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Dalton is a powerful general-purpose program system for the study of molecular
electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self-
consistent-field, Møller–Plesset, configuration-interaction, and coupled-cluster
levels of theory. Apart from the total energy, a wide variety of molecular
properties may be calculated using these electronic-structure models. Molecu-
lar gradients and Hessians are available for geometry optimizations, molecular
dynamics, and vibrational studies, whereas magnetic resonance and optical ac-
tivity can be studied in a gauge-origin-invariant manner. Frequency-dependent
molecular properties can be calculated using linear, quadratic, and cubic re-
sponse theory. A large number of singlet and triplet perturbation operators
are available for the study of one-, two-, and three-photon processes. Environ-
mental effects may be included using various dielectric-medium and quantum-
mechanics/molecular-mechanics models. Large molecules may be studied using
linear-scaling and massively parallel algorithms. Dalton is distributed at no cost
from http://www.daltonprogram.org for a number of UNIX platforms. C© 2013 John
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How to cite this article:

WIREs Comput Mol Sci 2014, 4:269–284. doi: 10.1002/wcms.1172

Volume 4, May/June 2014  2013 John Wiley & Sons, Ltd. 269



Software Focus wires.wiley.com/wcms

The authors have declared no conflicts of interest in relation to this
article.

∗Correspondence to: trygve.helgaker@kjemi.uio.no
1Department of General Physics and Spectroscopy, Faculty of
Physics, Vilnius University, Vilnius, Lithuania
2Department of Chemistry, University of Ferrara, Ferrara, Italy
3Aarhus University School of Engineering, Aarhus, Denmark
4Faculty of Mathematics and Natural Sciences, University of Oslo,
Oslo, Norway
5Department of Theoretical Chemistry and Biology, School of
Biotechnology, KTH Royal Institute of Technology, Stockholm,
Sweden
6EMGS ASA, Trondheim, Norway
7Department of Chemistry, Aarhus University, Aarhus, Denmark
8Department of Chemical and Pharmaceutical Sciences, University
of Trieste, Trieste, Italy
9Norwegian Computing Center, Oslo, Norway
10Systematic, Aarhus, Denmark
11CTCC, Department of Chemistry, University of Oslo, Oslo,
Norway
12Department of Physics, Chemistry and Pharmacy, University of
Southern Denmark, Odense, Denmark
13Department of Physical Chemistry and Center for Research in
Biological Chemistry and Molecular Materials (CIQUS), University
of Santiago de Compostela, Santiago de Compostela, Spain
14CTCC, Department of Chemistry, UiT The Arctic University of
Norway, Tromsø, Norway
15Danske Bank, Horsens, Denmark
16CSC Scandihealth, Aarhus, Denmark
17Department of Theoretical Chemistry, Ruhr–University Bochum,
Bochum, Germany
18Norwegian Meteorological Institute, Oslo, Norway
19Norwegian Defence Research Establishment, Kjeller, Norway
20Department of Philosophy, The University of Auckland, Auck-
land, New Zealand
21Department of Chemistry, Norwegian University of Science and
Technology, Trondheim, Norway
22Department of Geoscience, Aarhus University, Aarhus, Denmark
23University Centre of Information Technology, University of Oslo,
Oslo, Norway
24VSB – Technical University of Ostrava, Ostrava, Czech Republic
25High-Performance Computing Group, UiT The Arctic University
of Norway, Tromsø, Norway
26Department of Physics, Chemistry and Biology, Linköping Uni-
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versity, Linköping, Sweden
39Køge Gymnasium, Køge, Denmark
40Institute of Physics, Kazimierz Wielki University, Bydgoszcz,
Poland
41Department of Physics, University of Northeastern and IMIT-
CONICET, Corrientes, Argentina
42Department of Theoretical Chemistry and Biology, School of
Biotechnology and Swedish e-Science Research Center (SeRC),
KTH Royal Institute of Technology, Stockholm, Sweden
43Kjeller Software Community, Oslo, Norway
44PSS9 Development, Cracow, Poland
45Institute of Molecular Science, University of Valencia, Valencia,
Spain
46Paul Sabatier University, Toulouse, France
47Institute for Nuclear Waste Disposal, Karlsruhe Institute of Tech-
nology, Karlsruhe, Germany
48Danske Bank, Aarhus, Denmark
49Danish Technological Institute Nano- and Microtechnology Pro-
duction, Taastrup, Denmark
50VLSCI and School of Chemistry, University of Melbourne,
Parkville, Australia
51School of Chemistry, University of Nottingham, Nottingham,
UK
52School of Chemistry, University of Bristol, Bristol, UK
53CLC bio, Aarhus, Denmark
54Department of Chemistry, Princeton University, Princeton, New
Jersey
55Department of Chemistry and La Trobe Institute for Molecular
Sciences, La Trobe University, Melbourne, Australia
56CoE for Next Generation Computing, Clemson University,
Clemson, South Carolina

DOI: 10.1002/wcms.1172

This is an open access article under the terms of the Creative Com-
mons Attribution-NonCommercial-NoDerivs License, which per-
mits use and distribution in any medium, provided the original
work is properly cited, the use is non-commercial and no modifi-
cations or adaptations are made.

270  2013 John Wiley & Sons, Ltd. Volume 4, May/June 2014



WIREs Computational Molecular Science The Dalton program

user of the program to study, for example, molec-
ular structure, energetics, reactivity, spectroscopic
parameters, linear, and nonlinear optical processes.
Small systems may be accurately benchmarked us-
ing full configuration-interaction (FCI) techniques.
Environmental effects may be incorporated at dif-
ferent levels of theory. For some electronic-structure
models, large molecules can be studied using linear-
scaling and massively parallel algorithms. In the
present paper, we give an overview of the Dalton pro-
gram system, with illustrations and emphasis on the
Dalton2013 release.

ELECTRONIC-STRUCTURE MODELS

With the Dalton program, the electronic structure
of a molecule can be described using all standard
nonrelativistic wave-function and density-functional
models of modern quantum chemistry. In particular,
the wave function may be calculated using HF, MC-
SCF, configuration-interaction (CI), and CC theories.
Using density-functional theory (DFT), calculations
may be carried out with a range of KS exchange–
correlation functionals. Dalton calculations are
performed with generally contracted Gaussian-type
orbitals (GTOs) with solid-harmonic or Cartesian an-
gular factors as one-electron basis functions; some
models also use two-electron functions for explicit
correlation.

HF and KS SCF Theories
In Dalton, SCF calculations may be performed us-
ing a variety of optimization techniques. Apart from
the traditional iterative Roothaan–Hall diagonal-
ization method with direct-inversion-in-the-iterative-
subspace (DIIS) convergence acceleration, the SCF en-
ergy may be optimized using a robust second-order
trust-region method.1 All calculations may be carried
out in either serial or parallel manner. SCF calcula-
tions may also be carried out using the linear-scaling
module discussed later.

With Dalton, KS studies may be performed with
a variety of KS exchange–correlation functionals,
including local-density-approximation (LDA) func-
tionals, generalized-gradient-approximation (GGA)
functionals such as BLYP and PBE, global hybrid
functionals such as B3LYP and PBE0, and range-
separated hybrid functionals such as CAM-B3LYP
and r-CAM-B3LYP. Additional functionals may be
obtained by combining the included functionals for
exchange and correlation in new ways. Double-
hybrid functionals such as B2PLYP and MPW2PLYP,
with a second-order perturbation contribution, are

available. For the GGA and hybrid functionals, the
exchange–correlation potentials may be asymptoti-
cally corrected to ensure a proper long-range be-
havior, important for the study of Rydberg states
using response theory.2 Empirical DFT-D2 and
DFT-D3 dispersion corrections may be applied.
Dalton offers an implementation of spin-restricted
and spin-unrestricted DFT for open-shell states.3,4

MCSCF Theory
For complicated electronic ground states char-
acterized by static correlation and for valence-
excited and core–hole states, MCSCF theory
often provides the best solution. Dalton is char-
acterized by an advanced MCSCF functionality
with respect to both the construction of the MC-
SCF wave function and its optimization.5–8 MC-
SCF ground- and excited-state wave functions
can be constructed using the flexible concept of
a generalized active space (GAS),9 including the
complete-active-space (CAS) and restricted-active-
space (RAS)10 models as special cases. Dalton uses
robust and efficient second-order MCSCF optimiza-
tion techniques, based on the concept of a trust region.

To recover dynamic as well as static cor-
relation, MCSCF theory may be combined with
N-electron valence state second-order perturba-
tion theory (NEVPT2).11 The NEVPT2 approach
is similar to second-order CAS perturbation the-
ory (CASPT2) but it is not affected by intruder-
state problems.12,13 All MCSCF and post-MCSCF
multireference-CI calculations in Dalton are per-
formed using the parallelized LUCITA module14,15

with the wave function expanded either in
configuration-state functions or in Slater determi-
nants. As an important special case, FCI wave func-
tions for benchmarking may be calculated using
LUCITA.

CC Theory
For dynamical correlation, a variety of (spin-
restricted) CC-based models have been imple-
mented in Dalton: the coupled-cluster-singles (CCS)
model, second-order-Møller–Plesset (MP2) theory,
degeneracy-corrected second-order perturbation
theory (DCPT2), the coupled-cluster-doubles (CCD)
model, the coupled-cluster-singles-and-doubles
(CCSD) model,16,17 and the coupled-cluster-singles-
doubles-perturbative-triples (CCSD(T)) models.
Several ring-CCD and random-phase-approximation
(RPA) models are also available,18 including
RPA with second-order screened exchange
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(RPA+SOSEX).19 Frequency-dependent ground-
and excited-state properties can be studied using
several specially developed models.20,21 In particular,
Dalton contains the iterative CC222 and CC323

models for frequency-dependent properties and the
noniterative CCSDR(3) triples-correction model24

for excitation energies.
For faster basis-set convergence, the explic-

itly correlated MP2-R12/-F12, CCSD(T)(F12), and
CC3(F12) models are available in Dalton.25–27 For
higher efficiency, Cholesky decomposition techniques
have been implemented for the CCSD(T) energy28 and
for CC2 linear response properties.29 Atomic sub-
systems can be defined by Cholesky decomposition
to reduce the computational requirements of the CC
models.30

Relativistic Corrections
Although Dalton is a nonrelativistic electronic-
structure code based on the Schrödinger equation,
it also has some functionality for incorporating
the effects of relativity—in particular, effective core
potentials may be used for energy and response
functions.31 Relativistic effects may also be in-
cluded using Douglas–Kroll–Hess second-order one-
electron scalar integrals.31 When molecular response
properties are calculated, the Breit–Pauli one- and
two-electron spin–orbit operators may be included
perturbatively.32–34 Dalton offers scaled spin–orbit
integrals and the atomic-mean-field approximation
to the spin–orbit integrals35 and parity-violation
integrals.36

MOLECULAR PROPERTIES

Dalton is a versatile tool for studying molecular prop-
erties. By response theory, the linear, quadratic, and
cubic response of a molecule to external perturba-
tions, including geometrical distortions and electro-
magnetic fields, may be explored in detail and a
wide variety of spectroscopic parameters can be cal-
culated. In the following, the molecular properties
implemented in Dalton are described.

Geometrical Properties
Molecular gradients (forces) and Hessians (force con-
stants) may be calculated analytically at the HF, KS,
and MCSCF37,38 levels of theory, whereas analytical
molecular gradients are available for the CCS, CC2,
CCD, MP2, RPA, CCSD, and CCSD(T) models,18,39

also in the frozen-core approximation. Numerical dif-
ferentiation may be performed automatically for these
quantities when an analytical implementation is not
available.40

Dalton has an extensive functionality for
exploring potential-energy surfaces by means of
molecular gradients and Hessians. Minima can be
determined using first-order (quasi-Newton) and
second-order (Newton) methods.41 Dalton also has
several first- and second-order methods for deter-
mining saddle points (transition states), including
mode following42 and image minimization.43 Ge-
ometry optimizations may be performed for ex-
cited states44,45 and core-ionized states.46 Potential-
energy surfaces can be mapped by the calculation
of intrinsic reaction coordinates. Born–Oppenheimer
direct-dynamics studies can be performed by calcu-
lating classical molecular trajectories on the potential-
energy surfaces, iteratively solving Newton’s equation
of motion for the atoms in the system, allowing dy-
namical studies of systems containing more than one
hundred atoms.47,48

Dalton may be used to calculate molecular vi-
brational spectra. In addition to harmonic frequen-
cies, infrared intensities are obtained in the double-
harmonic approximation49 and Raman intensities at
a chosen frequency in the Placzek approximation.
Dalton has an automated procedure for calculating
rovibrationally averaged molecular geometries50 and
vibrational averages for molecular properties at the
HF, KS, and MCSCF levels of theory.40,51

Magnetic Properties
Nuclear shielding and indirect nuclear spin–spin
coupling constants of nuclear-magnetic-resonance
(NMR) spectroscopy may be studied at many
levels of theory, including DFT,52–54 HF, and
MCSCF theory,55,56 the second-order polarization-
propagator approximation (SOPPA),57 and CC the-
ory; for an illustration, see the KS calculation of spin–
spin coupling constants in valinomycin in Figure 1.
Likewise, the hyperfine coupling tensors,58,59 elec-
tronic g tensors,60 and zero-field splitting tensors61 of
electron-paramagnetic-resonance (EPR) spectroscopy
may be calculated. A number of related properties
such as spin–rotation tensors,62 magnetizabilities,63

rotational,62 and vibrational64 g tensors are available.
In addition, several chiroptical properties may be
studied: vibrational circular dichroism,65 electronic
circular dichroism,66 optical rotation,67 and vibra-
tional Raman optical activity.68

In all calculations involving an external mag-
netic field, gauge-origin invariance is ensured by the
use of London atomic orbitals, also known as gauge-
including atomic orbitals. Alternatively, invariance
may be ensured by the diamagnetic-zero version of
the method of continuous transformation of the ori-
gin of the current density (CTOCD-DZ).69
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FIGURE 1 The absolute value of the indirect spin–spin coupling constants (Hz, greater than 0.1 Hz) in valinomycin (left), on a logarithmic

scale as a function of the internuclear distance (pm).54 We have used blue, black, red, and green for the CH, CC, CO, and CN coupling constants,

respectively. The spin–spin coupling constants have been calculated at the LDA/6-31G level of theory. (Reproduced with permission from Ref 54.

Copyright 2004, John Wiley & Sons, Ltd.)

Frequency-Dependent Properties
Frequency-dependent linear response functions may
be calculated at the HF, KS,70 SOPPA,71 and MC-
SCF levels of theory; at most of these levels of theory,
quadratic and cubic response functions are also avail-
able. These functions contain a wealth of information
not only about the reference state but also about other
states of the molecular electronic system.72 For exam-
ple, the poles of a linear response function (such as
the dipole–dipole polarizability tensor) correspond to
excitation energies from the reference state (not nec-
essarily the ground state), whereas the corresponding
residues represent transition moments between the
reference state and the excited states. Quadratic re-
sponse functions73 such as the first hyperpolarizability
tensor provide information about nonlinear molecu-
lar response and two-photon processes—for exam-
ple, coherent two-photon absorption74,75 and two-
photon absorption circular dichroism.76 By means of
quadratic response theory, phosphorescence phenom-
ena such as spin-forbidden dipole transitions induced
by spin–orbit coupling can be studied.55,77 Cubic re-
sponse functions78–80 such as the second hyperpolar-
izability tensor give information about three-photon
processes81 and excited-state polarizabilities,82 vari-
ous higher-order spectroscopies such as second har-
monic generation circular intensity difference,83 as
well as a wide range of birefringences. Many of these
properties may be studied in the presence of an exter-
nally applied electric field.

Several response functions have been imple-
mented for the CCS, CC2, and CCSD models, in-
cluding ground-state expectation values,84 excita-

tion energies,85 linear response functions,86 quadratic
response functions,87 cubic response functions,88

and their residues.86,89 For the CC3 model, re-
sponse properties including excitation energies have
been implemented.85,90 The double residues of the
quadratic and cubic response functions allow first-
and second-order properties of excited states—
excited-state dipole moments and polarizabilities,91

for example—to be obtained even for single-reference
methods.

Dalton contains implementations of special
methodologies for the calculation of a variety of X-ray
spectroscopies, such as X-ray emission, absorption,92

shake-up,93 X-ray Raman,94 and X-ray circular
dichroism95 spectroscopies. For HF and KS theo-
ries, this is accomplished with the ‘static exchange’
approximation92 and the RPA-restricted channel
technology, both of which are implemented with
integral-direct methods, for applications to large sys-
tems such as polymers and surface adsorbates.

In standard response theory, the response func-
tions become divergent under resonance conditions.
Such divergences are unphysical, arising from the as-
sumption of infinite lifetimes of excited states. In re-
ality, relaxation mechanisms deplete the excited-state
populations, making perturbation theory sound also
under these conditions. Using the Ehrenfest theorem,
an equation of motion for state vectors that mimics
the inclusion of relaxation in density-matrix theory
by the Liouville equation has been established.96 The
resulting complex-polarization-propagator (CPP) ap-
proach has been implemented at the HF, KS,
MCSCF, and CC levels of theory.96–100 The CPP
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FIGURE 2 Near-edge X-ray absorption fine structure (NEXAFS)

study of Gd acetate nanoparticles. The experimental spectrum (top) is

compared with the sum of the theoretical spectra (black) for isolated

acetate (green) and a coordination complex (red). (Reproduced with

permission from Ref 105. Copyright 2012, Springer.)

response functions are resonance convergent and
complex valued, providing a direct means of address-
ing spectroscopies carried out in regions of electronic
resonances such as electronic circular dichroism,101

resonance Raman,102 magnetic circular dichroism,103

and vis/UV/X-ray absorption98,104 spectroscopies. In
Figure 2, we have plotted the NEXAFS linear ab-
sorption cross-section of Gd acetate nanoparticles,
extracted from the imaginary part of the KS CPP
electric-dipole polarizability.105 This calculation ad-
dresses the spectral region of the carbon K-edge,
demonstrating the universal treatment of the spec-
trum in CPP theory.

Environmental Effects
In Dalton, environmental effects may be included
in quantum-chemical calculations either by treating
the environment as a homogeneous dielectric con-
tinuum or by describing it at the level of polariz-
able molecular mechanics. In the simplest continuum
approach, the self-consistent-reaction-field (SCRF)
approach,106–108 the solute is placed in a spherical
cavity in the dielectric medium. The SCRF method
has been implemented for the HF, KS, CC2, CCSD,
MCSCF, and SOPPA models and may be applied to
linear, quadratic, and cubic response functions (up
to quadratic response functions for the CC mod-

els) as well as for geometrical properties (molec-
ular gradients and Hessians) and spin-resonance
properties.109–114 In the more elaborate polarized-
dielectric-continuum model (PCM),115 the solute is
placed in a molecule-shaped cavity, thereby improv-
ing the solute–solvent description. Solvent effects at
the level of PCM may be evaluated using the HF, KS,
or MCSCF models and are available for properties
up to the level of cubic response theory116–118 and
for molecular gradients. The SCRF and PCM solva-
tion models have both been implemented in a general
nonequilibrium formalism.

Using the polarizable-embedding (PE) sch-
eme,119–125 the environment may be treated as a
structured and polarizable medium—that is, the dis-
crete nature of the environment is retained and is
described by distributed multipoles and anisotropic
dipole–dipole polarizabilities. The PE method may be
applied at the HF, KS, MP2, SOPPA, CCSD, or CC2
levels of theory and properties up to linear response
may be evaluated. In addition, quadratic-response
properties are available at the HF and KS levels.

Figure 3 illustrates the calculation of biophoton-
ics properties with Dalton. The left insert shows an
X-ray structure of channelrhodopsin, highlighting the
chromophore embedded in the binding pocket of the
protein. Using the PE method, the effect of the protein
on the chromophore is described by representing the
protein by distributed multipoles and (anisotropic)
polarizabilities, retaining a quantum-mechanical de-
scription of the chromophore itself. The calculated
embedding potential is highly anisotropic, signifi-
cantly affecting the optical properties of the chro-
mophore as illustrated by the one- and two-photon
absorption spectra calculated at different levels of the-
ory: by neglecting the protein environment entirely
(‘vacuum’), by adjusting the chromophore geometry
to that inside the protein (‘geometry’), by including
the electrostatics but neglecting protein relaxation
(‘electrostatics’), and by including both electrostatics
and protein relaxation (‘polarization’).

LARGE MOLECULES

For large molecules, containing up to more than a
thousand atoms, Dalton contains a massively paral-
lel, linear-scaling module for the HF, KS, and MP2
electronic-structure models; CCSD energies are also
available in a massively parallel but not linear-scaling
manner. For large molecules, it is essential to em-
ploy stable energy-optimization schemes so as to
avoid divergence or convergence to spurious solu-
tions, which is achieved by combining the robust
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FIGURE 3 One- and two-photon absorption spectra for channelrhodopsin calculated using the polarizable embedding method implemented in

Dalton. The insert on the top of the right hand side shows the protein embedding potential projected onto the molecular surface.

FIGURE 4 Left: The titin-I27 domain highlighting the disulfide bridging bond and a schematic representation of the stretching of the

polyprotein strain by the aid of the atomic force microscopy; right: the titin-I27SS model, designed to model the redox-active site in the titin-I27

domain.

three-level/augmented Roothaan–Hall method with
a line-search trust-region technique.126–128 Fock/KS
matrices and integrals are calculated by combining
J-engine and density-fitting techniques with linear-
scaling techniques such as the continuous fast mul-
tipole method (CFMM)129,130 and the linear-scaling
exchange (LinK) method.131,132 This new SCF mod-
ule is efficient also for medium-sized molecules, often
reducing CPU time by an order of magnitude or more
relative to optimizations carried out with the standard

module—enabling, for example, studies of dynamics
for systems containing more than 100 atoms.48

To illustrate the capabilities of Dalton for large
molecules, we consider two systems—namely, the
168-atom valinomycin molecule and the 392-atom
titin-I27SS model,38 see Figure 4. For valinomycin, ge-
ometry optimizations were conducted at the BP86/6-
31G** and CAM-B3LYP/6-31G** levels of theory.
Using 64 cores on eight 2.60 GHz Intel Xeon E5-
2670 nodes, the geometry optimizations converged
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FIGURE 5 MP2 study of insulin (787 atoms) in the cc-pVDZ basis (7,604 orbitals). Left: Localized orbitals obtained by minimizing the second

power of the orbital variances. The least local occupied (blue) and least local virtual (red) orbitals are plotted using orbital contour values of 0.01

a.u. Right: MP2 electrostatic potential calculated using the DEC scheme plotted on an isodensity surface (0.001 a.u.). The values are indicated by

the color box (a.u.).

in 33 and 30 geometry steps, respectively. These op-
timizations took a total of 67 and 219 min, with an
average of 2.0 and 7.3 min per geometry step, respec-
tively. For the titin model, a single geometry step takes
25 min at the CAM-B3LYP/6-31G** level of theory.

Dalton has linear-scaling HF and KS mod-
ules for a number of molecular properties,133,134 in-
cluding polarizabilities, excitation energies, one- and
two-photon absorption spectra, magnetic-circular-
dichroism parameters,135,136 and NMR shielding
constants. Excited-state geometry optimizations are
available.45 It is also possible to generate various ab-
sorption spectra using damped response theory.100,137

To recover dynamical correlation in large
molecules, Dalton utilizes a novel algorithm for
generating highly local HF orbitals.138,139 Such or-
bitals constitute the basis for the linear-scaling,
massively parallel MP2 implementation in Dalton,
which exploits the inherent locality of dynamical cor-
relation in the Divide–Expand–Consolidate (DEC)
strategy.140–142

As an illustration, we consider the calculation
of the MP2 electrostatic potential of insulin. The HF
orbitals were localized by minimizing the sum of the
second powers of the orbital variances, generating a
set of local occupied orbitals and a set of local virtual
orbitals.138 Even the least local orbitals from this set,
which are plotted in Figure 5 (left), are localized to
small regions of the insulin molecule. The use of these
local orbitals allows the inherently local electron cor-
relation effects to be described efficiently using the
DEC scheme. In Figure 5 (right), the DEC scheme
was used to calculate the MP2 electrostatic potential

for insulin, which may be used to identify areas of
reactivity.

DALTON HISTORY

The development that led to Dalton began in the
early 1980s, as a collaboration between Scandina-
vian research groups at the Universities of Aarhus
(H. J. Aa. Jensen, P. Jørgensen, J. Olsen), Oslo
(T. Helgaker), and Uppsala (H. Ågren). Up to the
mid 1990s, several programs that later became the
Dalton code were run separately from a simple
Bourne shell script. Molecular integrals over GTOs
were calculated using the HERMIT code,143 HF and
MCSCF wave functions were optimized using the
SIRIUS code,1 whereas frequency-independent and
-dependent molecular properties were calculated
using the ABACUS144 and RESPONS145 codes,
respectively.

The separate HERMIT, SIRIUS, ABACUS, and
RESPONS codes were merged in 1995 and released as
Dalton 1.0 in 1997. This first release was essentially
an MCSCF code with emphasis on molecular prop-
erties, including molecular gradients, Hessians, NMR
properties, and linear, quadratic, and cubic response
theory. Dalton 1.1 was released later in 1997, with
bug fixes and performance improvements.

The next major release was Dalton 1.2 in 2001,
which included integral-direct CC functionality that
had been developed since the early 1990s16 and prop-
erties up to cubic response. Other important additions
were SOPPA, nonequilibrium solvation, and vibra-
tional averaging of molecular properties. The release
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included a new integral module ERI, developed for
vector computers and integral-driven CC theory.17

In 2005, Dalton 2.0 was released with a DFT
module with functionality for molecular gradients
and Hessians, NMR and EPR parameters, linear
and quadratic response properties, based on an ini-
tial DFT implementation from 2000.52 In addition,
Dalton 2.0 included NEVTP2 and MP2–R12 modules
and numerous other additions and improvements.

The Dalton2011 release introduced a new mod-
ule for linear-scaling HF and KS calculations of
large systems, using density fitting and CFMM tech-
niques. In addition, Dalton2011 introduced a vari-
ety of additions and improvements to existing mod-
ules (CC3 and CCSD-R12), Cholesky techniques in
the CC module,146 range-separated functionals,147

an excitation-energy diagnostic for DFT,148 and
an atomic integral-direct implementation of the
SOPPA149 and RPA(D)150 models. For the treatment
of environmental effects, the PCM module was intro-
duced.

In the Dalton2013 release, the linear-scaling
module has been extended significantly to incorpo-
rate local orbitals, the DEC-MP2 model, magnetic
properties for HF and KS theories, and molecular dy-
namics. New massively parallel techniques have been
introduced for SCF, DEC-MP2, and CCSD energies.
Parallel MCSCF techniques have been introduced, ex-
tending the limit for MCSCF configuration-space sizes
by at least an order of magnitude. Spin-multiplet151

and spin-flip152 density-functional response-theory
methodologies, based on collinear and noncollinear
exchange–correlation kernels, have been introduced,
allowing computations of excited states with double-
excitation character and various low-spin ground
states.

PROGRAM STRUCTURE

Program Modules
Dalton consists of several modules, developed more
or less independently. The HERMIT module calcu-
lates not only the integrals needed for energies but
also for a large number of molecular properties, in-
cluding all one- and two-electron integrals of the
Breit–Pauli Hamiltonian. The ERI module is a vec-
torized and distribution-oriented integral generator
that is invoked in certain calculations—in particular,
in integral-direct CC calculations.

The SIRIUS module contains the (MC)SCF en-
ergy optimization code, whereas the CC module per-
forms CC optimizations and property calculations.
The LUCITA module performs large-scale CI cal-

culations for general CI expansions and serves the
MCSCF module with parallel evaluation of configu-
ration vectors and density matrices. The DFT module
performs the numerical exchange–correlation integra-
tion and serves the SIRIUS module with the required
KS matrix elements.

The ABACUS module evaluates second-order
properties for the (MC)SCF models—in particular,
second-order static molecular properties in which the
basis set depends on the applied perturbation. The
RESPONS module is a general-purpose code for eval-
uating response functions, up to cubic response for
(MC)SCF wave functions, quadratic, and cubic re-
sponse for KS theory, and linear response for the
SOPPA model. Linear-scaling calculations are per-
formed with the LSDALTON module.

Programming Details and Language
The Dalton program is written in FORTRAN 77,
FORTRAN 90, and C, with machine dependencies
isolated using C preprocessor directives. All floating-
point computations are performed in 64-bit precision
but the code takes advantage of 32-bit precision to
reduce integer storage requirements in some sections.

The parallelization of the regular Dalton SCF
modules for small molecules has been done ex-
clusively using MPI and scales (for sufficiently
large systems) with up to 90% efficiency on 1000
processors,153,154 even demonstrating superlinear
scaling.155 Also the CI routines have been paral-
lelized using MPI.15 The Dalton SCF modules for
large molecules have been parallelized in a hybrid
MPI/OpenMP scheme.

Hardware/Software Supported
Dalton runs on a variety of UNIX systems. The
current release of the program has been tested on
IBM-AIX, Linux, and OS X but is easily ported to
other UNIX systems.

Program Distribution
The Dalton source code is distributed to users at no
cost. Three types of licenses are available: personal,
site, and benchmark. With all licenses, the copyright
to the code remains with the authors and is not put
in the public domain—in particular, the source and
binary code may not be redistributed. Furthermore,
no fee may be charged for the use of Dalton. For
copies of Dalton distributed with a site license, users
may not access the source and object files. Benchmark
licenses differ from personal and site licenses in that
access is given to Dalton only for a restricted period
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of time. One year after its release, more than 700
personal and 150 site licenses had been issued for
Dalton 2011.

User Support
Dalton is distributed with limited user support.
The code is installed using CMake with an au-
tomatic adaptation to supported platforms. Dal-
ton is distributed with a cross-referenced man-
ual and a test suite comprising more than 400
test jobs. Information about patches, releases, and
other updates are provided on the Dalton forum
(http://daltonprogram.org/forum), where users can
also exchange experiences, view tutorials and seek
help on installing and using the Dalton programs.

CONCLUSION

We have presented the Dalton quantum chem-
istry program system—a highly flexible general-
purpose code for molecular electronic-structure
calculations. As a result of 30 years of continuous
and vigorous development by a large number of au-
thors, Dalton offers today not only a large selection
of molecular electronic-structure models (including
all standard models) but also the ability to calculate
an exceptionally broad range of molecular properties
from these models. In this manner, Dalton constitutes
a unique tool for quantum-mechanical calculations of
molecular systems, ranging from linear-scaling studies
of large systems to high-accuracy benchmark studies
on small systems.
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Helgaker T. The calculation of indirect nuclear spin-
spin coupling constants in large molecules. Chem Eur
J 2004, 10:4627–4639.
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of natural circular dichroism in X-ray Raman scat-
tering from molecules. Phys Rev A 1997, 55:2716–
2722.
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