21 research outputs found

    Energy-efficient task allocation for distributed applications in Wireless Sensor Networks

    Get PDF
    We consider the scenario of a sensing, computing and communicating infrastructure with a a programmable middleware that allows for quickly deploying different applications running on top of it so as to follow the changing ambient needs. We then face the problem of setting up the desired application in case of hundreds of nodes, which consists in identifying which actions should be performed by each of the nodes so as to satisfy the ambient needs while minimizing the application impact on the infrastructure battery lifetime. We approach the problem by considering every possible decomposition of the application's sensing and computing operations into tasks to be assigned to the each infrastructure component. The contribution of energy consumption due to the performance of each task is then considered to compute a cost function, allowing us to evaluate the viability of each deployment solution. Simulation results show that our framework results in considerable energy conservation with respect to sink-oriented or cluster-oriented deployment approaches, particularly for networks with high node densities, non-uniform energy consumption and initial energy, and complex actions

    K-means clustering-based WSN protocol for energy efficiency improvement

    Get PDF
    Since it is very difficult to replace or recharge the batteries of the sensor nodes in the wireless sensor network (WSN), efficient use of the batteries of the sensor nodes is a very important issue. This has a deep relationship with the lifetime of the network. If the node's energy is exhausted, the node is no longer available. If a certain number of nodes (50% or 80%) in a network consumes energy completely, the whole network will not work. Therefore, various protocols have been proposed to maintain the network for a long time by minimizing energy consumption. In recent years, a protocol using a K-means clustering algorithm, one of machine learning techniques, has been proposed. A KCED protocol is proposed in consideration of residual energy of a node, a cluster center, and a distance to a base station in order to improve a problem of a protocol using K-average gung zipper algorithm such as cluster center consideration

    Managing your Trees: Insights from a Metropolitan-Scale Low-Power Wireless Network

    Get PDF
    Low-power wireless, such as IEEE 802.15.4, is envisioned as one key technology for wireless control and communication. In the context of the Advanced Metering Infrastructure (AMI), it serves as an energy-efficient communication technology for both communications at building-scale networks and city-scale networks. Understanding real-world challenges and key properties of 802.15.4 based networks is an essential requirement for both the research community and practitioners: When deploying and operating low-power wireless networks at metropolitan-scale, a deep knowledge is essential to ensure network availability and performance at production-level quality. Similarly, researchers require realistic network models when developing new algorithms and protocols. In this paper, we present new and real-world insights from a deployed metropolitan-scale low-power wireless network: It includes 300,000 individual wireless connected meters and covers a city with roughly 600,000 inhabitants. Our findings, for example, help to estimate real-world parameters such as the typical size of routing trees, their balance, and their dynamics over time. Moreover, these insights facilitate the understanding and the realistic calibration of simulation models in key properties such as reliability and throughput

    Cross-layer network lifetime optimization considering transmit and signal processing power in WSNs

    No full text
    Maintaining high energy efficiency is essential for increasing the lifetime of wireless sensor networks (WSNs), where the battery of the sensor nodes cannot be routinely replaced. Nevertheless, the energy budget of the WSN strictly relies on the communication parameters, where the choice of both the transmit power as well as of the modulation and coding schemes (MCSs) plays a significant role in maximizing the network lifetime (NL). In this paper, we optimize the NL of WNSs by analysing the impact of the physical layer parameters as well as of the signal processing power (SPP) P_sp on the NL. We characterize the underlying trade-offs between the NL and bit error ratio (BER) performance for a predetermined set of target signal-to-interference-plus-noise ratio (SINR) values and for different MCSs using periodic transmit-time slot (TS) scheduling in interference-limited WSNs. For a per-link target BER requirement (PLBR) of 10^?3, our results demonstrate that a ’continuous-time’ NL in the range of 0.58?4.99 years is achieved depending on the MCSs, channel configurations, and SPP

    Energy efficient chain based routing protocol for deterministic node deployment in wireless sensor networks

    Get PDF
    Wireless Sensor Network (WSN) consists of small sensor devices, which are connected wirelessly for sensing and delivering specific data to Base Station (BS). Routing protocols in WSN becomes an active area for both researchers and industrial, due to its responsibility for delivering data, extending network lifetime, reducing the delay and saving the node’s energy. According to hierarchical approach, chain base routing protocol is a promising type that can prolong the network lifetime and decrease the energy consumption. However, it is still suffering from long/single chain impacts such as delay, data redundancy, distance between the neighbors, chain head (CH) energy consumption and bottleneck. This research proposes a Deterministic Chain-Based Routing Protocol (DCBRP) for uniform nodes deployment, which consists of Backbone Construction Mechanism (BCM), Chain Heads Selection mechanism (CHS) and Next Hop Connection mechanism (NHC). BCM is responsible for chain construction by using multi chain concept, so it will divide the network to specific number of clusters depending on the number of columns. While, CHS is answerable on the number of chain heads and CH nodes selection based on their ability for data delivery. On the other hand, NHC is responsible for next hop connection in each row based on the energy and distance between the nodes to eliminate the weak nodes to be in the main chain. Network Simulator 3 (ns-3) is used to simulate DCBRP and it is evaluated with the closest routing protocols in the deterministic deployment in WSN, which are Chain-Cluster Mixed protocol (CCM) and Two Stage Chain based Protocol (TSCP). The results show that DCBRP outperforms CCM and TSCP in terms of end to end delay, CH energy consumption, overall energy consumption, network lifetime and energy*delay metrics. DCBRP or one of its mechanisms helps WSN applications by extending the sensor nodes lifetime and saving the energy for sensing purposes as long as possible

    DCBRP: a deterministic chain-based routing protocol for wireless sensor networks

    Get PDF
    Background: Wireless sensor networks (WSNs) are a promising area for both researchers and industry because of their various applications The sensor node expends the majority of its energy on communication with other nodes. Therefore, the routing protocol plays an important role in delivering network data while minimizing energy consumption as much as possible. The chain-based routing approach is superior to other approaches. However, chain-based routing protocols still expend substantial energy in the Chain Head (CH) node. In addition, these protocols also have the bottleneck issues.Methods:A novel routing protocol which is Deterministic Chain-Based Routing Protocol (DCBRP). DCBRP consists of three mechanisms: Backbone Construction Mechanism, Chain Head Selection (CHS), and the Next Hop Connection Mechanism. The CHS mechanism is presented in detail, and it is evaluated through comparison with the CCM and TSCP using an ns-3 simulator. Results:It show that DCBRP outperforms both CCM and TSCP in terms of end-to-end delay by 19.3 and 65%, respectively, CH energy consumption by 18.3 and 23.0%, respectively, overall energy consumption by 23.7 and 31.4%, respectively, network lifetime by 22 and 38%, respectively, and the energy*delay metric by 44.85 and 77.54%, respectively.Conclusion:DCBRP can be used in any deterministic node deployment applications, such as smart cities or smart agriculture, to reduce energy depletion and prolong the lifetimes of WSNs
    corecore