683 research outputs found

    Embedded-Cluster Calculations in a Numeric Atomic Orbital Density-Functional Theory Framework

    Get PDF
    We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level DFT calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).Comment: 12 pages, 4 figure

    A quantum-mechanical perspective on linear response theory within polarizable embedding

    Get PDF
    The derivation of linear response theory within polarizable embedding is carried out from a rigorous quantum-mechanical treatment of a composite system. Two different subsystem decompositions (symmetric and nonsymmetric) of the linear response function are presented, and the pole structures as well as residues of the individual terms are analyzed and discussed. This theoretical analysis clarifies which form of the response function to use in polarizable embedding, and we highlight complications in separating out subsystem contributions to molecular properties. For example, based on the nonsymmetric decomposition of the complex linear response function, we derive conservation laws for integrated absorption cross sections, providing a solid basis for proper calculations of the intersubsystem intensity borrowing inherent to coupled subsystems and how that can lead to negative subsystem intensities. We finally identify steps and approximations required to achieve the transition from a quantum-mechanical description of the composite system to polarizable embedding with a classical treatment of the environment, thus providing a thorough justification for the descriptions used in polarizable embedding models

    Electronic Excitations in Complex Molecular Environments: Many-Body Green's Functions Theory in VOTCA-XTP

    Get PDF
    Many-body Green's functions theory within the GW approximation and the Bethe-Salpeter Equation (BSE) is implemented in the open-source VOTCA-XTP software, aiming at the calculation of electronically excited states in complex molecular environments. Based on Gaussian-type atomic orbitals and making use of resolution of identify techniques, the code is designed specifically for non-periodic systems. Application to the small molecule reference set successfully validates the methodology and its implementation for a variety of excitation types covering an energy range from 2-8 eV in single molecules. Further, embedding each GW-BSE calculation into an atomistically resolved surrounding, typically obtained from Molecular Dynamics, accounts for effects originating from local fields and polarization. Using aqueous DNA as a prototypical system, different levels of electrostatic coupling between the regions in this GW-BSE/MM setup are demonstrated. Particular attention is paid to charge-transfer (CT) excitations in adenine base pairs. It is found that their energy is extremely sensitive to the specific environment and to polarization effects. The calculated redshift of the CT excitation energy compared to a nucelobase dimer treated in vacuum is of the order of 1 eV, which matches expectations from experimental data. Predicted lowest CT energies are below that of a single nucleobase excitation, indicating the possibility of an initial (fast) decay of such an UV excited state into a bi-nucleobase CT exciton. The results show that VOTCA-XTP's GW-BSE/MM is a powerful tool to study a wide range of types of electronic excitations in complex molecular environments

    New Approaches for ab initio Calculations of Molecules with Strong Electron Correlation

    Get PDF
    Reliable quantum chemical methods for the description of molecules with dense-lying frontier orbitals are needed in the context of many chemical compounds and reactions. Here, we review developments that led to our newcomputational toolbo x which implements the quantum chemical density matrix renormalization group in a second-generation algorithm. We present an overview of the different components of this toolbox.Comment: 19 pages, 1 tabl

    Open-ended response theory with polarizable embedding:Multiphoton absorption in biomolecular systems

    Get PDF
    We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree–Fock and Kohn–Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedding (PE) model. With this new state-of-the-art multiscale functionality, electric response properties to any order can be calculated for molecules embedded in polarizable atomistic molecular environments ranging from solvents to complex heterogeneous macromolecules such as proteins. In addition, environmental effects on multiphoton absorption (MPA) properties can be studied by evaluating single residues of the response functions. The PE approach includes mutual polarization effects between the quantum and classical parts of the system through induced dipoles that are determined self-consistently with respect to the electronic density. The applicability of our approach is demonstrated by calculating MPA strengths up to four-photon absorption for the green fluorescent protein. We show how the size of the quantum region, as well as the treatment of the border between the quantum and classical regions, is crucial in order to obtain reliable MPA predictions

    86 PFLOPS Deep Potential Molecular Dynamics simulation of 100 million atoms with ab initio accuracy

    Full text link
    We present the GPU version of DeePMD-kit, which, upon training a deep neural network model using ab initio data, can drive extremely large-scale molecular dynamics (MD) simulation with ab initio accuracy. Our tests show that the GPU version is 7 times faster than the CPU version with the same power consumption. The code can scale up to the entire Summit supercomputer. For a copper system of 113, 246, 208 atoms, the code can perform one nanosecond MD simulation per day, reaching a peak performance of 86 PFLOPS (43% of the peak). Such unprecedented ability to perform MD simulation with ab initio accuracy opens up the possibility of studying many important issues in materials and molecules, such as heterogeneous catalysis, electrochemical cells, irradiation damage, crack propagation, and biochemical reactions.Comment: 29 pages, 11 figure

    Polarizable Embedding Based on Multiconfigurational Methods: Current Developments and the Road Ahead

    Get PDF
    This perspective gives a brief overview of recent developments within the polarizable embedding (PE) method - a multiscale approach developed over the last years. In particular, we are concerned with a recent coupling of the PE method to a multiconfiguration self-consistent field (MCSCF) code. Current applications and target systems are outlined, and methods to incorporate dynamical correlation are discussed. With respect to dynamical correlation, the focus is on perturbative treatments as well as a range-separated multiconfigurational hybrid between MCSCF and density functional theory (MC-srDFT). A short discussion of CAS active spaces is also given. A few sample results using a retinal chromophore surrounded by a protein environment illustrate both the importance of the choice of active space and the importance of dynamical correlation. (C) 2014 Wiley Periodicals, Inc.This perspective gives a brief overview of recent developments within the polarizable embedding (PE) method - a multiscale approach developed over the last years. In particular, we are concerned with a recent coupling of the PE method to a multiconfiguration self-consistent field (MCSCF) code. Current applications and target systems are outlined, and methods to incorporate dynamical correlation are discussed. With respect to dynamical correlation, the focus is on perturbative treatments as well as a range-separated multiconfigurational hybrid between MCSCF and density functional theory (MC-srDFT). A short discussion of CAS active spaces is also given. A few sample results using a retinal chromophore surrounded by a protein environment illustrate both the importance of the choice of active space and the importance of dynamical correlation.</p

    The Dalton quantum chemistry program system

    Get PDF
    Dalton is a powerful general\u2010purpose program system for the study of molecular electronic structure at the Hartree\u2013Fock, Kohn\u2013Sham, multiconfigurational self\u2010consistent\u2010field, M\uf8ller\u2013Plesset, configuration\u2010interaction, and coupled\u2010cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic\u2010structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge\u2010origin\u2010invariant manner. Frequency\u2010dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one\u2010, two\u2010, and three\u2010photon processes. Environmental effects may be included using various dielectric\u2010medium and quantum\u2010mechanics/molecular\u2010mechanics models. Large molecules may be studied using linear\u2010scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platform
    corecore