711 research outputs found

    Society-oriented cryptographic techniques for information protection

    Get PDF
    Groups play an important role in our modern world. They are more reliable and more trustworthy than individuals. This is the reason why, in an organisation, crucial decisions are left to a group of people rather than to an individual. Cryptography supports group activity by offering a wide range of cryptographic operations which can only be successfully executed if a well-defined group of people agrees to co-operate. This thesis looks at two fundamental cryptographic tools that are useful for the management of secret information. The first part looks in detail at secret sharing schemes. The second part focuses on society-oriented cryptographic systems, which are the application of secret sharing schemes in cryptography. The outline of thesis is as follows

    Security in Wireless Medical Networks

    Get PDF

    Novel Techniques for Secure Use of Public Cloud Computing Resources

    Get PDF
    The federal government has an expressed interest in moving data and services to third party service providers in order to take advantage of the flexibility, scalability, and potential cost savings. This approach is called cloud computing. The thesis for this research is that efficient techniques exist to support the secure use of public cloud computing resources by a large, federated enterprise. The primary contributions of this research are the novel cryptographic system MA-AHASBE (Multi-Authority Anonymous Hierarchical Attribute-Set Based Encryption), and the techniques used to incorporate MA-AHASBE in a real world application. Performance results indicate that while there is a cost associated with enforcing the suggested security model, the cost is not unreasonable and the benefits in security can be significant. The contributions of this research give the DoD additional tools for supporting the mission while taking advantage of the cost efficient public cloud computing resources that are becoming widely available

    An analysis of key generation efficiency of RSA cryptosystem in distributed environments

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2005Includes bibliographical references (leaves: 68)Text in English Abstract: Turkish and Englishix, 74 leavesAs the size of the communication through networks and especially through Internet grew, there became a huge need for securing these connections. The symmetric and asymmetric cryptosystems formed a good complementary approach for providing this security. While the asymmetric cryptosystems were a perfect solution for the distribution of the keys used by the communicating parties, they were very slow for the actual encryption and decryption of the data flowing between them. Therefore, the symmetric cryptosystems perfectly filled this space and were used for the encryption and decryption process once the session keys had been exchanged securely. Parallelism is a hot research topic area in many different fields and being used to deal with problems whose solutions take a considerable amount of time. Cryptography is no exception and, computer scientists have discovered that parallelism could certainly be used for making the algorithms for asymmetric cryptosystems go faster and the experimental results have shown a good promise so far. This thesis is based on the parallelization of a famous public-key algorithm, namely RSA

    On the security of NoSQL cloud database services

    Get PDF
    Processing a vast volume of data generated by web, mobile and Internet-enabled devices, necessitates a scalable and flexible data management system. Database-as-a-Service (DBaaS) is a new cloud computing paradigm, promising a cost-effective and scalable, fully-managed database functionality meeting the requirements of online data processing. Although DBaaS offers many benefits it also introduces new threats and vulnerabilities. While many traditional data processing threats remain, DBaaS introduces new challenges such as confidentiality violation and information leakage in the presence of privileged malicious insiders and adds new dimension to the data security. We address the problem of building a secure DBaaS for a public cloud infrastructure where, the Cloud Service Provider (CSP) is not completely trusted by the data owner. We present a high level description of several architectures combining modern cryptographic primitives for achieving this goal. A novel searchable security scheme is proposed to leverage secure query processing in presence of a malicious cloud insider without disclosing sensitive information. A holistic database security scheme comprised of data confidentiality and information leakage prevention is proposed in this dissertation. The main contributions of our work are: (i) A searchable security scheme for non-relational databases of the cloud DBaaS; (ii) Leakage minimization in the untrusted cloud. The analysis of experiments that employ a set of established cryptographic techniques to protect databases and minimize information leakage, proves that the performance of the proposed solution is bounded by communication cost rather than by the cryptographic computational effort

    Device-Based Isolation for Securing Cryptographic Keys

    Get PDF
    In this work, we describe an eective device-based isolation approach for achieving data security. Device-based isolation leverages the proliferation of personal computing devices to provide strong run-time guarantees for the condentiality of secrets. To demonstrate our isolation approach, we show its use in protecting the secrecy of highly sensitive data that is crucial to security operations, such as cryptographic keys used for decrypting ciphertext or signing digital signatures. Private key is usually encrypted when not used, however, when being used, the plaintext key is loaded into the memory of the host for access. In our threat model, the host may be compromised by attackers, and thus the condentiality of the host memory cannot be preserved. We present a novel and practical solution and its prototype called DataGuard to protect the secrecy of the highly sensitive data through the storage isolation and secure tunneling enabled by a mobile handheld device. DataGuard can be deployed for the key protection of individuals or organizations

    The Elgamal Cryptosystem is better than Th RSA Cryptosystem for Mental Poker

    Get PDF
    Cryptosystems are one of the most important parts of secure online poker card games. However, there is no research comparing the RSA Cryptosystem (RC) and Elgamal Cryptosystem (EC) for mental poker card games. This paper compares the RSA Cryptosystem and Elgamal Cryptosystem implementations of mental poker card games using distributed key generation schemes. Each implementation is based on a joint encryption/decryption of individual cards. Both implementations use shared private key encryption/decryption schemes and neither uses a trusted third party (TTP). The comparison criteria will be concentrated on the security and computational complexity of the game, collusions among the players and the debate between the discrete logarithm problem (DLP) and the factoring problem (FP) for the encryption/decryption schemes. Under these criteria, the comparison results demonstrate that the Elgamal Cryptosystem has better efficiency and effectiveness than RSA for mental poker card games

    Cryptography and its application to operating system security

    Get PDF
    Not provided
    • …
    corecore