a civil passenger aircraft.
Here various consumption devices are required from hydraulic actuators, electric compressors,
fan heaters and fuel pumps to windscreen anti-icing. These are coupled on the system level to
their power distribution components and the generation components. At the same time certain
technology choices will lead to induced requirements to provide other component functionality.
Hence the theoretical problem presented here, visualized by the function tree in Figure 13, is of
somewhat similar nature.

The problem to be solved consists of a finding a composition of components ���� and
component parameters, ��,� which minimizes metrics 1 and 2 (M1 & M2) for a whole
architectures.

���(��,��) → [��,��]���� = ������ ,�����,��,��
Equation 19 Optimization test problem

[��]���� = � ��,�	 ∗ ��,����(��)
����

���

Equation 20 Metric 1

[��]���� = � ���,� ∗ � � �����

�����

���
� ∗ ��,����(��)�

����

���

Equation 21 Metric 2
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Each component is assigned M1 and M2 and their summation forms the architecture optimization
objectives to be minimized as given in Equation 19 . M1 is a summation over all components in
the architecture with each component value depending on a continuous function ��,���� and a
constant ��,�	as shown in Equation 20. For the component metric M2 an increasing value with the
component's connection number	�����, connection constants Ccon and continuous function
��,���� is chosen as shown in Equation 21. This makes M1 comparable to a component mass
metric due to component parameters and consequently overall system mass. M2 changes both
with component parameter and connections. Hence it incorporates two layers of information on
the discrete level and is intended to be aligned to a complexity representation of an architecture.

The design problem representative function tree comprising 3 boundary functions with 2 induced
function levels and a total of 32 components is used to establish the discrete design space. The
tree shown in Figure 13 produces 9600 unique architectures after enumeration with the Pareto
front visible and the minimal M1 and M2 architecture values at 201 and 318 respectively for fixed
parameters. The concept space is clustered since architecture will have large number of common
coponents, resulting in similar values for the metrics.

The continous functions apply to a subset of components, namely S1,S2, S4 and S7. This limits
the analysis complexity of the problem by producing the component descrete space and a four
dimensional continous space for two objectives.

Figure 13: Function tree for the validation problem & categorized discrete space of solutions

Next the problem is optimized for a minimization of M1 and M2 individually, with fixed
parameters for the continuous functions. Each iteration update considers a pool of 8 new
candidates generated from the current pheromone map. Results of the converged architectures
are shown in Figure 14, indicating the repeated convergence of the algorithm to the same
solutions as discovered in the enumeration, with final M1 and M2 values at 201 and 318
respectively. Generally speaking as soon as the concept path with the lowest metric is
discovered, the path element reinforcement leads to quick subsequent convergence. Results are
obtained with the shown parameters in Table 2.
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Figure 14: Metric averages in current population pool

Table 2: Single objective discrete space optimization parameters

Evaporation rate Max Iterations Paths per Iteration Population pool size
15% 150 8 30

Next two objectives are considered and the Pareto front is compared with the result from the
enumeration. Figure 15 shows five fronts from individual runs with a good agreement by the
optimizer. Compared to the enumeration front shown in Figure 13, these results discover the
front almost fully every time, with only minor differences. The results were produced with the
optimization parameters given in Table 3.

Figure 15: Pareto fronts and enumerated concept space

Table 3: Dual objective discrete space optimization parameters

Evaporation rate Max iterations Paths per Iteration Population pool size Objective M1 Objective M2
25% 400 8 30 Minimize Minimize

The hybrid optimizer is next tested in combination with the discrete space. It is defined by
parabolic and Griewank functions [24] of four parameters as shown in Equation 23 and Equation
24 respectively. The Griewank function induces multiple minima points in the M2 direction; the
parabolic has only one minimum in the M1 direction. The global minima for �� is found when all
parameters equal 2.5. The global minima for the parabolic function ��, is encountered when all
parameters equal 5. Function parameters are given in Table 4 and �� = �

���	(��)
.
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Table 4: Griewank and Parabolic function parameters

FR Sc �� ��
90 30 -1 -2

��(��) = �� ∗ (�� ∗ �� + ��)� + ��
Equation 22: Single parametric parabolic function

��(��) =���(��)
��

���

Equation 23: Multi parametric parabolic function

��(��) =
∑ �������
���
�� −��cos ���

√�
��

��

���
+ 1

Equation 24: Multi parametric Griewank function

An example extract of the functions is shown in terms of slices of the resulting 4D parameter
space in Figure 16. Both functions have minima at different parameter values including multiple
minima for the Griewank function. Hence the optimizer will search for global minima and best
trade-offs between the parameters in the multi-objective optimization case.

Figure 16: Continuous space slices for parameters

The results for a single objective optimization run of M1 and M2, for a fixed concept space are
shown in Figure 17 & Figure 18. It repeatedly converges to the function minimum, with some
variability in overall execution time. This variability is part of the probabilistic nature of the
GA's mutation and crossover procedures. The optimization parameters are shown in Table 5.
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Figure 17: Single objective optimization for M1; Convergence of parameters

Figure 18: Single objective optimization for M2; Convergence of parameters

Table 5: Single objective GA optimization parameters

Max
iterations

Paths per
Iteration

Population pool
size

Global mutation
rate

Cross over mutation
rate

Parents for
crossover

100 8 30 1% 15% 2

Finally the combined optimization problem in both parametric and concept space is solved. This
means that metrics of concepts generated by the ACO will depend on the current component
parameters which are varied by the continuous functions. The minimal solution to the single
metric optimization will be the architecture with the following characteristics:

• Contains the fewest components possible with the lowest fixed M1,2 component values
• Contains as many components with continuous function as possible, as these can reduce
their fixed M1,2 values further.

• Connection count component make within the architecture is at a minimum.

The following points are in some case conflicting, as some architecture will have more
components, which have lower fixed metric values, or lower component connections. Results
were produced with five repeated optimization runs for both metrics.
Figure 19 shows results for the ACO and GA combined M1 optimization case. Repeated
convergence to concept number 5187 is observable, which has three components of continuous
function. The converged parameters for P2, P3 and P4 produce the minimum for the Griewank
function, as expected. It is visible that discovery of this concept can be slow, which is due to the
fact that it differs only slightly in M1 to a second concept with only two continuous functions.
Results for the M2 case are shown in Figure 20. Here the final concept is number 5354 and
contains three components with continuous functions. Again, parameters converge to values
producing minima for the parabolic functions. Convergence is generally faster compared to the
M1 case. The final values for both M1 and M2 differ to the pure discrete optimization since the
continuous functions reduce them further. Their minima are now at 179 and 211 respectively.
The optimized parameters for this run are given in Table 6.
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Figure 19: Parameter and objective data for the ACO-GA M1 optimization

Figure 20: Parameter and objective data for the ACO-GA M2 optimization

Table 6: Single objective GA and ACO optimization parameters

Iterations Paths per
iteration

Population
pool size

Global
mutation rate

Cross over
mutation rate

Evaporation
rate

Parents for
crossover

400 8 100 1% 15% 35% 2
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The resulting Pareto fronts for the two objective minimization optimization are shown in Figure
21. The coloring of the points along the front, correspond to the architectures in terms of their
component composition. Their respective concept numbers have also been indicated. At the
lower limit of the metrics the same architectures are discovered as was the case for the single
objective case. Along the fractured front different concepts emerge with some variation in the
discrete space. For repeated runs the discovered fronts show the same characteristics with minor
differences in the parametric space. Figure 21 also shows the complete space of evaluated
concepts during the run, colored according to the number of repetitions of the same concept
number but with different parametric variables. Hence it shows the algorithm’s ability to explore
with direction towards the Pareto front. Discovered concepts are then evaluated and refined
increasingly in those regions.

Figure 21: Pareto fronts for the ACO-GA dual objective optimization

IV. Discussion
The presented conceptual design framework represents a further step in automating the design
processes, by including concept generation, analysis and optimization within a single
environment. This brings the advantage of not having to handle data exchange between software
packages and increases computational efficiency.
The theoretical concepts include a function based problem breakdown, technology exclusion
filters, quasi-steady modeling of system component performance, clear sizing case definition for
components and a mission model. The computing time is affected by the choice of model
fidelity, mission simulation length and time increment size, as well as the optimization
parameters. Hence for large architectures with many component models the computing
requirements may become an issue as the analysis contains multiple loops and is subsequently
coupled to the optimization iterations.
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Common aspects of heuristic optimizers apply; a wider and more diverse search space will lead
to longer convergence times. The focus on parallel computation of concepts provides a large
benefit here, as the space can be wider with more computing resources and little impact on
execution time.
On the one hand the theoretical concepts direct the framework towards aircraft applications with
specific mission and aircraft models. Their interactions and interrelationships are hard coded in
the computational routines. However, in theory the automated approach is applicable to a wider
range of engineering problems, such as industrial plant and product design. One of the
limitations of the framework is its assumption of establishing system performance based on
component combinations, with little geometric considerations. Hence indirect effects such as
installation requirements, power distribution efficiency factors and volume constraints are only
considered in a qualitative manner. These indirect design objective variations will require
consideration in future framework development, to ready it for large scale industrial applications
such as the clean sky project [31].

V. Conclusions

A highly automated approach to conceptual engineering subsystem design has been presented.
The population of a central database of design information and the effective combination of
individual mathematical models of system components leads to automated generation and
analysis of system architectures. Based on a functional decomposition of the design problem,
component models are assembled and combined with their continuous design parameters to form
a complex mixed design space. The developed ACO and GA hybrid optimizer is developed to
handle this space.
A theoretical functional decomposition tree is combined with two continuous functions of known
minima. Hence a comparison can be made for the enumerated architecture space with known
minima of the parameter functions, against the hybrid optimizer. The structure of the presented
theoretical study is comparable to aircraft conceptual design applications conducted by past
research such as [18][19].
The optimizer discovers the expected minima for the known functions and the enumerated space,
as well as the Pareto fronts. Further work is required to improve the confidence in the
repeatability of results as well as the optimizer parameter settings such as mutation and
pheromone evaporation rates.
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