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Abstract

Groups play an important role in our modern world. They are more reliable and 
more trustworthy than individuals. This is the reason why, in an organisation, crucial 
decisions are left to a group of people rather than to an individual. Cryptography 
supports group activity by offering a wide range of cryptographic operations which can 
only be successfully executed if a well-defined group of people agrees to co-operate.

This thesis looks at two fundamental cryptographic tools that are useful for the man­
agement of secret information. The first part looks in detail at secret sharing schemes. 
The second part focuses on society-oriented cryptographic systems, which are the appli­
cation of secret sharing schemes in cryptography. The outline of thesis is as follows.

Chapter 1 contains a survey of both cryptographic systems and secret sharing schemes. 
It also provides terminology that is used throughout this thesis. In Chapter 2 a basic 
model for secret sharing scheme is studied. This model is then compared with existing 
secret sharing models formulated in the literature. Chapter 3 deals with a particular 
class of secret sharing schemes, the so-called threshold schemes. Several approaches to 
the construction of threshold secret sharing are reviewed in this chapter. Misconceptions 
about some constructions are pointed out and different constructions are compared.

Chapter 4 studies the generalisation of secret sharing schemes. Extended capabilities 
required in secret sharing schemes are discussed. An approach to computationally secure 
secret sharing schemes is reviewed. We show how to prevent the cheating problem at 
the secret reconstruction phase in the studied scheme. We also present efficient solutions 
for constructing secret sharing schemes in both multilevel and compartmented access 
structures.

The second part of the thesis concerns cryptographic algorithms. In contrast to exist­
ing cryptographic systems that use integers only, we show how floating-point arithmetic 
can be used in the construction of cryptographic algorithms. In Chapter 5, two classes 
of transcendentals are applied to construct novel encryption algorithms.

Chapters 6 and 7 concern society-oriented cryptographic systems. In Chapter 6 
threshold cryptography is studied. A cryptographic system that can control the flow of 
information in hierarchical organisations is presented in this chapter. Chapter 7 considers 
a particular class of society-oriented cryptographic systems, the so-called group-oriented 
cryptographic systems. A model for the construction of group-oriented cryptosystems is 

discussed and some group-oriented cryptosystyems are presented.



Finally, in Chapter 8 we high light some directions for future research in the areas of
secret sharing and cryptographic systems.
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Basic Notation

Most of the notation used in this thesis is defined in the text. Here we list notation for
which this is not done.

© Exclusive-or (of Booleans)

V Or (of Booleans)

A And (of Booleans)

/  ' Not (e.g., ^  denotes “not equal” ) '
u Set union
n Set intersection
e Set membership
V \ A The set of elements in V but not in A
A c V A  is a subset of V, A  ^  V
A C V A  is a subset of V
| Such that (set notation)
a | b a divides b (a, b E N)

1̂ 1 The cardinality of set A
N, Z , R The set of natural numbers, integers and reals, respectively

|| Concatenation
2a The set of all subsets of set A
2X Raising 2 to power x

M Smallest integer greater than x

W Greatest integer smaller than x

[«] A reference (used in bibliography)

[x,y] An interval (a subset of set R)
The set of integers modulo a

l°g„ Logarithm to base a

E Summation

n Multiplication

v



GF(p)

I

Mapping

The number of subsets of cardinality t of a set of cardinality n 

Congruence
Factorial (e.g., n\ =  1 x 2 x • • • x n)

The Galois field with p elements
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Chapter 1

Introduction

Information protection covers not only secrecy (a traditional protection against eaves­
dropping) but also authentication, integrity, verifiability and other more specific security 
countermeasures. Cryptography is the science that deals with the design of algorithms, 
protocols and systems for solving two kinds of security problems: privacy and authen­

tication. More precisely, cryptography is the use of transformations of data intended to 
make the data useless to opponents, but meaningful to legitimate receivers. The only 
secret part of almost all modern cryptographic systems, however, is the key -  the pa­
rameter that selects the particular transformation to be employed. So there is a clear 
need for providing for the secrecy of such sensitive information.

Secret sharing schemes provide for the secrecy of sensitive information by partitioning 
it into several parts in such a way that a specified number of the parts must be combined 
in order to recover the original information. So, losing a piece does not compromise the 
secret, that is, the opponent cannot learn the secret as long as he does not have access 
to a predetermined number of pieces.

Both secret sharing schemes and cryptographic systems are used in society-oriented, 
cryptographic systems. A trivial implementation of a society-oriented cryptographic sys­
tem would involve the concatenation of a secret sharing scheme with single user cryp­
tography. This arrangement is usually unacceptable as the cooperating subgroup must * 
first recover the cryptographic key. The access to the key, however, may compromise the 
system as it can be used for more than the requested operation.

This thesis looks at two systems for the management of secret information. The 
first part looks in detail at secret sharing schemes. The second part focuses on society- 
oriented cryptographic systems, which are the application of secret sharing schemes in 
cryptography. In this chapter, we present the basic concepts of cryptographic systems 
and secret sharing schemes, which are necessary to study the rest of this thesis.

1



1.1. Introductory Concepts of Cryptography 2

1.1 Introductory Concepts of Cryptography

Cryptography is the science that deals with the design of algorithms, protocols and 
systems for solving two kinds of security problems: privacy and authentication. More 
precisely, cryptography is the use of transformations of data intended to make the data 
useless to opponents, but meaningful to legitimate receivers. Thus cryptographic tech­
niques can be applied to protect communication channels.

The primitive operation of cryptography is encryption. It is an invertible operation, 
Ek -, that converts the message M  into a representation C  =  Ek { M ), such that it is 
meaningless to all parties other than the intended receiver. The legitimate receiver can 
apply the inverse transformation Dk  =  E^1 (the decryption) to retrieve the message as,

Dk (C)  =  E ^ ( E k (M))  =  M.

The parameter K , that selects the particular transformation to be employed, is called 
the key. Consider a simple transformation to construct a secure communication channel 
between Alice and Bob. The system is set up by Alice (the sender) who agrees with Bob 
(the receiver) on a secret key K  to communicate a message M  with the same length as 
the binary representation of the secret key, K .

1. The sender, Alice, generates the cryptogram C =  M  0  K .

2. Alice transmits the cryptogram to Bob.

To recover the message, Bob uses his secret key K  as M  =  C  ®  K .

This technique, if done properly (K  is kept secret and used only once) is uncondition­
ally secure. In fact, the protocol uses the well known one-time pad encryption method, 
which was developed in 1917 for telegraph communications [91]. Shannon [151] has 
shown that such a cryptographic system provides unconditional secrecy, that is, no mat­
ter how much computing power is available to an opponent, the scheme is unbreakable 
unless the opponent can guess K .

In spite of offering unconditional secrecy, the one-time pad cryptosystem suffers from 
the following weaknesses. •

• In order to maintain unconditional secrecy a separate random key K , for each 
message must be generated; thus an unlimited number of keys are needed.

• Since the keystream cannot be reproduced (because of randomness) both the sender 
and the receiver of the message need to know the keys, that is, a secure channel is 
required in order to transmit the key.
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The operational disadvantages of the one-time pad have led to the development of 
conditionally secure stream ciphers which are able to retain the positive characteristics of 
one-time pads while avoiding most of their negative aspects. The plaintext is encrypted 
in much the same way as the one-time pad, but with deterministically generated pseudo­
random sequences.

1.1.1 History

As early as the fifth century B.C. the Spartans established the first system of military 
cryptography [91]. Cryptography in its early years resembled very much secret writing. 
The well known Caesar cipher [91], which was used to encrypt military orders, is an 
example of this generation. In this system characters were transformed using a very 
simple substitution. It was reasonable to assume that the cryptogram was strong enough 
as most of the potential attackers were illiterate and hopefully others would think that 
the document was written in an unknown foreign language.

It was quickly realized that the assumption of an ignorant attacker was not realistic. 
Most early European cryptosystems were designed to withstand the attacks of educated 
opponents who knew the encryption process, but did not know the cryptographic key. 
Additionally, it was requested that the encryption and decryption processes could be 
done quickly, usually by hand, or with the aid of mechanical devices such as the cipher 
disk invented by Leon Battisa Alberti [91]. At the beginning of the nineteenth century, 
the first mechanical-electrical machines were introduced for “fast” encryption. This was 
the first breakthrough in cryptography.

1.1.2 Modern Cryptography

Shannon [151], in his seminal work, laid the theoretical foundations of modern cryptogra­
phy. He used information theory to analyse ciphers and considered the so-called product 
ciphers, which use small substitution boxes connected by larger permutation boxes. Sub­
stitution boxes, also called S-boxes, are controlled by a relatively short cryptographic 
key to provide confusion (because of the unknown secret key). The permutation boxes 
(P-boxes), however, have no key. Their structure is fixed and they provide diffusion. 
Product ciphers are also termed S-P networks (for more detail, see [117]).

Feistel [57] used the concept of the S-P network to design the Lucifer encryption 
algorithm. It encrypts 128-bit messages into 128-bit cryptograms using a 128-bit cryp­
tographic key. The designer of the Lucifer algorithm was able to modify the S-P network
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in such a way that both the encryption and decryption algorithms could be implemented 
by a single program or a piece of hardware. Encryption/decryption is done in six­
teen rounds. Each round acts on 128-bit input (Li, R{) and generates 128-bit output 
(Li+1, Ri+i) using a 64-bit partial key K{.

The Data Encryption Standard (DES) [122] was the first commercial-grade modern 
cryptographic algorithm with openly and fully specified implementation details. It was 
developed from Lucifer and very soon became a standard for encryption in banking and 
other non-military applications. It uses the same Feistel structure with shorter 64-bit 
data blocks and a shorter 64-bit key. As a matter of fact, the key contains 56 independent 
and 8 parity-check bits. Due to its wide utilisation, the DES was extensively investigated 
and analysed. The experience with the analysis of the DES gave valuable insights into 
the design properties of cryptographic algorithms. Amongst the many descendants of 
the DES, whose structure was based on Feistel permutation, are the Japanese Fast 
Encryption Algorithm (FEAL) [152] and the Australian LOKI [27, 26] algorithm.

Note that all the above mentioned cryptographic systems are private-key systems. In 
private-key cryptosystems, both the encryption and the decryption keys are secret and 
either the same, or the knowledge of one of them is sufficient to determine the other (this 
is why private-key systems are also called symmetric systems).

In 1976 Diffie and Heilman [53] introduced the concept of public-key cryptosystems. 
Public-key cryptosystems (also called asymmetric systems) use two different keys; one is 
public while the other is kept secret. Clearly, it is required that computing the secret key 
from the public one has to be intractable. In 1978 three designs based on the notion of 
public-key systems were published. Rivest, Shamir and Adleman [136] showed how the 
factorisation problem could be used to construct a public-key cryptosystem (this is the 
well-known RSA cryptosystem). Merkle and Heilman [119] used the knapsack problem 
in their construction. McEliece [113] built a system which applied error correcting codes. 
Later in 1985, ElGamal [55] designed a public-key cryptosystem using the discrete log­
arithm problem. Miller [121] and Koblitz [95] suggested using elliptic curves to design 
public-key cryptosystems.

1.1.3 Terminology

Cryptography has quite an extensive vocabulary. More complex terms will be introduced 
gradually throughout this thesis. There is however a collection of basic terms that 
are discussed briefly now. These definitions are mainly from Menezes, Oorschot and 
Vanstone [117], however the reader is also referred to Stinson [167] and Seberry and
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Pieprzyk [144].
A party is someone or something which sends, receives, or manipulates information.
The sender is the party in a communication system that is the legitimate transmitter of 
information.
The receiver is the party in a communication system that is the intended recipient of 
information.
An adversary is a party in a communication system that is neither the sender nor receiver, 
and which tries to defeat the information security service being provided between the 
sender and receiver.
Secrecy ensures that information flow between the sender and the receiver is unintelligible 
to outsiders. It protects information against threats based on eavesdropping.
Integrity enables the receiver to verify whether the message has been tampered with by 
outsiders whilst in transit via an unsecured channel. It ensures that any modification of 
the stream of messages will be detected.
An identification or party authentication assures the parties of their identity.
Message authentication provides to the party which receives a message evidence of the 
identity of the sender.
A channel is a means of conveying information from one party to another.
A secure channel (or a private channel) is one from which an adversary does not have 
the ability to reorder, delete, insert, or read.
An unsecured channel (or a public channel) is one from which parties other than those 
for which the information is intended can reorder, delete, insert, or read.
Encryption is the primitive cryptographic operation used to ensure secrecy or confiden­
tiality of information transmitted across an unsecured communication channel. The 
encryption operation takes a piece of information, also called message or plaintext, and 
transforms it into a cryptogram or ciphertext using a secret cryptographic key. 
Decryption is the reverse operation to encryption. The receiver who holds the correct 
secret key can recover the message (plaintext) from the cryptogram (ciphertext).
The encryption algorithm (or decryption algorithm) is the procedure that describes the 
step-by-step description of the encryption (or decryption) process. If there is no need to 
distinguish encryption from decryption, we call them collectively ciphers or cryptosys­

tems.
Private-key (also called symmetric) cryptosystems use the same secret key for encryption 
and decryption. Although the encryption and decryption keys do not need to be identical, 
the knowledge of one of them suffices to obtain the other.
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Public-key (also called asymmetric) cryptosystems use a different key for encryption 
and decryption. The knowledge of one key, however, does not allow the other to be 
determined.
A one-way function is a function for which it is “easy” to compute its value from its 
argument(s), but it is “difficult” to reverse it, that is, to find its argument(s) knowing 
its value.
Cryptanalysis is the study of mathematical techniques for attempting to defeat informa­
tion security services.
A cryptanalyst is someone who engages in cryptanalysis.
Cryptology is the study of cryptography and cryptanalysis.
A cryptosystem or a cryptographic system is a general term referring to a set of crypto­
graphic primitives used to provide information security services. Most often this term is 
used in conjunction with primitives providing confidentiality, that is, encryption.

An encryption system is said to be breakable if a third party, without prior knowledge 
of the key, can systematically recover plaintext from corresponding ciphertext within 
some appropriate time frame. The objective of the following attacks is to systematically 
recover plaintext from ciphertext, or even more drastically, to deduce the decryption key.

• A ciphertext-only attack is one whether the adversary (or cryptanalyst) tries to de­
duce the decryption key or plaintext by observing ciphertext only. Any encryption 
scheme vulnerable to this type of attack is considered to be completely insecure.

• A known-plaintext attack is one where the adversary has a quantity of plaintext 
and corresponding ciphertext.

• A chosen-plaintext attack is one where the adversary chooses plaintext and is then 
given corresponding ciphertext. Subsequently, the adversary uses the information 
deduced in order to recover plaintext corresponding to previously unseen ciphertext 
or to find the key applied.

• An adaptive chosen-plaintext attack is a chosen-plaintext attack wherein the choice 
of plaintext may depend on the ciphertext received from previous requests.

• A chosen-ciphertext attack is one where the adversary selects the ciphertext and is 
then given the corresponding plaintext. The objective is then to be able to deduce 
the plaintext from “different” ciphertext.

• An adaptive chosen-ciphertext attack is a chosen-ciphertext attack where the choice 
of ciphertext may depend on the plaintext received from previous requests.
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1.1.4 Assessment of a Cryptographic System

The most important criterion to assess a cryptographic system is the security of the 
system. There are different ways in which a cryptosystem may be secure. Among them 
we consider the following models for evaluating the security of a cryptosystem.

Unconditional Security

A cryptosystem is said to be unconditionally secure if an adversary having unlimited 
computational resources cannot defeat the system. Unconditional security for an encryp­
tion system is called perfect secrecy. For perfect secrecy, observation of the ciphertext 
provides no information whatsoever to an adversary.

A necessary condition for a symmetric-key encryption system to be unconditionally 
secure is that the key be at least as long as the message. The one-time pad is an exam­
ple of an unconditionally secure encryption algorithm. Public-key encryption schemes, 
however, cannot be unconditionally secure.

Computational Security

This measures the amount of computational effort required, by the best currently-known 
methods, to defeat a system. A proposed algorithm is said to be computationally secure 
if the perceived level of computation required to defeat it exceeds the computational 
resources of the hypothesised adversary.

Most of the best known cryptosystems in current use are computationally secure. 
The members of this class are sometimes also called practically secure.

Provable Security

A cryptosystem is said to be provably secure if the difficulty of defeating it can be shown 
to be essentially as difficult as solving a well-known difficult problem, such as integer 
factorisation [64] or the computation of discrete logarithms [127].

Provable security is considered to be adequate for most practical applications. Com­
putational security includes provable security as a proper subset.

1.2 Hashing

There are several cryptographic applications which require the production of a short 
fingerprint (or a digest) of a much longer document/message. Cryptographic applications
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of hashing include, amongst others, the generation of digital signatures and message 
authentication codes1.

A hashing function h, in general, is a procedure that takes as input a message, 
M , of arbitrary length and produces a digest, h (M ), of a fixed length. In order to 
assess the security of a hash function, a commonly used criteria is the collision freeness 
property. A hash function h is called collision free, if finding messages M\ and M2 with 
h(Mi ) =  h(M2) is a hard problem [43]. A formal definition of a collision free, also called 
strong one-way hash function, /¿, is given as follows:

1. h can be applied on any message or document, M , of any size.

2. h produces a fixed size digest h(M).

3. Given h and M , it is easy to compute /i(M ), but it is computationally intractable
to find the message M  for the given digest h ( M ), that is, h is one-way. -

4. Given the description of the hash function /¿, it is computationally infeasible to 
find two distinct messages Mi and M 2 which collide, i.e., /¿(M l) — h(M2). That 
is, h is collision free2.

Several constructions of hash functions (for different purposes and with different levels 
of security) have been proposed in the literature (see, for example, [142], [174] and [133]).

1.3 Digital Signatures

Hand-written signatures have been used in everyday situations such as writing a letter, 
signing a contract, withdrawing money from a bank, and so on. Since a copy of a hand­
written signature can usually be distinguished from an original, the signer cannot deny 
the original signature. This is why the signature is used to take the responsibility of the 
signer for signed messages.

One of the greatest achievements of modern cryptography is the digital signature. 
Digital signatures should be in a sense similar to hand-writ ten signatures. Since a copy 
of electronic documents is identical to the original, digital signatures have to create 
some sort of digital encapsulation for the document so any interference with either its 
contents or the signature will be detected with a very high probability. In order to

1 We will briefly discuss the generation of digital signatures, but readers who are interested in message 
authentication codes are referred to see the book by Pieprzyk and Sadeghiyan [133].

2Obviously there are infinitely many collisions for a hash function h , since the message source is 
much larger than the digest source.
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achieve this requirement, a digital signature on a message is a special encryption of the 
message that can be applied only by the legitimate signer. That is, in contrast to hand­
written signatures, which are independent from the messages, the digital signatures must 
somehow bind to the message.

Of course, in both hand-written and digital signature schemes a third party (the 
receiver of the signature) must be able to verify the signature. A hand-written signature 
is verified by comparing it to other, authentic signatures. For example, in order to with­
draw money from a bank, the bank compares the signature with one which is provided 
at account opening time. A verification of a digital signature, however, needs to apply a 
particular (in general, a publicly known) algorithm. So, a digital signature scheme is a 
collection of two algorithms and must have the following properties:

1. The signing algorithm SigK : JC x M. —* E assigns a signature a =  SigK( M ), where 
M  G At is a message, K  £ 1C is the secret key of the signer and E is the set of all 
possible values of the signatures.

2. The signing algorithm executes in polynomial time when the secret key K  is known. 
For an opponent, who does not know the secret key, it should be computationally 
intractable to forge a signature, that is, to find a valid signature for a given message.

3. The verification algorithm 14 : k x M. x E —y {yes, no} takes a public information 
k G 1C of the signer, a message M  £ M. and a given signature a £ E of the message 
M.  It returns “yes” if a is the signature of the message M , otherwise it returns 
“no” .

4. The verification algorithm, in general, is a publicly known (polynomial time) algo­
rithm. So, anyone can use it to check whether a message M  matches the signature 
cr or not.

There are two main classes of digital signature schemes.

Digital Signature Schemes with Appendix

This class of digital signatures require the original message as input to the verification 
algorithm. They rely on cryptographic hash functions and are the most commonly used 
in practice. An example of digital signature with appendix is the ElGamal [55] signature 
scheme (see section 1.5.2).
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Digital Signature Schemes with Message Recovery

Digital signature schemes with message recovery have the feature that the message signed 

can be recovered from the signature itself. In practice, this feature is of use for short 
messages. This class of digital signatures does not require the knowledge of the message 
for the verification algorithm. An example of digital signature with message recovery is 
the RSA [136] signature scheme (see section 1.5.1).
Note. Most digital signatures with message recovery are applied to a message of 
fixed length, while digital signatures with appendix are applied to messages of arbitrary 
length.

1.4 Private-key Cryptosystems

A private-key cryptosystem enables two parties, the sender and the receiver, to commu­
nicate in secrecy via an insecure channel (Figure 1.1 illustrates this scenario). Before 
any communication of messages takes place, both the sender and receiver must exchange 
the secret key K  E 1C via a secure channel. The secure channel can be implemented 
using a messenger or a registered mail. After exchanging the key, the sender can select 
a message M  £ A4, apply the encryption algorithm E : M. x /C —> C, and dispatch 
the cryptogram C  =  Ek { M ) through the insecure channel. The receiver, who knows the 
secret key K  (in modern cryptographic systems the encryption/decryption algorithms 
are publicly known) recreates the message from the cryptogram using D : C x K , ^ M ,  
that is, M  =  Dk (C).

Clearly, the cryptosystem works correctly if

Dk (Ek (M))  =  M

for all keys K  £ JC. The well-known private-key cryptosystem which is used in today’s 
cryptographic world is the Data Encryption Standard (DES) algorithm [122]. It was 
developed at IBM in the mid 70s and was the successor of Lucifer.

1.5 Public-key Cryptosystems

In private-key cryptosystems, both encryption and decryption keys are secret and either 
the same or the knowledge of one of them is sufficient to determine the other (this is 
why private-key cryptosystems are also called symmetric). For example, DES decryption 
is identical to DES encryption, but the key schedule is reversed. The main drawback
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Secure Channel

Figure 1.1: Scenario of a private-key cryptosystem

of applying a private-key cryptosystem is that it requires the prior communication of 
the key K  between sender (Alice) and receiver (Bob) using a secure channel, before any 
cryptogram is transmitted.

The idea behind a public-key cryptosystems is that it might be possible to design a 
system that uses two different keys, k and K , for encryption and decryption, respectively. 
The knowledge of one of these keys, however, must not be sufficient (computationally) 
to determine the other. Hence, one of the keys can be made public by publishing it in a 
directory (that is where the term public-key comes from). The advantage of a public-key 
cryptosystem is that, if the encryption key, £;, is made public then Alice (or anyone else) 
can use the public key to send an encrypted message (without a prior communication of 
the other key) to Bob. Bob is the only person that can decrypt the cryptogram, using 
the secret key K . Figure 1.2 shows a scenario in which the encryption key of a public-key 

system is made public.
Although applying a public-key cryptosystem does not require prior communication 

(to transmit a secret key) between two parties of the system, there must be a trusted 
public registry (e.g., White Pages) that keeps an up-to-date list of all active public-key 
systems. An entry on the list has to include the name of the receivers along with their 
original public-keys. The lack of a registry allows an attacker, instead of breaking the . 
public-key cryptosystem, to set up his own system and try to convince senders that the 
system is someone else’s (masquerading attack).

The notion of public-key cryptography was introduced by Diffie and Heilman [53] in 
1976. They discussed the shortcomings of private-key cryptosystems and introduced two 
novel approaches (called public-key cryptosystems and public-key distribution systems) 

to solve related problems.

Definition 1.1 [53] A public-key cryptosystem is a pair of families Ek, k G JC and Dk ,



1.5. Public-key Cryptosystems 12

Figure 1.2: Scenario of a public-key cryptosystem with a public encryption key 

K  £ 1C of algorithms representing invertible transformations,

Ek \ M  —y ,
Dk : M  —y M ,

such that the following are satisfied (k is the public and K  is the secret keys):

1. For every k £ /C, Ek is the inverse of Dk .

2. For every k £ 1C and M  £ M., the algorithms Ek and Dk  are easy to compute.

3. For almost every k £ K, each easily computed algorithm equivalent to Dk  is com­

putationally infeasible to derive from Ek.

f .  For every k £ 1C, it is feasible to compute inverse pairs Ek and Dk  from k.

The third property indicates that the user’s encryption key can be made public 
without compromising the security of his secret decryption key. Of course, the public 
file of encryption keys must be protected from unauthorised modification.

In 1978 three designs based on the notion of public-key systems were published. 
Rivest, Shamir and Adleman [136] showed how the factorisation problem could be used to 
construct a public-key cryptosystem (this is the well-known RSA cryptosystem). Merkle 
and Heilman [119] used the knapsack problem in their construction. McEliece [113] 
built a system which applied error correcting codes. Later in 1985, ElGamal [55] de­
signed a public-key cryptosystem using the discrete logarithm problem. Miller [121] and 
Koblitz [95] suggested using elliptic curves to design public-key cryptosystems.
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1.5.1 The RSA Cryptosystem

The RSA [136] public-key cryptosystem was designed by Rivest, Shamir and Adleman 

in 1978. It applies a well-known numerical problem, namely the factorisation problem. 
In this system, messages and cryptograms belong to the set Z jv- The composite integer 
TV is the product of two large and distinct primes p and q, that is, TV =  p x q. Let k 
and K  be the public and secret keys, respectively. For a message M  the RSA encryption 
function is

C =  Ek(M)  =  M k (mod TV).

The RSA decryption function applies the secret key K  on the cryptogram C  G as 
follows:

M  =  Dk (C) =  C K (mod TV).

Since the decryption of an encrypted message Af, should provide the original message 
A f, it requires

Dk  (Ek( M )) =  (M k)K =  M  (mod TV). (1.1)

The equation (1.1) would have a solution if and only if,

k x K  =  1 (mod <p(TV)) (1.2)

where (p(N) =  (p— l)(gr— 1) is the Euler’s totient function. Equation (1.2) has a solution 
if k is coprime to <p(N).

R SA  Signatures

In the RSA system, the signature algorithm is identical to the decryption. That is, to 
sign a message M  (0 <  M  <  TV) the owner of the secret key generates the signature 
using

cr =  M k  mod TV.

The Verification of the signature, however, is similar to the encryption. That is every 
one who knows the public key k can check the validity of (Af, cr) using

(a)k 2= M  (mod N).

If the above equation is satisfied, then the signature is accepted as a valid signature; 
otherwise the signature is rejected as a forged one. Since the verification recovers the 
message signed, this sort of RSA signature is a digital signature with message recovery. 
Note. As is seen, the signing algorithm produces a signature with the same length 
as the message. This is an expensive and unsatisfactory scheme as it needs double
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space for storage and double bandwidth for transmission. Moreover, signing individual 
blocks has a disadvantage, as blocks may be fraudulently interchanged. For example, 
RSA signatures are subject to attacks which explore the homomorphic structure of ex­

ponentiation. Let <Ti =  M ^  mod N  and <r2 =  M ^  mod N  be two valid signatures for 
messages M\ and M 2, respectively. It is possible to forge the signature for the message 
M3 =  Mi • M2 mod N  as a3 =  cfi • cr2 =  (M i • M2)K =  M3 mod N  (for more details, see 
[89, 90]).

In order to avoid these problems, we shall assume throughout that the document (a 
message of an arbitrary length) is first hashed and then the signature is produced for 
its digest. Obviously, the hashing employed has to be collision free and avoid attacks 
which exploit existing algebraic structures in both the signing algorithm and the hashing 
function (see [44]).

RSA-type signatures have been the subject of investigation by several authors. Re­
cently, Cramer and Damgard [41] have shown how to generate secure and practical 
RSA-based signatures.

Implementing The R SA

One obvious attack on the RSA cryptosystem is for a cryptanalyst to factorise the integer 
N  (since knowing the factors p and q provides (p(N) and hence the secret key K ). So, 
if the RSA cryptosystem is to be secure, it is necessary that N  must be large enough so 
that factoring it will be computationally infeasible.

The RSA system is set up by the receiver, Bob, who

• chooses two large and distinct primes p and q,

• computes N  =  p x q and <p(N) =  (p — 1 )(q — 1),

• selects at random the key 0 <  k <  ip(N), such that gcd(k, ^{N) )  =  1?

• computes the secret key K  using the equation (1.2),

• publishes N  and in a public directory as the public parameters of his RSA system. 

Security of R SA

Rivest, Shamir and Adleman [136] considered methods a cryptanalyst may use to break 
the system. As they have pointed out, all attacks seem to be as difficult as factorisa­
tion. That is, the security of the RSA cryptosystem depends on the difficulty of the 

factorisation problem (the conjecture, however, has not been proved).
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Simmons and Norris [161] have shown that the secret key K  can be computed using 
their iteration attack (without factoring N).  However, Ri vest [135] has shown that if the 
factors of the RSA modulus are safe primes (that is, p =  2p' - f 1 and q =  2q' + 1, where p' 

and q' are distinct and large primes) then the probability of a successful iteration attack 
is negligible for large N.

1.5.2 The ElGamal Cryptosystem

Another notable public-key cryptosystem is the ElGamal [55] cryptosystem, which was 
designed in 1985 by ElGamal. This cryptosystem applies the discrete logarithm problem. 
In this system, messages, cryptograms and keys (public and secret) belong to a finite 
field GF(p).  The integer p is prime and for security reasons p — 1 must have at least one 
large prime factor. The secret key K  £ GF(p),  in this system is selected randomly. The 
public key is obtained from the secret key using .

k =  gK (mod p)

where g is a primitive element in GF{p).

Let k and K  be the public and secret keys, respectively. For a message M  the 
ElGamal encryption function is

C =  (cl5 c2) =  (gr, M kr)

where r £ GF(p)  randomly and uniformly selected by the sender (Alice or anyone 
else) and all computations are done in GF(p).  The ElGamal cryptosystem is non­

deterministic, since the cryptogram depends on both the message and on the random 
value r chosen by the sender. That is, there will be many ciphertexts, which are the 
encryptions of the same plaintext.

The ElGamal decryption function applies the secret key K  for the cryptogram C  as 
follows. First, Bob (the receiver) uses his secret key K  and the first component of the 
cryptogram to compute,

(Cl)* =  (grf  =  (<7*)r =  k\

Then he uses the multiplicative inverse of kr and the second component of the cryptogram 
to retrieve the message M  as,

c2 x — =  M  x kr x =  M.  
kr kr
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ElGamal Signatures

The ElGamal signature scheme has been the subject of investigation by several authors 
and several variants of this signature scheme have been introduced in the literature. In 
fact, the ElGamal system is designed specifically for the purpose of signatures, as opposed 
to the RSA system, which is suitable for both signature and cryptographic purposes.

The ElGamal signature scheme is a non-deterministic signature scheme (like the 
ElGamal encryption scheme), that is, there are many valid signatures for a given message. 
Thus, the verification algorithm must be able to accept any of the valid signatures as 
authentic. The description of the ElGamal signature scheme is as follows. As in the 
ElGamal cryptosystem, let K  be the secret key and k =  gK (mod p) be the public key 
(note that g and p are also public). Assume that Bob, the owner of the system, wishes 
to sign a message M , M  E Z p. First, Bob selects a random integer r, r E Zp such that 
gcd(r,p — 1) =  1 and calculates .

x =  gr -(mod p).

Then, he solves the following congruence

M  =  K  • x +  r • y (mod p —

for variable y. The signature of the message is

=  SigK(M ) =  (x ,y ) .

Upon reception of M  and <r — (a;,y), Alice (or anyone else, who knows the public 
parameters of Bob’s ElGamal cryptosystems) can verify Bob’s signature using,

gM= k x x x y.

Note that possessing the pair (x, y) does not allow the message M  to be recreated, 
that is, the ElGamal signature is a digital signature with appendix. In fact, there are 
many pairs which match the message -  for every random value r there is a pair (x ,y ). 
However, Nyberg and Rueppel [124] have proposed ElGamal-type signature schemes with 
message recovery.

The Digital Signature Standard (DSS)

In 1991, the U.S.National Institute of Standards and Technology (NIST) proposed a 
Digital Signature Algorithm (DSA). The DSA has become a U.S. Federal Information
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Processing Standards (FIPS) called the Digital Signature Standard (DSS [56]), and is 
the first digital signature scheme recognised by any government. The algorithm is a 
digital signature scheme with appendix. Since DSS is a modified version of the ElGamal 

signature scheme, for the sake of completeness we briefly describe the scheme. The 
parameters of this system are:

• p, a prime modulus, L bits long, where L is a multiple of 64 (512 <  L <  1024);

• g, a 160-bit prime, such that q\p — 1;

• g =  (mod p), where h E GF(p) is any integer such that g >  1 (g is an
element of order q in G F (p ));

• K , an integer (the secret key) with 0 < K  <  q;

• fc, an integer (the public key), where k =  gK (mod p);

• r, a random integer with 0 < r < q.

The system parameters p, g, g and k are public. To generate a signature on message 
M  (0 <  M  <  q), the user chooses a one-time random integer r, computes r 1 mod g, 
and calculates,

z =  gr 1 (mod p)) mod g,

and
a =  r (Af +  K z)  mod q.

The pair (z, a) is the desired signature.
To verify a signature, the recipient uses,

z =  gMa 1 kza 1 (mod p ).

Implementing the ElGamal

One obvious attack on the ElGamal cryptosystem is for a cryptanalyst to obtain the 
random value r, using the first component of the cryptogram and solve the discrete 
logarithm for gr. If this can be done, it is simple to obtain the message, M , by computing 
kr and applying its multiplicative inverse on the second component of the cryptogram. 
Hence, if the ElGamal cryptosystem is to be secure, it is necessary that p must be large 
enough that solving the discrete logarithm over GF(p) is computationally infeasible.

Let p be a prime such that the discrete logarithm problem in is intractable, and let 
0 < p < p — l b e a  primitive element. The following procedure shows how an ElGamal 
system can be set up by the receiver (Bob).
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• Bob chooses (uniformly at random) the secret key K , 0 <  K  < P ~  1,

• he computes the public key, k =  gK (mod p),

• Bob publishes g, p and A; in a public directory, as the parameters of his ElGamal 
cryptosystem.

Security of ElGamal

ElGamal considered methods a cryptanalyst may use to break his system [55]. As he 
pointed out, all attacks seem to be as difficult as the discrete logarithm problem. That 
is, the security of the ElGamal cryptosystem hinges on the difficulty of the discrete 
logarithm problem. Note that these conjectures are based on the assumption that the 
public parameters of the system are chosen properly. Bleichenbacher [15] has shown if the 
public parameters of the system are not chosen properly, a particular attack is effective 
in forging an ElGamal signature. Since the secret key is not found in this attack, the 
difficulty of forging an ElGamal signature is sometimes weaker than the difficulty of the 
underlying discrete logarithm problem. Anderson and Vaudenay [1] have also discussed 
the effect o f choosing improper public parameters.
Note. The ElGamal system is recommended to be used once only for any single 
integer r, 0 <  r <  p — 1. Every time Alice (or anyone else) wants to send a message, she 
has to generate at random a new r. The violation of this requirement can be exploited 
by an opponent, say Oscar, who wants to decrypt a cryptogram knowing the message 
corresponding to another cryptogram. To illustrate the point, assume that Alice was 
careless and sent two cryptograms using the same r. Let them be: C =  (c i ,c2) =  
(gr,M ik r) and C =  (¿ i ,c 2) =  (gr,M 2kr). Oscar computes,

c2 Mi 
c2 M 2

which provides the opportunity to learn the message M\ (or M2) knowing the message 

M 2 (or M i).

Efficiency

The ElGamal encryption algorithm requires two exponentiations, namely gr mod p and 
kr mod p (which is about two times of the RSA system). Although these exponentiations 
can be sped up by selecting random exponent r having some particular structure (e.g.,
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having low Hamming weights3), care must be taken that this does not make the system 
prone for any possible attack.

Another disadvantage of ElGamal encryption is that there is a message expansion 
by a factor of 2. That is, the ciphertext is about twice as long as the corresponding 
plaintext.

1.5.3 Some Other Public-key Cryptosystems

Almost all existing society-oriented cryptosystems, which are the subject of investigation 
for this thesis, utilise either the RSA or the ElGamal public-key cryptosystems. For the 
sake of completeness, we give an overview of some other public-key cryptosystems that 
are introduced in the literature of public-key cryptography.

The Merkle-Hellman Cryptosystem

The Merkle-Hellman cryptosystem [119] was first described by Merkle and Heilman in 
1978. Although this cryptosystem utilises the knapsack problem, which is a very difficult 
problem in number theory, it was broken by Shamir [149].

There is also a version of the Merkle-Hellman system, called the iterated Merkle- 
Hellman system. All variants of this cryptosystem were broken in the early 1980’s. 
Readers interested in details of breaking the Merkle-Hellman system are referred to the 
book by O ’Connor and Seberry [126].

McEliece Cryptosystem

McEliece [113] suggested utilising error-correcting codes in the design of a public-key 
cryptosystem. The purpose of an error-correcting code is to correct random errors that 
occur in the transmission of binary data through a public channel. This system, however, 
has not been studied well since error-correcting codes require data expansion that is not 
desirable in cryptographic systems. Another problem with this cryptosystem is that it 
is not suitable for producing signatures.

Elliptic Curve Cryptosystems

The RSA and ElGamal cryptosystems utilise cyclic groups which exist in their underly­
ing algebraic structures. Since elliptic curves can be applied in cyclic groups, they can be 
used in cryptographic applications. The idea of applying elliptic curves in cryptography

3The Hamming weight of an integer is the number of ones in its binary representation.
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is due to Koblitz [95] and Miller [121]. Koyama, Maurer, Okamoto and Vanstone [97] 
proposed an elliptic curve variant of the RSA system. Menezes, Okamoto and Van- 
stone [118] proposed an elliptic curve variant of the ElGamal system.

1.6 Introductory Concepts of Secret Sharing Schemes

There is a clear need for providing the secrecy of sensitive information. Examples of 
such information include the code to activate a nuclear weapon, cryptographic master 
keys in a Key Distribution Centre (KDC), proprietary trade-secret formulae, and so on. 
The sensitive secret information is collectively called secret or key. Clearly, assigning 
such sensitive information to an individual is not a good solution (what happens if the 
legitimate owner of the secret information loses the key or is himself incapacitated?). An 
alternative solution could be to provide copies of the secret and assign each legitimate 
member one copy of the key. This scheme, however, increases the threat of theft, loss, 
or abuse of the secret.

Since a group is more reliable and more trustworthy than an individual (this is the 
reason why, in an organisation, crucial decisions are left to a group of people rather 
than to an individual), a reasonable solution could be to partition the secret into several 
pieces in such a way that the original secret can be reconstructed from those pieces, but 
each piece by itself provides no information about the secret. So, losing a piece does not 
compromise the secret, that is, an opponent cannot learn the secret as long as he does 
not have access to all partial information. Consider a simple scheme for sharing secret 
information K  between Alice and Bob. The scheme is established by a dealer Tom, who 
generates the pieces of the secret (also called shares). The steps are:

1. Tom, who knows the secret K , generates a random bit string R (with the same 
length as the binary representation of K ).

2. Tom calculates T =  R @  K .

3. Tom gives T  to Alice and R to Bob.

To reconstruct the secret, Alice and Bob pool their shares together and find the secret 

as, K  =  7? 0  T.
This technique, if done properly and the shares R and T are kept secret, is secure. 

That is, each piece by itself provides no information about K  (Alice and Bob only can 
learn the length of the secret), however, the secret uniquely can be reconstructed from 

their information.
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It is not difficult to extend this scheme to distribute the secret among many par­
ticipants. However, there is a problem with this scheme; if any of the pieces gets lost, 
so does the secret. In other words, if any of the shareholders refuse to cooperate in the 

secret reconstructing phase then the secret remains undetermined. The goal of designing 
secret sharing schemes is to solve this and many other related problems.

1.6.1 History

In 1979 Shamir [147] introduced his easy and elegant secret sharing scheme. His moti­
vation was to solve the following sort of problem:

“Eleven scientists are working on a secret project. They wish to lock up the 
documents in a cabinet so that the cabinet can be opened if and only if six 
or more of the scientists are present. What is the smallest number of locks 
needed? What is the smallest number of keys to the locks each scientist must 
carry?”

Shamir’s answer to the above mentioned problem was that, the minimal solution uses 
462 locks and 252 keys per scientist. However, it was noted that these numbers are 
clearly impractical and they become exponentially worse when the number of scientists 
increases. So Shamir proposed a non-mechanical solution to the above and many other 
related problems. More precisely, he showed how to divide a data K  into n pieces in 
such a way that K  can be reconstructed from any t (t <  n) pieces, but even complete 
knowledge of t — 1 pieces reveals absolutely no information about the K . Such secret 
sharing schemes are called (i, n ) threshold schemes. In order to achieve this goal, Shamir 
suggests utilising polynomial interpolation or any other collection of functions which are 
easy to evaluate and to interpolate.

It is worth mentioning that in 1979, Blakley [12] and Chaum [36] have also, indepen­
dently, introduced their secret sharing schemes. With contrast to the algebraic nature 
of the Shamir scheme, Blakley’s secret sharing scheme has a geometric nature. That is, 
in Blakley’s scheme the secret is a point in an n dimensional space. The shares of par­
ticipants, however, are hyper-planes of this geometric space such that every t ( out-of-n) 
of the shares uniquely determines the secret point. Although Shamir’s construction has 
been widely applied in society-oriented cryptographic systems, the Blakley type geomet­
rical secret sharing schemes have been applied to solve several problems regarding to 
sharing a secret (see, for example, [154, 157, 158]). Unfortunately, Chaum’s scheme [36], 
with its mechanical nature, is not very practical, and therefore has not received much
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attention in consideration of secret sharing schemes.

1.6.2 Terminology

Since the invention of secret sharing schemes in 1979, they have been studied by numerous 
authors. Properties of the proposed secret sharing schemes are discussed and several new 
structures have been proposed to build secret sharing schemes. The essential idea of all 
these schemes is to protect the secrecy and integrity of information by distributing the 
information over different locations. In order to achieve this goal, someone who knows 
the secret, called the dealer, distributes the secret among n members (or participants) 
in such a way that a specified sets of participants must cooperate in order to determine 
the secret.

The set of all participants is V  =  {Pi | i =  1 , . . .  , n }. The partial information Si, 
which is given (in private) to participant is called the share of participant Pi from 
the secret.

Every set of participants that is designated to be able to recover the secret is called an 
access set or an authorised set. Similarly, every set of participants which is not designated 
to be able to recover the secret is called an unauthorised set. So, the family of all sets 
2 V can be partitioned into two classes:

1. the class of authorised sets T, the so called access structure,

2. the class of unauthorised sets Tc =  2 V \ V.

The set JC of all possible values of the secret is called the secret set and the set S  of 
all possible values of the shares is known as the share set.

We shall assume throughout that V , JC and S are all finite sets. Secret sharing 
schemes with an infinite set of secrets have been discussed in [40].

In the secret reconstruction phase, participants of an access set pool their shares 
and recover the secret. Alternatively, participants could give their shares to a trusted 
authority, called the combiner, to perform the computation for them. Thus a secret 
sharing scheme for the access structure T is the collection of two algorithms:

1. the dealer -  this algorithm has to be run in a secure environment by a trustworthy 

party. The algorithm uses the function

/  : A C x P -S -^

which for a given secret K  £ JC and a participant Pi € V , assigns a set of shares 

from the set S , that is, /(AT, Pi) =  Si C S  for i =  1 , . . . ,  n,
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2. the combiner -  this algorithm has to be executed collectively by cooperating 
participants. It is enough to assume that the combiner is embedded in a tamper­
proof module and all participants have access to it. Also the combiner outputs the 

result via secure channels to cooperating participants. The combiner applies the 
function

9 • Sa &

to calculate the secret. If A  G T then the combiner is able to recover the secret. If 
the group of the cooperating participants does not belong to the access structure, 
either the combiner fails to compute the secret (e.g., in a geometrical secret sharing 
scheme the contributed shares may not hit the publicly known object which con­
tains the secret) or there is no guarantee that the computed value is the original 
secret.

Not all secret sharing schemes require secure communication channels among the 
authorised set of participants (or participants and the combiner) in order to reconstruct 
the secret. Beimel and Chor [6] proposed a secret sharing scheme which performs the 
secret reconstruction protocol over public communication channels.

We also employ the following definition used in [83]:

Definition 1.2 For any access set A  € T (A  C V ), any superset A' o f A  (A  C A ') 
must be an access set as well.

This is the well-known monotone property [8]. Thus we have:

A  € T and A  C A! C V  imply that A! € V

It is in fact very difficult to imagine a meaningful secret sharing scheme which does not 
satisfy this property. Beutelspacher [11] attempted to model a secret sharing scheme with 
a non-monotone access structure. In this scheme, there exist two types of shares (negative 
and positive) and a trustworthy machine is needed to operate on the secret reconstruction 
protocol. However, Obana and Kurosawa [125] have shown that there exists no such 
scheme, if one does not assume that the reconstruction machine is trustworthy.

An immediate consequence of the monotone property is that an access structure can 
be defined uniquely by its minimal access sets. An access set A  £ T is minimal if

A! € T, A! C A  implies A! =  A.

We use T-  to denote the representation of T in terms of minimal access sets.
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On the other hand, for any access structure T, the family of unauthorised sets Fc =  
2^ \T has the property in which, given any unauthorised set H 6 P ,  then any set S' C B 
must be an unauthorised set as well [83]. An immediate consequence of this property is 
that for any access structure T the set of unauthorised sets can be determined uniquely 
by its maximal sets. We use Vc+ to denote the representation of Tc in terms of maximal 
sets.

We require that for any participant Pi (1 <  i <  n) there exists an unauthorised set 
of participants who can recover the secret once Pi contributes with his share. That is,

for all Pi G V  there exists A  G F~ such that Pi G A.

Schemes which satisfy this property have been termed connected [23].
A useful way of representing an access structure is by using Boolean expressions. We 

introduce the concept through an example and refer the reader to [157] for a more precise 
treatment.

E xam ple 1.1 Let V  =  {P i, P2, P3} .  Then F~ =  P1P2 +  P2P3 is an access structure con­

sisting o f two access sets {P i, P2}  and {P 2, P3}  denoting that participants P\ and P2 (or 
participants P2 and P3)  cooperatively can recover the secret. That is, for every minimal 
access set one product term consisting o f the participants in the access set is included. 
The set o f unauthorised sets Tc, however, can be represented as Tc =  {P i, P2, P3, P1P3}  
and thus r c+ =  {P 2 , PiPs}-

To represent an access structure, T, in terms of its access sets, Ai (i =  1 , . . .  ,£), we 
use the two representations T =  A i +  • • • +  At and T =  {A \ ,. . . ,  A i}  equivalently. 
N ote . Almost all secret sharing schemes are one-time schemes. That is, once an autho­
rised set of participants reconstruct the secret (by pooling their shares or with the help 
of the combiner) both the secret and all shares become known to everyone within the 
group, and there is no further secret. In many applications of secret sharing schemes, 
e.g., shared decryption and shared generation of signatures (see the second part of this 
thesis) participants apply a function of their shares, without revealing their shares or 
recovering the secret, and thus after performing the task neither the combiner nor the 
participants learn about the shares and/or the secret itself. In order to achieve this ca­
pability, in general, a one-way function is applied (informally, a function f ( x )  is one-way 
if computing y =  f ( x )  for a known value of x is easy, but knowing y it is difficult to find 
x). Some authors used this technique to propose secret sharing schemes with desirable 
capabilities. For example, He and Dawson [78] used this technique to propose multistage
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secret sharing schemes in which participants can use their shares to recover different 
secrets, stage by stage in a specified order. Cachin [29] applied one-way functions to 
construct o n -lin e  secret sharing schemes and Pinch [134] has extended it to construct 
o n -lin e  m u ltip le  secret sharing schemes.

1.6.3 Assessment of a Secret Sharing Scheme

To assess the quality of a secret sharing scheme two kinds of measures are used: s e c u r ity  

measures and e ff ic ie n c y  ones.

Security

The security measure can be expressed by the number of intelligent guesses that an 
unauthorised set would have to make in order to have a guarantee of determining the 
secret. Two types of security have been discussed in the literature of secret sharing 
schemes:

1. Secret sharing schemes with u n co n d itio n a l se c u r ity . This means that the security 
of the system is independent of the time and resources available to any opponent 
who is trying to interfere with the procedure.

2. Secret sharing scheme with co n d itio n a l s ec u r ity . This means that the security of 
the system relies on the difficulty of computing some “difficult” problems (to study 
on difficult problems see [64]).

A secret sharing scheme is p e r fe c t [168] if the probability of an unauthorised set of 
participants being able to determine the secret is no better than that of an outsider, and 
therefore is no better than guessing the secret.

The basic tool in studying secrecy is the notion of e n tr o p y , a concept introduced by 
Shannon in 1948. Entropy can be thought of as a mathematical measure of information 
or uncertainty, and is computed as a function of a probability distribution.

Let a random variable K  take on a finite set of values according to a probability 
distribution P r o b ( K ) . The uncertainty about the information gained by an event which 
takes place according to distribution P r o b ( K )  is called the entropy of K  and is denoted 
by H ( K ) .  The formal definition of entropy is as follows [167].

Definition 1.3 S u p p o se  K  is a ra n d o m  variable w hich ta k es o n  a fin ite  s e t  o f  values
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a cco rd in g  to  a p ro b a b ility  d istr ib u tio n  P r o b ( K ) .  T h en  the e n tr o p y  o f  th is p rob a b ility  d is­

tr ib u tio n  is d efin ed  b y  th e q u a n tity

H ( K )  =  - Y , P r o b ( K  =  k{) log2 (P r o b ( K  =  hi))
i= 1

w h ere k{ are th e p o ssib le  va lu es o f  K ,  1 < i  < n .

Using the concept of entropy, in a perfect secret sharing scheme for every unauthorised 
set of participants the conditional entropy of the secret is

o if{ptl, . . . ,pim} e r
H ( K )  otherwise

where K  and are corresponding random variables for K  and st-., respectively.

Efficiency

There are several issues in the implementation of an efficient secret sharing scheme. 
Among these parameters are the total size of shares generated in the system, the total 
size of shares stored by participants, the total size of communications in the system and 
the upper and lower bounds on the randomness required by the dealer to set up a secret 
sharing scheme (for more study on the efficiency of a secret sharing scheme see [87], [86] 
and [17]).

The most studied measure of efficiency for a secret sharing scheme is the amount 
of storage needed to store the shares (for example, [24], [109]). Hence, the efficiency 
of secret sharing schemes can be measured by their in fo rm a tio n  rate [165] and average  

in fo r m a tio n  rate [109].
The information rate of the secret sharing scheme is defined to be:

P = min iog2 |£| 
log2 \Si\

A secret sharing scheme is ideal [22] if \1C\ =  |<S|, that is, the length of the share assigned 

to each participant is the same as the length of the secret.
In [8] Benaloh and Leichter showed that it is not always possible to construct an 

ideal scheme for an arbitrary access structure. Subsequent to Benaloh-Leichter’s result, 
several authors worked on improving the efficiency of such schemes and reducing the size 

of the shares given to participants (see, for example, [24], [157], [160], [108], [30], [10], 
[19], [18] and [166]).
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The average information rate is defined as:

\V\\og2 \K\
P =

J2pie? I°g2 l«S» I

It is clear that the information rate can never be greater than the average information 
rate, that is, for any secret sharing scheme we have p >  p.

Note. Every secret sharing scheme requires some public information in the form of 
the description of the system and its parameters. The amount of this public information 
is not used as a measure of the performance of the systems as yet. Some systems have 
utilised extra public information and/or broadcast messages to achieve other goals. For 
example, Laih et al [101] and Blundo et al [16] have used public information to construct 
dynamic secret sharing schemes, which are similar to Simmons [156] prepositioned secret 
sharing scheme. In a dynamic secret sharing scheme, the dealer has the feature of being 
able to activate the access structure by sending all participants the same broadcast 
message (note that, before sending this broadcast message, the participants’ shares are 
not sufficient to recover the secret).
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Secret Sharing Schemes
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Contents

This part of thesis is concerned with secret sharing schemes. It consists of three chapters, 
Chapters 2, 3, and 4.

In Chapter 2 we consider an abstract model for secret sharing scheme. Equivalent 
secret sharing schemes, updating a secret sharing scheme and extended capabilities for 
secret sharing schemes will also be discussed in this chapter.

Chapter 3 considers threshold secret sharing schemes. After a brief introduction 
to the notion of threshold scheme, an abstract model for threshold schemes and some 
well known approaches to the construction of threshold secret sharing schemes, namely 
polynomial approach (due to Shamir [147]), geometrical approach (due to Blakley [12]), 
modular approach (due to Asmuth and Bloom [4]), and vector space approach (due to 
Brickell [22]) will be discussed. The final section of this chapter considers the concept of 
proactive secret sharing schemes.

In Chapter 4 secret sharing schemes with arbitrary access structures will be discussed. 
Several approaches to the construction of general schemes and the concept of compu­
tationally secure secret sharing schemes will be considered in this chapter. An online 
secret sharing scheme and the cheating problem in the secret reconstruction phase will be 
considered. Finally, extended capabilities for secret sharing schemes will be studied and 
two solutions for constructing secret sharing schemes in multilevel and compartmented 

access structures will be presented.
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Chapter 2

Secret Sharing Schemes

This chapter introduces the concept of secret sharing. In Section 2.1 an abstract model 
for secret sharing will be described. The model is due to Martin [108] and is based on 
the model used by Brickell and Davenport [23]1. Two important issues in secret sharing 
schemes, namely equivalent secret sharing schemes and updating a secret sharing scheme, 
will be discussed in Sections 2.2 and 2.3. The final Section of this chapter considers 
extended capabilities for secret sharing schemes.

2.1 An Abstract Model for Secret Sharing

Let V  =  { P i , . . . ,  Pn}  be a set of n participants and let T be a monotone access structure 
over the set V . Let X  be a matrix with at least n -f 1 columns indexed from the set 
W  =  {D , 1 , . . .  , 71}  such that no two rows of matrix X  are identical. Also let d be a 
mapping such that d : V  —> 2 W. For A  C P , let d(A) =  {d(Pi) \ Pi € A }.

In order to construct a perfect secret sharing scheme that realizes the access structure 
T, the dealer T> chooses a matrix X  such that:

• the column D  contains entries from the set /C,

• the remaining columns contain entries from some finite set <S,

• H A S T  then d(A) determines the secret A", that is, there is a unique row j  whose 

entries match the shares of cooperating participants.

• i f A # T  then d(A) determines nothing about the secret K , that is, the column D 
contains all possible values for the secret K  for the rows corresponding to shares 

of A.

1A  similar model has also been discussed by Stinson [165].
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To illustrate the model we employ the following example from Martin [108].

Example 2.1 Let T =  P1P2 +  P2P3 +  P3P4 be a monotone access structure over the set 
V  =  {P i, P2, P3, P4}  and let )C =  S =  {0 ,1 } .

Set-up Phase:

1. The dealer, T>, generates

D 1 2 3 4

n ( 0 0 0 0 (0

r2 0 0 0 1 1

7*3 0 1 1 0 0

r4 0 1 1 1 1
X  =

7*5 1 0 1 0 1

‘ 7*6 1 0 1 1 0

7*7 1 1 0 0 1

7*8 V1 1 0 1 V
where W  =  {D , 1 ,2 ,3 ,4 } and d : V  —> 2W is given by,

d(Pi) =  { ! } ,  d(P2) =  { 2} ,  d(P3) =  {1 ,3 }, d(P4) =  {4 }.

2. T> randomly chooses a row, rj (1 <  j  <  8) from the matrix X .

3. Each participant Pi, 1 <  i <  4, receives (in private) share(s) Si as determined by 
d(P{). That is, Pi receives the entry in column 1 , P2 receives the entry in column 
2, P3 receives the entries in both columns 1 and 3, and finally P4 receives the entry 
in column 4 (the secret is the entry in column D ).

Secret Reconstruction Phase:

1 . An authorised set, A , o f participants recovers the value o f the secret (the entry in 
column D ) among the rows o f X  whose entries in the columns o f set d(A) match 

their shares.

As can be seen, any authorised set of participants can determine the secret uniquely. 

On the other hand, for any unauthorised set, B , uncertainty of the secret is the same as 
for an outsider -  both values 0 and 1 with equal probability can be the unknown value 
o f K . That is, the model provides a perfect secret sharing scheme. Moreover, no matter 
how much computing power has an opponent it cannot obtain anything about the secret. 

In other words, the scheme is unconditionally secure.
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2.2 Equivalence of Secret Sharing Schemes

Since the invention of secret sharing scheme in 1979, several models have been introduced 

in the literature. A frequently raised question is that concerning when two different secret 
sharing schemes are in fact equivalent. Following Martin’s definition [108], we say two 
connected secret sharing schemes are equivalent if:

1. their access structures are the same,

2. their secret spaces are of the same cardinality,

3. they have the same probability associated with each key for every subset of par­
ticipants,

4. the size of the share held by a given participant is the same for each scheme.

Note. In perfect secret sharing schemes, for every subset A  C V , either A  G T so A  
can determine the secret uniquely (with probability one) or A^LF  and therefore cannot 
obtain anything about the secret. That is, in case of perfect secret sharing schemes 
condition (3) is satisfied.

Example 2 . 2  L e t  T =  P \ P 2, w h ere V  =  { P i , P 2} .  T h en

D 1 2

0 0 0^
0 1 1 D 1 2

1 0 1 { 0 0 0^
1 1 0

a n d x2 = 0 1 1

0 2 2 1 0 1

0 3 3 1 0 /
1 2 3
1 3 V

w h ere W  =  { D , 1 ,2 } a n d  d  : V  —» 2 W  is g iv e n  by,

d(Pi) =  {  1}, d ( P 2 ) =  {  2},

are n o t  eq u iva len t s e c r e t  sh a rin g  s c h e m e s , s in c e  sh a res  in  s c h e m e  

Z 4 w hile sh a r e s  in  s c h e m e  X 2 belon g  to  th e s e t  Z 2.

X \  belong to  th e s e t
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However, a secret sharing scheme associated with the following matrix,

D 1 2 3 4

r\ ( 0 0 0 0 (0

r2 0 0 0 1 1

rs 0 1 1 2 0

U 0 1 1 3 1

r5 1 0 1 0 1

r6 1 0 1 1 0

r7 1 1 0 2 1

r8 l 1 1 0 3

where W  =  { D , 1 ,2 ,3 ,4 } and d : V  —> 2W is given by,

■ d(P1) =  { l } ,  d(P2) =  {  2 }, d(P3) =  {3},- d(P4) =  {4 },

is equivalent to the scheme given in Example 2.1.

2.3 Updating a Secret Sharing Scheme

A desirable capability of every secret sharing scheme is that the scheme must be able to 
cope with situations when new members join the group (enrolment) or when members 
leave the group (disenrolment). Indeed, it is not very practical to modify the shares 
each time a member leaves the group, or when a new member joins the group. This is a 
common problem with long-lived and sensitive information (e.g., cryptographic master 
keys) in which the secret must be kept secure even if some shareholders enrol or disenrol.

An alternative scenario is that after the initial setups of a secret sharing scheme, 
one (or more) participant is no longer deemed to be trustworthy. Martin [110] studied 
the effect of untrustworthy participants on the security of the system when a dishonest 
participant reveals its share. Blakley, Blakley, Chan and Massey [13] constructed a 
disenrolment scheme which allows reorganisation of the system in the case that such an 
event occurs. Chaum [37], Simmons [159], Charnes, Pieprzyk and Safavi-Naini [34] have 

also discussed on this problem.

2.3.1 Extension of a Secret Sharing Scheme

In this section we consider the case that some trustworthy members are joining the group. 

More precisely, we are dealing with the extension of a secret sharing scheme, in such a
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way that the old secret and old shares are still valid in the extended system, however, 
some new shareholders and new shares are included in the system.

D efin ition  2.1 [83] Let a secret sharing scheme realise C 2Tl on a set V\. Further 

assume that, V\ C V 2 and a scheme realizes an access structure T2 C 27?2. The scheme 
which realizes r 2 is an extension o f the scheme that realizes if:

(a) both schemes allow to recover the same secret,

(b) the collection o f shares defined in is a subset o f shares generated in V2.

(c) I\ C V2, that is, any access set in T1 is an access set in V2.

(d) r j  C Tc2, that is, any unauthorised set Bi C V\ is still an unauthorised set.

N ote . The authors of [83] did not define explicitly the extension of a secret sharing 
scheme. The definition 2.1 reflects the assumptions and properties of the extension 
method used in [83]. In fact properties (b), (c) and (d) can be derived from Lemma 1 
in [83]. The assumption (a) is derived from the proof in [83] in which Ito, Saito and 
Nishizeki selected the degree of a polynomial for the extended Shamir scheme in such a 
way that the secret in the extended scheme is the same as in the old scheme.

E xam ple  2.3 Let =  P\P2, where V\ =  {P\,P2} . Then

where W  =  { D , 1 ,2 } and d :

d(P1) =  {1 } , d(P2) =  {2 },

is a perfect secret sharing scheme. Assume that we want to include participants P3 and 
P4 to the system in such a way that the extended scheme realizes the access structure 

r 2 =  P\P2 +  P2P3 +  P3 P4 on the set V 2 =  {P i, P2, P3, ¿ 4}  of participants. We observe

D 1 2

X t ( 0 0 0^

^  x 2 0 1 1
X i =

X3 1 0 1
X4 1 0 /

V  —y 2W is given h ,
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that the matrix,
D 1 2 3 4

t*i ( 0 0 0 0 0

7*2 0 0 0 1 1

7*3 0 1 1 0 0

7*4 0 1 1 1 1

7*5 1 0 1 0 1

7*6 1 0 1 1 0

7*7 1 1 0 0 1

7*8 l 1 1 0 1 0

where W  =  {£ ), 1, 2 ,3 ,4 } and d : V  —> 2W is given by,

d(Pi) =  {1 } , d(P2) =  {2 } , d(P3) =  {1 ,3 }, d(P4) =  {4 }.

realizes V2 over the set V 2. To construct the extended scheme, however, the randomness 
o f the dealer is somehow decreased. That is, if in the basic scheme the secret and shares 
are associated with row Xi, 1 <  i <  4, then in the extended scheme the dealer must choose 
(randomly) one o f the rows r2i-\ o r r 2i. The dealer then distributes the shares according 
to mapping d only to new participants.

Note that extending a threshold scheme such that the threshold parameter remains 
unchanged is an easy task since shares can be dynamically generated without affecting 
the other shares. However, it is not a trivial task for general schemes or for threshold 
schemes where the threshold parameter needs to be updated as well. In order to illustrate 
the problem, we shall show that both extended schemes proposed by Ito et al [83] to 
extend a multiple assignment scheme and a corresponding Shamir threshold scheme, 
compromise the security of the system. We shall also show how to securely extend the 
Shamir threshold scheme.

2.4 Extended Capabilities

So far, we have assumed that the dealer is trustworthy. In fact, distribution of the shares 
in a secret sharing scheme is based on the assumption that the dealer can transmit the 
shares privately. However, if a secure channel does not exist or there is a possibility that 
the dealer is dishonest, then there is a need to provide certainty about the distributed
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shares. Chor, Goldwasser, Micali and Awerbuch [39] introduced the verifiability prob­
lem of secret sharing schemes and proposed an interactive protocol to solve this prob­
lem. Later, Feldman [58] proposed a non-interactive solution. Verifiable secret sharing 
schemes have been the subject of investigation by several authors (see, for example, [9], 
[130], [66]). Note that all these verifiable secret sharing schemes allow the honest par­
ticipants to ensure that their shares are correct (related to the secret) and thus in the 
secret reconstruction phase they will recover the original secret. Stadler [164] proposed 
a publicly verifiable secret sharing scheme in which not only the participants but also an 
outsider can verify that the shares are correctly distributed.

Meadows [115] introduced the problem of setting up shared secret schemes in the 
absence of a trusted key distribution centre. One approach of her scheme, however, 
relies on the unconditional trustworthiness of a black box, which serves in place of the 
dealer. The other approach works with the help of a public-key encryption system at 
the secret distribution phase. Later, Ingemarsson and Simmons [82], and Jackson et 
al [87, 88] proposed a protocol to set up shared secret schemes without the help of a 
mutually trusted party.

It is worth mentioning that, even if the shares are distributed correctly not every 
secret sharing scheme can guarantee that the participants can recover the genuine secret. 
That is, in the secret reconstruction phase, a dishonest participant may cheat the system 
by contributing a fake share to force the group to recover an incorrect secret, while s/he 
can obtain the original secret. For example, Tompa and Woll [170] have shown that 
Shamir’s scheme is not secure against certain forms of cheating and they have shown 
how to cope with this problem. Brickell and Stinson [25] have proposed a secret sharing 
scheme with the capability of detecting the cheaters. The cheating problem has been 
the subject of investigation by several others (see, for example, [107], [31], [98], [68]).

Another important capability of a secret sharing scheme is the homomorphism prop­
erty. Benaloh [7] discussed the homomorphism property of secret sharing schemes. Infor­
mally, a secret sharing scheme has the homomorphism property if the composition of the 
shares (corresponding to different secrets) is the share of the composition of secrets. In 
general, the two compositions rule can be different. It has been shown [7] that Shamir’s 
polynomial based secret sharing scheme is (+ , +)-homomorphic. That is, summation of 
the shares is the share of the summation of their corresponding secrets. This property 
plays an important role in the implementation of society-oriented cryptographic systems, 
e.g., shared decryption and shared generation of signatures (see the second part of this 
thesis). The homomorphism property has also been discussed in [61], [60] and [50].



Chapter 3

Threshold Secret Sharing Schemes

This chapter is concerned with threshold secret sharing schemes. In Section 3.1 a brief 
introduction to threshold secret sharing schemes will be presented. An abstract model 
for threshold schemes is reviewed in Section 3.2. Then we shall consider some different 
approaches for threshold secret sharing constructions. A direction of research in the 
theory of secret sharing schemes will be discussed in Section 3.9.

3.1 Introduction

A particularly interesting class of secret sharing schemes includes threshold schemes 
with a group of n participants. Their access structure consist of all sets of t or more 
participants. Such schemes are called t out of n threshold schemes or simply (t,n ) 
schemes. So, the access structure of a (t, n) threshold scheme can be expressed as:

r =  { A C V  | \ A \ > t},

where so called the threshold parameter, is an integer, t <  n. More precisely, in a (¿, n) 
threshold scheme a secret K  is divided into n pieces, s i , . . . ,  sn such that the following 
conditions are satisfied [147]:

(1) knowledge of any t or more S{ pieces makes K  easily computable;

(2) knowledge of any t — 1 or fewer Si pieces leaves K  completely undetermined (in the 
sense that all its possible values are equally likely).

Using the entropy concept, the above mentioned conditions can be expressed as;

H (K  | A ) =
0 for \A\ >  t

H (K )  for \A\ <  t

37
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Such threshold secret sharing schemes are called perfect. In a non-perfect threshold 

scheme, although an unauthorised set cannot recover the secret, they may obtain some 

partial information regarding the secret (see, for example, Blakley and Meadows [14], 
Ogata et al [128] and Kurosawa et al [99]).

Theorem 3.1 In a perfect threshold secret sharing scheme, each share must be at least 
as large as the secret itself.

Proof. (Sketch) By contradiction; let, in a (t,n ) threshold scheme, the share st- 
(corresponding to participant Pi) have less private information than does the secret. 
Also, let A  (|*4| =  t , Pi G A ) be a minimal access set. Clearly, B =  ^4\{Pt}  is an 
unauthorised set. Since the system is perfect, the t — 1 collaborating participants of the 
set B must have equal uncertainty about the secret as an outsider. On the other hand, 
if they know Si they can recover the secret. However, for all possible values of Si they 
can recover a unique secret. That is, their uncertainty about the secret is equal to their 
uncertainty about $,•; a contradiction. □

3.2 An Abstract Model for Threshold Schemes

An abstract model for threshold schemes has been considered by several authors (see, for 
example, [23], [108] and [165]). Considering the abstract model for secret sharing schemes 
(see Section 2.1), in [108] it is shown that ideal threshold schemes can be classified as a 
special type of orthogonal array1. That is, to construct a (¿,n) ideal threshold scheme 
over the set lLq, in any t columns of matrix X , every ordered ¿-tuple must occur precisely 
once.

We employ the following results and refer the reader to [108] for a more precise 
treatment.

Lemma 3.2 [108] There exists an ideal (\,n) threshold scheme over lLq for  all n >  1 

and q >  1.

Example 3.1 Let \P\ =  {Pi, P2, P3 , Pa}  and let V be a (1,4) threshold scheme. Then,

D  1 2  3 4

x  _  r i (  $ 0 0 0  o\
~~ r2 \ 1 1 1 1 1 )

1An orthogonal array OA(q,W,t;X) on q symbols is a \qf x W  array such that in any t columns, 
every ordered ¿-tuple occurs precisely A times.
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where W  — { D , 1 ,2 ,3 ,4 } and d : V  —> 2W is given by,

d(Pi) =  { i } ,  ¿ =  1 ,2 ,3 ,4

determines an ideal (1,4) threshold scheme over K  =  Z 2.

L em m a 3.3 [108] There exists an ideal (n ,n ) threshold scheme over Z g for  all n >  2 
and q >  2.

E xam p le  3.2 Lei |P| =  {P i, P2, f t ,  P4}  and let Y be a (4,4) threshold scheme. Then,

X  =

where W  =  { D , 1, 2,3 ,4 }  and d :

D 1 2 3 4

r\ ( 0 0 0 0 0^

r2 1 0 0 0 1

r3 1 0 0 1 0

u 0 0 0 1 1

n 1 0 1 0 0

r6 0 0 1 0 1

r? 0 0 1 1 0

r8 1 0 1 1 1

r9 1 1 0 0 0

rio 0 1 0 0 1

ru 0 1 0 1 0

ru 1 1 0 1 1

ri3 0 1 1 0 0

ri4 1 1 1 0 1

ris 1 1 1 1 0

r i6 1° 1 1 1 ! /

P  —>■ 2W ¿5 ^¿uen by,

d(Pi) =  {¿ } , i =  1 ,2 ,3 ,4

determines an ideal (4, A) threshold scheme over K  =  Z 2.

L em m a 3 .4  [108] There exists an ideal (t,n ) threshold scheme over h q for all n >  t 

and all prime powers q > t .
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Example 3.3 L e t  \P\ — {P i, P2, P3}  a n d I d  V be a ( 2 , 3 )  th resh o ld  s c h e m e . T h e n  th e

fo llo w in g  m a tr ix ,

D 1 2 3

r\ ( 0 0 0 (0

r  2 0 1 1 1

rs 0 2 2 2
r4 1 0 1 2

X =  r 5 1 1 2 0

re 1 2 0 1
r 7 2 0 2 1

r 8 2 1 0 2

r9 l 2 2 1

w h ere W  =  { D , 1 ,2 ,3 ,4} a n d  d  : V  —> 2 W is g iv en by.

d (P i) =  { i } ,  i =  1,2,3,

d e te r m in e s  an id eal ( 2 , 3 )  th resh o ld  s c h e m e  o v e r  K  =  Z 3.

Threshold schemes were first, independently, introduced by Shamir [147] and Blak­
ley [12]. In spite of the fact that threshold schemes can only handle a small fraction 
of the secret sharing schemes which we may wish to form, they have been widely in­
vestigated in the literature (see, for example, Asmuth and Bloom [4], Karnin et al [93], 
Mignotte [120], Kothari [96], Blakley and Meadows [14], Meadows [115], De Soete and 
Vedder [163], Stinson and Vanstone [168], Laih et al [101], Simmons [154, 155, 158] and 
Blakley et al [13]). Although several approaches have been proposed for constructing 
threshold secret sharing schemes, the essential notion of all these schemes is the same.

3.3 Polynomial Approach

The Shamir ( t ,  n )  threshold scheme is based on polynomial interpolation. Given t points 
in the two-dimensional plane (x i, y \), . . . ,  (x t, y t )  with distinct x^s, there is one and only 
one polynomial f ( x )  of degree at most t  — 1 such that yi =  f (x i )  for all i. The Lagrange 
interpolation formula is as follows:

/ ( * ) = i > . n
¿=1 3=1

X  —  X i

X i  ~  X i
(3.1)
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Let the secret be an element o f a finite field, that is, K  £ G F (p ), where p is a prime 

number. Since polynomial interpolation is possible over G F (p ), Shamir suggests the 
following algorithm for constructing a (t, n) threshold scheme.
S et-u p  P hase:

1. The dealer, £>, chooses n distinct and non-zero elements of Z p, denoted x i , . . . , x n 
and sends Xi to Pi via a public channel.

2. V  secretly chooses (independently at random) t—1 elements of Z p, denoted al5. . . ,  af_i 
and forms the polynomial

t-i
f ( x )  =  K  +  ^ d iX *.

i= 1
3. For 1 <  i <  n, the dealer computes st, where

s* =  f ( x i )  (mod p).

4. T> gives (in private) share S{ to participant Pt.

S ecret R e co n stru ctio n  Phase:

1. Every set o f at least t participants can apply the Lagrange interpolation formula 
to reconstruct the polynomial and hence to recover the secret.

N ote . The participants do not need to reconstruct the polynomial f { x ) .  The secret is 
the constant term of the polynomial, that is, K  =  /(0 ) . So, they can recover the secret 
using:

K  =  Sij n  — — —  (mod p). (3.2)
1=i t S x *  ~  XH

An alternative method of secret reconstruction is to solve linear equations in Z p. 
Every set o f at least t participants can always form the following system of equations:

K  +  diXii +  T  ' *' T  1 =  sn 
K  -f- CL\Xi2 4“ d,2X̂ 2 +  • • * +  d f-lx i2 1 =  5*2

K  +  d\xn 4~ d>2%\ 4~ * • * 4* df-\x\t 1 — sn

This can be written as:

1 1 Xji x\ ■■■ I - ! 1 ^ K  l ( Sil ^

1 Xi2 X% ■■■ X-J1 «1 — $i2

V 1 x <t At A A  j k “ ‘ - i  ) k Sit J
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The leftmost matrix is a so-called Vandermonde matrix and its determinant is given by 
the following formula:

(?ij %ik)'

Since all a;t-’s are distinct, no term (Xij — x,-*) is zero. Thus the determinant of a Vander­
monde matrix over a finite field is always non-zero and the above system of equations 

has a unique solution over Z p. That is, every set of at least t participants can uniquely 
reconstruct the polynomial and hence recover the secret.

N ote . The size of GF(p)  must be large enough such that the selection of distinct 
and non-zero elements x^s is possible. That is, the required condition for constructing 
a Shamir (¿, n) threshold scheme is that the prime number p (the size of the field) must 
be greater than n (the number of participants in the system).

3.3.1 Characteristics of the Shamir Scheme

Shamir’s secret sharing scheme has been the subject of investigation by several authors 
(see, for example, McEliece and Sarwate [114], Kothari [96], Stinson and Vanstone [168], 
Ito et al [83] and Stinson [165]). It is well-known that the Shamir scheme is perfect. As 
we shall show in a moment, the proof of perfectness, however, needs more clarification.

In order to prove that Shamir’s scheme meets condition (2) of threshold schemes 
(i.e., the scheme is perfect) Shamir [147] argued that; if t — 1 of shares are revealed to 
an opponent, for each candidate value K'  in [0,p) he can construct one and only one 
polynomial g(x)  o f degree t — 1 such that #(0) =  K ’ and g(x{) =  Si for the t — 1 given 
arguments. However, by construction, these p possible polynomials are equally likely, 
and thus there is absolutely nothing the opponent can deduce about the real value of K.  

Our observation to this proof is that:

1. Not all p polynomials, in which the opponent can generate for possible candidate 

values K f, are of degree t — 1;

2. The proof implicitly determines that in Shamir’s (¿, n) threshold scheme the degree 

of the associated polynomial is “exactly” t — 1.

After considering Blakley’s secret sharing schemes, the reader can find out why the 
majority of authors believe that in Shamir’s scheme the associated polynomial is of 
degree “exactly” t — 1 (which is not the case). In this section we present a complete 
proof of security and a precise method for constructing the Shamir (i, n) threshold secret 

sharing scheme.
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P ro p o s itio n  3.5 In the Shamir (t,n ) threshold scheme, for  any set o f t  — 1 shares there 

exists a value K ' and a polynomial g(x)  o f  degree less than t — 1 such that g {0) =  K ' 
and g(x{) =  S{.

P ro o f. According to the Lagrange interpolation formula, the set of t — 1 points 
determines one and only one polynomial g(x)  o f degree at most t — 2 such that g(x{) =  Si 
for the t — 1 given arguments. Considering K ' =  g(0) completes the proof. □

Note that, the value K ' is unique, since g(x)  is unique.

T h eorem  3.6 The Shamir (t , n)  threshold secret sharing scheme is perfect.

P ro o f. Let us now assume that in the Shamir (¿, n) threshold scheme t — 1 shares are 
revealed to an opponent. For p possible values K ' £ GF(p)  the opponent can construct 
one polynomial of degree less than t — 1 and p — 1 polynomials of degree t — 1 such 
that they satisfy the shares for the t — 1 given arguments and the candidate values K'. 
Now, by construction these p polynomials are equally likely, since the dealer generates 
the coefficients at-, 1 <  z <  i — 1, independently at random and thus with probability l/p 
the coefficient at~\ is zero and the constructed polynomial is of degree less than t — 1. 
Thus the opponent can deduce no information about the real value of the secret. That 
is, the scheme is perfect (in the information theoretic sense). □

C oro lla ry  3 .7  Since =  f{%i) £ GF(p) ,  for  all i and K  £ GF(jp), the Shamir secret 
sharing scheme is ideal.

Similarly to Simmons [158], we find it useful to use graphical representations to 
illustrate the Shamir scheme. Graphical representation of polynomials of degree zero, 
one, two and three are shown in Figure 3.1. In all these graphs, the secret K  is the 
intersection point of the graph and the Y  axis. Note that, over finite fields, the graphical 
representation of these functions consists of a collection of disjoint points, which does 

not have any resemblance to those shown in Figure 3.1.
Now, we discuss the construction of a Shamir type threshold scheme. Since a (t ,n)  

threshold scheme requires that less than t shares must not be sufficient to determine 

the secret, several authors suggest the dealer choose a polynomial of degree t — 1 and 
then distribute the shares as in the Shamir scheme. Among these authors, Ito, Saito and 
Nishizeki [83] suggest the following algorithm for constructing the Shamir (i, n) threshold 

scheme.
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f(x) = K + dix X + 2̂2 x: f(x) = K + aj x + aj x2 + ^

Figure 3.1: Graphical representation of the Shamir scheme

1. Take a prime power p such that p > n and select distinct elements x i , . . . , x n,

G {GF(p)  — { 0 } }  at random.

2. Choose oq ,. . . ,  at~2 G GF(p)  and at~\ G {GF{p)  — { 0 } }  randomly, where t <  n

3. Let f ( x )  =  K  +  a\x +  a2X2 +  • • • +  at- i x t~1.

4. Let Si =  f ( x { )  and assign (x{,Si) to Pi for each *, 1 <  i <  n.

That is, in a Shamir (i, n) threshold scheme the associated polynomial is of degree t — 1. 
The following theorem shows that such a Shamir (t, n) threshold scheme is not perfect.

T h eorem  3.8 Given a Shamir (t,n ) threshold scheme. If the degree o f the associated 
polynomial f ( x )  is known to be t — 1 then the scheme is not perfect.

P ro o f. Let P i , . . . ,  Pt- 1 be a set of (t — 1) collaborating participants that pooling their 
shares in order to perform the Lagrange interpolation formula. Certainly,
they can construct a unique polynomial g(x)  — K ' +  b\ X - \ ------\-bt- 2xt~2 of degree at most
t — 2 such that Si — g(xi)  for all i — l , . . . , t  — l (see Proposition 3.5). On the other hand, 
they know Si =  f ( x i )  for i =  1 , . . . ,  t — 1, where f ( x ) =  K  +  a\x +  • * • +  at-\xt_1 is the 
associated polynomial for the system. So, they have the following system of equations:

si =  g (x  1 ) =  f ( x i )

st - 1 =  g (x t -i)  =  f ( x t- 1 )
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The system can be transformed to:

(K  —  K ') - f  ( a i  —  bi)xi  +  . . .  -f- (cit- 2 — bt-2 )^ 1  2 +  1 =  0

{ K  — K ') +  (« 1  — b i ) x t ~ i  +  . . .  +  (at- 2 — bt- 2 ) x tt_ i  +  a t~ i x l _ \  =  0
Now, we show by contradiction that K  ^  K f. Suppose that K  =  K'. This implies that 
the system becomes

(a\ — b\)x\ +  . . .  +  (at-2 — bt-2)x\ 2 +  at-\x\ 1 = 0

(a\ — bi)xt~i +  . . .  +  (at- 2 — 6i_2)a4_2 +  at-\x\_\ =  0

As the Vandermonde determinant of the system is different from zero, there is only one 
solution in which at~\ =  0. This contradicts that f ( x )  is of degree t — 1 and proves that 
K  +  K '.

Since the (t — 1) participants have been successful in finding an integer K ' which is 
not the secret, their uncertainty about the secret is not equal to the uncertainty of an 
outsider and therefore the scheme is not perfect. □

N ote . Here we have analysed the Shamir threshold secret sharing scheme as a method
for sharing a one-time secret. We showed that the scheme, if constructed carefully, is
unconditionally perfect. That is, no matter how much computing power is available to 
an opponent he cannot learn anything about the secret. This is completely different 
from long-time secret sharing schemes in which participants utilise a function of their 
shares to perform a desirable task without revealing their shares and/or compromising 
the secret (e.g., society-oriented cryptographic systems). In this case, in general, every 
unauthorised set of participants can check whether a given value is the secret or not. 
However, the secret space is large enough such that exhaustive searching (in order to 
obtain useful information regarding the secret) is infeasible. Such secret sharing schemes 
are called computationally perfect. As a matter of fact, in a computationally perfect 
scheme the above mentioned construction of the Shamir scheme does not work. If the 
associated polynomial with a Shamir (t , n) threshold scheme is of degree less than t — 1 

then the system easily can be broken. Thus in computationally perfect systems, in order 
to construct a Shamir (t , n) threshold scheme, the dealer selects a polynomial of degree 

“exactly” t — 1.
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Figure 3.2: Blakley-type (3, n) threshold scheme

3.4 Geometrical Approach .

Blakley’s construction for a (p n ) threshold scheme is based on projective geometry.

D efin ition  3.1 [108]. Let V  =  V (t +  l ,p)  be the vector space o f dimension t +  1 over 
a finite field GF(p) .  The set o f subspaces o f V  together with the relation o f incidence 
induced by subspace containment is called projective space PG(t ,p) .  The integer t is 
called the dimension o f PG(t ,p) .

In geometric (t, n) threshold schemes, the secret K  is a randomly chosen point in 
PG(t ,p) .  The share of each participant, however, is a subspace of projective dimension 
t — 1 (a hyperplane), such that every t of these shares intersects at point K.  For example, 
let K  G P G (3,p), that is, the secret is a point in a three-dimension projective space. 
Each share is a hyperplane (plane) in P G (3,p), such that intersection of every three of 
these shares uniquely determines the secret (Figure 3.2).

Consider an example of Blakley’s scheme (see Figure 3.2). An outsider can guess 
the secret K  being a point in P G (3,p), while any participant can guess the secret K  
being a point on the plane that he knows. Furthermore, any set of two collaborating 
participants can obtain a line (the intersection of their planes) which the secret K  lays 

on. So Blackley’s scheme is not perfect.

3.4.1 Perfect Geometric Secret Sharing Schemes

Geometric secret sharing schemes have been the subject of investigation by several au­

thors (see, for example, [157], [108], [158] and [85]). As Simmons [158] pointed out, a
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Y Vl

Figure 3.3: Blakley’s (2, n) threshold scheme

Blakley-type secret sharing scheme can never be perfect, because as the number of par­
ticipants in a collusion increases, the uncertainty about the secret must decrease since 
the secret is in each of the privately held geometric objects and hence in their intersec­
tion. As a simple example, in Blakley’s construction for a (2, n) threshold scheme, the 
share of each participant is a line such that every two lines intersect at the secret point 
K  (Figure 3.3). From an outsider point of view, every point in the plane is equally likely 
to be the point /Y, hence his uncertainty about K  is

H ( K )  =  log p2 =  2 log p.

However, every participant knows that K  is a point on the line he possess as his share 
from the secret. That is, his uncertainty about the secret is only

H ( K )  =  log p

and therefore, the scheme is not perfect. In order to construct perfect schemes, Simmons 
suggests making all coordinates except one public. Let the secret K  be a point on 
the publicly known line Vk , which is embedded in the projective plane PG(2,p).  The 
uncertainty about the secret K  is only H (K ) =  log p. To construct a perfect (2, n) 
threshold geometric secret sharing scheme, let Vs ^  Vk  be a randomly chosen line in the 
plane that intersects the line Vk  at the secret point K  (Figure 3.4). The private piece 
of information can be taken to be distinct points on Vs, none of which are the point K  
itself. Any pair of points on Vs determine the line and hence its intersection with Vk ; 
the secret point K . However, knowing any one of the points, s,-, on line Vs leaves K  
completely undetermined since for each point, /Y', on line Vk  there exists a unique line 

which could be (with equal probability) the unknown line Vs.

In order to make the scheme ideal, the size of the shares must be equal to the size 
of the secret. Since the secret has one-dimensional uncertainty, all coordinates of the 
shares (except one coordinate) can be made public (for this particular example, let the
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Figure 3.4: Simmons’ (2, n) threshold scheme

Figure 3.5: Simmons’ (3, ri) threshold scheme

x coordinate be made public). Now, the reader can compare this scheme (Figure 3.4) 
with the Shamir construction (assuming that Vk  is the Y  axis).

Similarly, a perfect geometric (3, n) threshold scheme can be constructed (Figure 
3.5). The shares, in this scheme, are points in the plane V8, which intersects the line Vk  
at point K . None of these points are the secret K  and no two of them are collinear with 

K .

3.5 Modular Approach

In 1983 Asmuth and Bloom [4] introduced a modular approach to threshold secret sharing 
schemes. In their scheme, shares are congruence classes of a number associated with the 
secret. The scheme utilises the well known tool in modern cryptographic systems, the 

Chinese Remainder Theorem.

T h eorem  3.9 — C hinese R em a in d er T h eorem  (C R T ) [94]
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Let mi,rri2 , . . .  ,m n be positive integers that are relatively prime in pairs, that is,

gcd(mi, nij) =  1 for  any i ^  j.

Let m =  mi - m2 • • • mn and let y\, ?/2? * • •, y n be integers. Then there is exactly one integer 
y that satisfies the conditions

0 <  y  <  m and y =  yi (mod mt) for 1 <  i <  n.

3.5.1 The Scheme

In order to construct a (t, n) threshold secret sharing scheme for sharing a secret K , 
0 <  K  <  q (q is not necessarily a prime number), the modular approach suggests the 
following algorithm. Let integers mi <  m2 <  • • • < mn be chosen such that:

1. gcd(m t-, m j) =  1 for'z ^  j ,  '

2. gcd(g, mi) =  1 for all i,

3- n L i  m >  q- U)Z\ mn- j+1.

Hence, the share distribution and the secret reconstruction phases will be as follows. 

Set-up Phase:

Let M  =  n U  mi• The dealer sends (via a public channel) mz to participant Pi, 1 <  i <  n 
and selects an arbitrary integer r such that 0 < y  =  K  +  q r <  M . Then, T> calculates 
the share S{ using:

S{ =  y (mod mt) for all i 

and gives (in private) the share Si to participant Pi.

Secret Reconstruction Phase:

Let P n , Pi2 , . . . ,  Pa be the collaborating participants and let M ' =  FIj=i m*i* Clearly, 
M  <  M ' and the collaborating participants can uniquely determine the value y , by 
applying the CRT, and hence the secret K .

It is not difficult to show that less than t participants cannot deduce their uncertainty 
about the secret K  and thus the scheme is perfect. The scheme, however, is not ideal 
since q <  nii, 1 <  i <  n and therefore every share is selected from a bigger domain than 

that of the secret itself.

It is worth mentioning that a similar scheme has also been proposed by Mignotte [120].
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3.6 Vector Space Approach

Brickell [22] introduced a vector space construction for certain ideal schemes, namely 
the multilevel and the compartmented schemes. Let V  be a vector space of all d-tuples 
(d >  2) over a finite field GF(jp) and let ei denote the ¿th d-dimensional unit coordinate 
vector, that is, e\ =  (1, 0, . . . ,  0). Suppose there exists a function

<f> • P  —> (Zp)d

which satisfies the property

ei G {(¡>{Pi) : Pi G A )

if and only if A  is an access set. Brickell’s construction is as follows:

(3.3)

Set-up Phase:

1. The dealer chooses a vector a =  (K , a i , . . . ,  a^-i), where the secret K  and a*- 
( l < i < d — 1) are elements of GF(p).

2. For each participant Pi, the dealer selects a d-dimensional vector V{ — <f>(Pi) G 
(Zp)d. These vectors are public.

3. For 1 <  i <  n, the dealer computes Si =  a • u,-, where is the inner product 
modulo p.

4. T> gives (in private) the share Si to participant Pi (1 < i  <  n).

Secret Reconstruction Phase:

According to the condition (3.3), for an access set A  the vector e\ can be expressed as 
a linear combination of all u,-, that is,

ei =  wi ‘ vi
PiZA

where Wi G GF(jp) can be precomputed for every access set. On the other hand, K  =  a-ei. 
Thus,

K  =  a - ^2 Wi -Vi =  Y2 Wi- a -
PiEA PiEA

Considering Si =  a - u,-, the secret can be recovered using,

K  =  Wi - Si
PitA
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Clearly, the scheme is ideal, since shares are elements of the same domain as the 
secret. To prove the perfectness of the scheme, we refer the reader to Brickell’s original 
paper (see also, Stinson [166, 167]).

3.7 Karnin-Green-Heilman (n, n) Scheme

A desirable characteristic of a (i, n) threshold schemes is that if even n — t pieces are 
destroyed the secret still can be reconstructed from the remaining pieces. Thus, one may 
think a (1, n) threshold scheme provides an appropriate scheme; if even n — 1 pieces are 
destroyed the secret accessible from the last remaining piece. A main disadvantage of 
this scheme, however, is that theft of even one piece compromises the secret. Hence, 
to protect the secret against the threat of theft, the threshold parameter should be 
large enough. That is, an appropriate scheme could be a (n ,n) threshold scheme. But, 
the advantage of this scheme is also a disadvantage; if even one piece is destroyed, the 
secret cannot be reconstructed. Considering the fact that, in a group, the majority of 
participants are honest, a (i, n) threshold scheme with threshold parameter t =  +  1
provides a robust secret sharing scheme.

However, some applications require a tradeoff between security and convenience of 
use. For example, (n, n) threshold schemes are frequently used in the implementation 
of general secret sharing schemes (see Chapter 4). For this particular case of thresh­
old schemes, the Karnin-Greene-Hellman [93] algorithm produces an efficient threshold 
scheme. Their scheme works as follows:

Set-up Phase:

1. The dealer selects (independently at random) n 
si , . . . ,  «sn_ i .

2. T) computes
71 —  1

sn =  K  ~ Y ^ S i  (mod q).
i=1

3. For 1 <  i <  n, the dealer gives (in private) the share Si to participant Pi.

Secret Reconstruction Phase:

1. The secret can be recovered by adding all shares (computation is done over Z g).

— 1 elements of Z g, denoted by
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This scheme is computationally more simple than the previously mentioned threshold 

schemes. Moreover, q is not necessarily a prime and can be even smaller than, n , the 

number of participants in the system. It is not difficult to show that the scheme is 

perfect, that is, a set of less than n participants obtains no information about the secret 
(for more detail and proof of security see [93] or [167]).

E xam ple  3.4  Let \V\ =  {P i, P2, P3, P4}  and let T be a (4,4) threshold scheme over7i2. 
The dealer, T>, selects (randomly) three elements o f Z 2 denoted by s\, s2 and 33 and 
computes

S4 =  K  — (51 -|- s2 +  33) (mod 2).

Then, D  distributes the shares among the participants.

The secret can easily be recovered by adding all shares as:

■ K  =  S\ T  ¿>2 T  53 T 54 (mod 2). -

One can check that this scheme is equivalent to the scheme of Example 3.2.

R em a rk  1 A final remark o f this chapter is that, although the essential notion o f all 
threshold schemes is the same, they do not necessarily produce equivalent schemes. For 
instance, there is no equivalent Shamir scheme corresponding to any o f threshold schemes 
presented in Examples 3.1, 3.2 and 3.3. In fact, the common problem with the majority 
o f threshold schemes is that their initial conditions for constructing ideal schemes are 
tighter than the conditions given in Lemmas 3.2, 3.3 and 3.f.

3.8 Anonymous Secret Sharing Schemes

We have only investigated a few approaches for constructing threshold secret sharing 
schemes. The selection of these approaches is due to their relevance to the rest of this 
thesis. A common characteristics of all these schemes, however, is that in the secret 
reconstruction phase the shares of cooperative participants must be accompanied by 
some form of authentication. In other words, if participant P* presents share st-, this is 
useless for determining the secret unless the identity of shareholder is also known. For 
instance, in a Shamir scheme it is necessary to know that share s* is being presented by 

Pi whose identity is X{.

However, it may be desirable to keep the membership of a group secret. This implies 
keeping secret the identifications of participants along with their shares. Hence, construc­

tion of an anonymous scheme implies considerably increase the size of the share assigned
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to each participant. Stinson and Vanstone [168] proposed a combinatorial approach to 

anonymous threshold secret sharing schemes (see also, [145] and [38]). For more details 
and study of anonymous secret sharing schemes we refer the reader to Martin [108].

3.9 New Directions in Secret Sharing Research

As a final section of this chapter we briefly consider the direction of research in the 
theory of secret sharing schemes. A survey regarding secret sharing schemes shows that 
some topics have received more attention than others. For example, information rate 
(since an important issue in the implementation of secret sharing schemes is that of 
how to reduce the size of shares) was the subject of investigation for several authors. 
Among several topics of research in the theory of secret sharing schemes we focus on a 
particular subject, so called long-lived secrets (e.g., cryptographic master keys), which is 
more relevant to the rest of this thesis.

3.9.1 Long-lived Secrets

The goal of implementing a secret sharing scheme is to protect sensitive information 
by distributing it among different locations. The idea behind this technique is that 
an adversary cannot obtain the secret as long as specific numbers of shares have not 
been compromised. Compromising the secret information, however, is a matter of time. 
That is, in a computationally secure secret sharing scheme, an adversary or a group of 
adversaries may have enough time to compromise sufficient numbers of shares and hence 
to obtain the secret. Or in an unconditionally secure secret sharing scheme, a sufficient 
number of shares may be stolen or destroyed2 in a long enough period of time.

This indicates that conventional secret sharing schemes might be insufficient to pro­
vide the secrecy of long-lived sensitive information, such as a contract between two 
countries, proprietary trade-secret information, and so on. The implementation of se­
cret sharing schemes that provide the secrecy of long-lived secrets and consideration of 

relevant problems are subjects of research in proactive secret sharing schemes [79],

2As mentioned in [93], even a safe deposit box, which is used to protect a punch card or similar data 
storage medium that contains a share o f the secret, is vulnerable (e.g., to the “silverfish threat,” named 
for an insect which eats punch cards).
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3.9.2 Proactive Secret Sharing Schemes

Herzberg, Jarecki, Krawczyk and Yung [79] considered the problems regarding the secu­

rity and integrity o f some long-lived and sensitive secrets, such as cryptographic master 
keys (e.g., certification keys), data files (e.g., medical records), proprietary trade-secret 
information (e.g., Coca-Cola’s formula), etc. They have argued that conventional secret 
sharing schemes may not be sufficient for the protection of such information. For ex­
ample, in a (t , n ) threshold secret sharing scheme, an adversary needs to compromise at 
least t shares in order to learn the secret. Since the adversary has the entire life-time . 
of the secret to mount his attacks, he may be able to apply his attacks gradually over 
a long period of time. Therefore, for long-lived information, the protection provided by 
conventional secret sharing schemes may not be sufficient.

In order to overcome this problem, they suggest dividing the life-time of the secret into 
periods of time (e.g., a day, one week, etc.) such that the adversary cannot compromise 
t shares in one period of time. At the beginning of each time period, however, all shares 
are renewed (without changing the secret) and all old shares erased. The secret can be 
reconstructed only from a set of authorised participants’ shares associated with a single 
period of time. Since the adversary cannot compromise enough shares in one period of 
time, the system provides the required protection.

The Basic Idea

Although the proactive secret sharing scheme [79] was proposed in 1995, the basic idea 
was given in Shamir’s original paper, where it says (for consistency with notations used 
in this thesis, parameters are renamed)

“It is easy to change the S{ -  all we need is a new polynomial f ( x )  with the 
same free term. A frequent change of this type can greatly enhance security 
since the pieces exposed by security breaches cannot be accumulated unless 
all of them are values of the same edition of the f ( x )  polynomial.”

In the proactive secret sharing scheme[79], however, it is assumed that the dealer exists 
only in the initialisation phase of the system. So in every period of time, the shareholders 
apply some verifiable secret sharing schemes (e.g., [58] or [130]) in order to distribute 
the value zero among other participants. That is, each participant selects a polynomial 
o f degree at most t — 1 with a constant term of zero and distributes the shares among 

other shareholders (similar to the Shamir scheme). According to the homomorphism 
property of the Shamir scheme, if the participants add their original shares to this new
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share, then they will have a share relating to the summation of the original secret K  and 

the new secret. However, the new secret is zero, and therefore the modified shares still 

are the shares o f the original secret. Roughly speaking, their scheme works as follows. 

In the initialisation phase a Shamir (t, n) scheme is implemented to share the secret 
K  € GF(jp) among the set of participants V  =  { P i , . . . ,  Pn}. At the beginning of time 
period, j  ( j  =  1, 2, •••), each participant Pi (1 <  i <  n) applies the following share 
renewal protocol.

1. Pi selects t — 1 random numbers 6Zl, . . . ,  bit_x

2. Pi secretly chooses (independently at random) t — 1 elements of Z p, denoted 
6Zl, . . . ,  bit_x and forms the polynomial

t- 1
f i 3 ( x )  =  o +  ^ 2 K x t -

' 1=1 '

3. For 1 <  m <  n, the participant Pi computes sîm, where

=  /<,•(*«) (mod p).

4. Pi gives (in private) share $,-m to participant Pm.

Now, the share of each participant Pm (1 <  m <  n) in the time period j  is given by:

Sln 1 +  Sim +  S2m +  • • • +  Snm

where s^ 1 denotes the share o f participant Pm at time period j  — 1 and (1 <  i <  n) 
denotes the shares that participant Pm has received at each share renewal protocol (note 

that, smrn is generated by Pm himself).
Note. Here, we have illustrated the idea behind proactive secret sharing schemes. 
To study the exact and secure protocol, we refer the readers to [79]. It is worth noting 
that Desmedt and Jajodia [52] have proposed a proactive secret sharing scheme where 

in every period the access structure can also be changed.



Chapter 4

Generalised Secret Sharing Schemes

This chapter considers secret sharing schemes with arbitrary monotone access structures. 
In Section 4.2 some methods for constructing general schemes will be studied. Compu­
tationally secure secret sharing schemes will be discussed in Section 4.3. Section 4.4 is 
devoted to the consideration of extended capabilities required in secret sharing schemes. 
In this section the extension of secret sharing schemes and the cheating problem in the 
secret reconstruction phase will be discussed. Finally, in Sections 4.5 and 4.6 we present 
two solutions for constructing secret sharing schemes in multilevel and compartmented 
access structures.

4.1 Introduction

Although a large fraction of research in the area of secret sharing schemes is devoted to 
threshold schemes, they can handle only a small fraction of the secret sharing functions 
which one may wish to form. In fact, threshold schemes were originally formulated for 
democratic groups in which every share has equal weight. Some applications, however, 
require different weighting of shares. For example, a bank vault can be opened by either 
two vice-presidents, Pi and P2 , or by three senior tellers, P3, P4 and P5, that is,

T“  =  P1P2 +  P3P4P5.

This scheme requires that the shares assigned to more privileged participants carry more 
weight than the shares assigned to less privileged participants.

Ito, Saito and Nishizeki [83] have first generalised the Shamir construction and de­

signed a secret sharing scheme which realizes any arbitrary access structure. In their 
cumulative scheme, the so called multiple assignment scheme (see also [84]), a single 

share, may be assigned to several participants.

56
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Later, Benaloh and Leichter [8] utilised Ito et al’s idea and proposed a more efficient 
general scheme which assigns to each participant, in general, fewer shares than Ito et 

al’s scheme. They have proved, however, there exist access structures which cannot be 
realised by giving only one share to each participant.

The first extensive discussion on the generalisation of secret sharing schemes was given 
by Simmons [154], who introduced the following eight classes of real-word applications 
in which simple (t ,n )  threshold schemes are not able to handle their requirements.

1. Compartmented out-of-^- shared secret schemes in which the secret reconstruc­
tion requires t{ participants of compartment £{ cooperate together.

2. Multilevel ¿¿-out-of-^- shared secret schemes in which the reconstruction of the 
secret requires ti members of the level £i or higher levels cooperate.

3. ‘ Extrinsic shared secret schemes in which the value of a share to the reconstruction
of the secret depends on its functional relationship to other shares, and not on its 
information content.

4. Prepositioned shared secret schemes in which the shareholders are unable to recover 
the secret until such time as the scheme is activated by communicating additional 
information.

5. Prepositioned shared secret schemes in which the same shares can be used to 
recover different secrets depending on the choice of the activating information.

6. Proof of correctness of the reconstructed secret to a confidence of «  1 — e, where 
e is the probability of guessing the correct secret.

7. Tolerance of erroneous inputs of some number, £, of shares. That is, the correct 
secret will be calculated even though £ of the inputs are in error. 8

8. A cryptographically secure mnemonic technique to enable participants to recover 
a private piece of information (share) that they cannot remember by using a piece 

that they can.
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4.2 Some General Schemes

4.2.1 The Multiple Assignment Scheme

Ito, Saito and Nishizeki [83] introduced the multiple assignment secret sharing scheme. 
Their scheme utilises the Shamir construction to design a secret sharing scheme which 
realizes any arbitrary access structure. The multiple assignment scheme works as follows. 
Let r  C 2?  be an access structure. The dealer, D, constructs r c+ and utilises a Shamir 
(t, t) threshold scheme to generate t shares (where t =  |rc+|). Then, for any unauthorised 
set B, B E rc+, it assigns a distinct share to all participants in B (B =  V  \ B).

E xam ple  4.1 Let 'P =  {P i, P2, P3, P4}  be the set o f participants and let

r  = P1P2 + P2P3 + P3P4 (4-1)

be the access structure. In order to share the secret K  E G F{p), the dealer gets

rc+ = {{Pi, ft}, {A , A }, {ft, ft}}.

Since |rc+| =  3, it designs a Shamir {3,3,) threshold scheme and generates three shares, 
S1 , S2->S3 - Then it assigns share Si to P2 and P4 (that do not belong to unauthorised set 
{P i^P s}). It also assigns share S2 to P2 and P3 (that do not belong to unauthorised set 
{P i,P i}J . Similarly, it assigns share S3 to Pi and P3.

They have proved that, for every access set A  E T, the number of distinct shares 
given to its participants is equal to t , while for every unauthorised set B ^ T, the number 
of distinct shares given to its members is less than t. That is, the scheme satisfies the 
requirement of secret sharing schemes, since the knowledge of at least t shares enables an 
authorised set to recover the secret. The knowledge of less than t shares, however, does 
not allow an unauthorised set to recover the secret. Figure 4.1 illustrates the multiple 

assignment scheme corresponding to the access structure T~ =  P1P2 +  P2P3 +  P^Pa-

4.2.2 The Logical Approach

Definition 4.1 [108] A positive logical expression is said to be in Conjunctive Normal 

Form (CNF) if

r = A1A2 • • • At,

where each o f the Ai are elementary disjoints.
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Figure 4.1: Ito et al’s scheme for F =  P1 P2 -f P2 P3 +  P3 P4

T" is in minimal CNF [108] if F~ is in CNF and Ai £  Aj for any i ^  j .

Benaloh and Leichter [8] pointed out that the method described by Ito, Saito and 
Nishizeki [83] corresponds precisely to the case of a minimal CNF-formula in which 
conjunctions are formed by use of the Shamir (n, n) threshold schemes. They observed 
that every access structure can be translated into a monotone formula which yields, in 
many cases,'a much smaller formula than the CNF-formula. Themonotone formula is a 
logical expression written as a sum of products of the P,-, where each Pi takes the value 
true or false. For example, the access structure F~, given in equation 4.1, can be written 
as

((A  A -P*) VOP2 A W G P 3  A p <)).

Since their method combines (if it is possible) sets in the access structure in order to 
form a (£t-,ra,-) threshold scheme, their scheme reduces the number of shares assigned to 
each participant. There are, however, many cases in which their method is still unable 
to be applied efficiently.

4.2.3 Cumulative Schemes

Simmons, Jackson and Martin [160] have introduced a constructive algorithm which 
operates on the logical description of access structures to produce a logical expression 
that uniquely determines one of the desired geometrical configurations. Their algorithm, 
in fact, utilises the monotone formulas corresponding to access structures to obtain a 
cumulative scheme. A cumulative scheme for the access structure F is a map a  : V  —y 2 s 
(where S is some set), such that for any A C P ,

(J Pta =  S if and only if A  G F.
Pi 6̂ 4

That is, in cumulative schemes the secret K  can be reconstructed if all shares are known. 
The scheme can be written as a [P\ x \S\ array M  =  [mt-j], where row i of the matrix M
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Figure 4.2: Simmons et al’s configuration for V =  P1 P2 +  P2P3 +  P3P4

is indexed by Pi E V  and column j  of the matrix M  is indexed by an element sj E S, 
such that rriij =  1 if and only if Pi is given Sj otherwise =  0.

The cumulative scheme proposed in [160] works as follows. Let F"~ =  A\ 4-------Y A t be
a monotone formula in its minimal form. The dual access structure T* =  is
the monotone access structure obtained from F~ by interchanging (+ ) and juxtaposition 
in the boolean expression for T ". For example, if F~ =  P1 P2 +  P2P3 +  P3P4 then 

r* =  (Pi +  P2 ) (p 2 T  Ps){P3 P4 ) =  P1 P3 +  P2 P3 T  ^ 2 ^4 - Then the map a : P  —> 2s , 
which is defined as

P “ =  { sj I Pi appears in Bj},

gives a cumulative scheme for F (S =  is the set of shares). Figure 4.2
illustrates a perfect geometrical configuration for the access structure F~ =  P1 P2 +  

P2P3 +  P3 P4 •
Cumulative schemes are also studied by Jackson and Martin [85], Charnes and 

Pieprzyk [33] and Ghodosi et al [73].

4.3 Computationally Secure Secret Sharing Schemes

In the literature of secret sharing schemes, several computationally secure schemes have 
also been proposed. For example, Cachin [29] proposed online secret sharing schemes. 
The scheme provides the capability of sharing multiple secrets and allows adding par­
ticipants dynamically, without having to redistribute new shares. These capabilities are 
realized by storing additional authentic information at a publicly accessible location.

Pinch [134] pointed out that Cachin’s scheme does not allow shares to be reused after 
the secret has been reconstructed (without a further distributed computation protocol



4.3. Computationally Secure Secret Sharing Schemes 61

such as that of Goldreich, Micali and Wigderson [75]). He proposed a modified protocol 

for computationally secure online secret sharing, based on the intractability of the Diffie- 

Hellman problem, where shares can be reused (an explanation o f terms used in this 
subsection will be given in the second part of this thesis).

4.3.1 An Online Scheme

G\ is a cyclic group of order q (written multiplicatively) in which the Diffie-Heilman 
problem is intractable (that is, given elements g , gx and gy in Gi, it is computationally 
infeasible to obtain gxy) and /  : G\ — V G2 is a one-way function. The group operations 
in Gi and G 2 respectively are multiplication and addition modulo a large prime p. The 
set V  o f participants is denoted by P i , . . . ,  Pn. Certain subsets A  E 2V are authorised 
to recover the secret K . The family of authorised sets of participants is denoted by F 

Pinch’s protocol works as follows : The dealer who knows the secret K , randomly 
chooses shares (integers prime to q) for each participant Pi E V  and transmits Si over 
a secure channel to Pi. For each minimal authorised set i  G T ", \A\ — t , the dealer 
randomly chooses g4 to be a generator of G\ and computes

Ta =  K  — f  (<7? ^ " ’ )

and posts the pair (<7.4, T4 ) on the notice board. To recover the secret K , a minimal au­
thorised set A  =  { P i , . . . ,  Pt}  o f participants comes together and performs the following 
steps.

1. Member Pi reads g„4 from the notice board, forms and passes the result to P2.

2. Each subsequent member Pz, for 1 <  i <  t, receives and raises this value
to the power Si to form gsj[ ‘"St which is passed to Pi+\.

3. The final participant Pt receives #4 and raises this value to the power st to 
form

vA = g r  s' =  9a P'eAS'

4. On behalf of the access set A , member Pt reads T4 from the notice board and 
reconstructs K  as K  — T4 +  /(V 4 ).

If there are multiple secrets Ki to share, then it is possible to use the same one-way 
function / ,  provided that each entry on the notice board has a fresh value of g4 attached.



4.4. Extended Capabilities for Secret Sharing Schemes 62

Pinch also has a variant proposal which, according to him, avoids the necessity for 
the first participant Pi to reveal gsj[ at step 1. Pi takes r modulo q at random and forms 

Qa 1 and passes the result to P2, and so on. At the end of the protocol, Pt returns the 
computed value g^ 1 St to Pi which computes

Va =  ( g ' jT - 'Y '1 (mod p)

where r -1 is the inverse of r, that is r x r -1 =  1 mod q (the other parts of the protocol 
are the same as the original protocol).

4.4 Extended Capabilities for Secret Sharing Schemes

There are several areas in which applications of secret sharing schemes require extended 
capabilities. In this section, we will consider some of these required capabilities. In 
particular, we discuss the extension of a secret sharing scheme and cheating detection in 
the secret reconstruction phase.

4.4.1 Extension of a Secret Sharing Scheme

As mentioned in Section 2.3, a desirable capability of every secret sharing scheme is that 
the scheme must be able to cope with situations when new members join the group. 
Indeed it is not very practical to modify the shares each time a new member joins group. 
This is a common problem with long-lived and sensitive information (e.g., cryptographic 
master keys) in which the secret must be kept secure even if some shareholders added 
into the system.

In [83], the authors claimed that their scheme is flexible for the case in which a new 
member joins the group of shareholders. They considered the following problem [83, 
Problem 3].

“Can a scheme realizing an access structure I\ be extended so that a new 

scheme realizes an access structure r2?”

The question was answered affirmatively provided the new access structure T2 is an 

extension of Ti, that is, Ti C T2 and TJ C
In Section 2.3 we have presented an example to illustrate the extension of a given 

access structure. It is not difficult to show, using the abstract model of Section 2.1, that 
it is always possible to extend any given access structure. However, this is not the case 
with every secret sharing scheme.
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Here we show that the extension of the multiple assignment secret sharing scheme 
given in [83] does not work.

T h eorem  4.1 The extension o f a multiple assignment scheme, proposed in [83], is not 
secure. That is, in the extended scheme, the secret can be reconstructed by an unautho­

rised set o f participants.

P ro o f. Let V 1 =  {P 1, . . . , P n}  and C 2Vl be an access structure. Let I\ =  

{ A i , . . . , A i }  and Assume a multiple assignment scheme realizes
and we want to extend the set of shareholders to a set P 2, where P 2 =  {P i, . .., Pn, 
Pn+i, • • • , Pm}, that is, V\ C P 2. Let the access structure T2 C 2p2 be as follows:

r 2 =  M i ,  • • •, Ae, {Pi, P j}, for i <  j ,  i =  1, . . .  ,m -  1, j  =  n +  1, . . .  ,m} .  (4.2)

Clearly, I\ C r2. On the other hand, since all subsets consisting of two participants, in 
which at least one of them belongs to the set of new shareholders, are access sets, we 
have,

That is, r j+ C r f  and therefore T2 is an extension of Ti.
Assume that the multiple assignment scheme, which realizes the access structure 

L  on a set V \, applies the set Pi =  { s i , . . . , S i }  of shares. That is, si is assigned to 
participants in set P i \ B\, and in general Si is assigned to participants in set P i \ B{. 
In the new scheme, however, the share Si will be assigned to participants in set P 2 \ B\, 
and in general Si will be assigned to shareholders in the set P 2 \ B{. So the set P 2 \ Pi =  
{P n+i , . . . ,  Pm}  will get the set of all shares (* =  l , . . . , i )  from the basic scheme. 
Since knowing all shares of a secret sharing scheme is sufficient to recreate the secret, 
every new shareholder can recreate the secret, although none of them individually are 
supposed to be able to recover the secret. □

E xam ple  4.2 Let V 1 =  {P i ,P 2 ,P 3}  and let IT =  { { A ,  P2}, {P 2, P3} } .  Since T f  =  
{ { P 2}, {P i, P3} } ,  the dealer generates a Shamir (2,2) threshold scheme and assigns s\ 
to set P i \ {P 2} , that is, to participants P\ and P3. Similarly, it assigns the share s2 to 

set P i \ {P i, P3} , that is, to participant P2.

Let P 2 =  {P i, P2, P3, P4, P5}  and also let =  { {P i ,  P2] ,  {P 2, P3} ,  {^ i? Pa} ,  {P i , P5}, 

{P 2,P 4} ; {P 2,P 5}, {P 3,P 4L  {P s,P s} ,  {P 4,P s} } .  Hence, T ?  =  { { P 2} ; {P i ,P 3}, {P a} , 
{P 5} }  and the dealer generates a Shamir (4,4) threshold scheme to generate four shares 
Si, s2, S3, s4. However, this set o f shares contains the set o f shares s i , s 2 which have been
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generated in the basic scheme. In this extended scheme, however, share Si will be as­

signed to set V 2 \ {P 2 }  =  { P i, P3, P4, P5} , share s2 will be assigned to set V2 \ {P l, P3}  =  
{P 2,P 4,P 5} ,  share s3 will be assigned to set V 2 \ {P 4}  =  {P i, P2, P3, P5}  and finally 

share s4 will be assigned to set V 2 \ {P 5}  =  {P i, P2, P3, P4}. Note that Px knows the set 
o f shares { 31, 63, 34}  and P2 possesses the set o f shares { 32, 53, 54} .  As {P 1?P2}  £ 
shares Si and s2 are sufficient to recover the secret. Since P4 holds the set o f shares 
{ 5i , 32, s4}  and P5 possesses the set o f shares { s i , s 2,s 3} , both P4 and P5 can individually 
recover the secret (they know both shares 5i and s2).

Ito, Saito and Nishizeki [83] applied Shamir threshold scheme to construct their 
extended multiple assignment secret sharing scheme. Their method works as follows. 
Let V\ — { P i , . . . ,  Pn}  be a set of participants and let a Shamir (t , n) threshold scheme 
be designed for the set V\. Assume that we want to design a Shamir (£, m) threshold 
scheme for a set P 2 =  { P i , . . . ,  Pn, Pn+ i , . . . ,  Pm}, such that the set of old shares is still 
acceptable in the new scheme, that is, the new scheme is an extension of the old scheme. 
In [83] the authors have claimed that; if polynomials f i (x )  and f 2(x) which are associated 
with the Shamir (t , n) and (£, m) threshold schemes satisfy the condition i  >  t +  2, then 
the extension is possible by generating a polynomial f 2(x) (of degree at most k — 1) such 
that the t shares generated by polynomial f i (x )  still can be generated by polynomial 
f 2(x). Here we show how unauthorised collection of (i  — 1) participants can recover the 
secret in this extended Shamir (£, m) threshold scheme.

T h eorem  4.2 The extension o f a Shamir threshold scheme, proposed in [83], is not 
secure. That is, any subset o f (l — 1) participants can also recover the secret.

P ro o f. Let a Shamir (t , n) threshold scheme be constructed on a set V\ =  { P i , . . . ,  Pn}
of n participants and let the associated polynomial be f\(x) =  K  +  a±x H----- +  at~ 1P -1 ,
that is, f i ( x )  is a polynomial of degree at most t — 1. Also, let a Shamir (£, m) threshold 
scheme which is constructed on a set V 2 =  { P i , . . . ,  Pn, Pn+1, . . . ,  Pm}  be an extension of 
the (t , n) scheme. That is, all shares of the old scheme are also acceptable shares in the 
new scheme. In the extended scheme, however, the associated polynomial is of degree 

at most £ — 1. We assume £ >  t +  2, which satisfies the condition given in [83]. Thus,
we have, f 2(x) =  K  +  hx-\--------b 1x l~1. Although, without knowing that the (£,m)

threshold scheme is an extension of a (t , n) Shamir scheme, less than £ participants obtain 
absolutely nothing about the secret, here we show the knowledge of this fact enables £—1 

collaborating participants of the extended scheme exactly to determine the secret.
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Let B C V 2 (\B\ =  i — 1) be a set of collaborating participants. Since / 2(æt-) =  fi (x i) , 
(1 <  i <  n), the collaborating participants of the set B know the following set of 
equations (corresponding to polynomial f i (x ) ) .

K  +  d\X\ +  . . . +  (Lt-iX^1 =  5i

K  +  aixt +  . . .  +  at-\x\ 1 =  st

They also know the following set of equations regarding the set V\ on polynomial / 2(x).

K  +  &i#i +  . . .  +  1 =

K  -f- b\Xt +  . . .  +  bi-\x\ 1 — St

Without loss of generality, let the collaborating l — 1 participants be {P n+h , . . . ,  Pn+Î£_1}. 
So, they can provide the following set of i  — 1 equations:

K  +  ¿lXn+ij +  . . . +  =  Sn+h

K  +  b\Xn+it_x +  . . . +  b£-

It is not difficult to see that the above three sets of t 1 +  £ — 1 linearly independent 
equations have 1 +  (i — 1) +  t -\- (£ — 1) unknowns (corresponding to K , a,-s, shares 
3i • • • 5t and 6jS, respectively). Since the number of equations is equal to the number of 
unknowns, the system of equations has a unique solution for K , that is l — 1 participants 
can exactly recreate the secret. Q

It is worth mentioning that the problem arises because the overlapping shares leak 
some information. In the following section we shall show how to deal with this problem.

4.4.2 How to Extend a Shamir Scheme

So far (also in [71]) we have shown that the extension of Shamir schemes given in [83] 

is not secure. In this section, we show how to perform this task securely.
Let a Shamir (i, n) threshold scheme be constructed on a set V\ =  { P i , . . . ,  Pn}  and

let f i (x )  =  K + d ltlx-{-------hai.t-iz*“ 1 of degree at most t - 1 be the polynomial associated
with this scheme. Suppose we want to extend this scheme to a {£, m) threshold scheme 

over the set V 2 =  { P i , .. - , Pn, Pn+i, • •., Pm}- In the following we show how to select a 
polynomial / 2(æ) of degree T  such that every subset of £ or more participants from the
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set V 2 can recover the secret, but for every subset of less that £ participants the secret 
remains absolutely undetermined.

Let f 2(x) =  K  +  a2, i x ------a2jTx T. Since f 2{xi) =  fi (x i)  for all X{ (1 <  i <  n), the
following set of 2 x n equations are known.

From f i (x )

K  +  «1,1^1 +  • • • +  aift_ix\ 1
<

si

K K  H" 0>l,lx n +  * * * +  1 — Sn

K  +  a2,\x l +  • • • +  d2,Tx i — Si

From / 2(x) <

k K  +  a2, lx n +  • • ‘ +  «2 ,T^n — Sn

The number of unknowns in this system of equations is 1 +  (< — 1 ) +  T +  n . The system has 
a unique solution if the number of equations is at least equal to the number of unknowns. 
In the extended scheme, however, the requirement is that at least £ participants from 
the set V 2 must collaborate in order to recover the secret. Let a set A  C v 2 (M l =  i)  

of participants include the following set of i  equations into the system (each participant 
contributes one equation).

From f 2(x)

K  +  a2>ix h + ------b « 2 ,r ^
<

. K  +  a 2,iX j , +  • ■ • +  a 2,T x j t =  s jt

where n +  1 <  ji <  m, 1 <  i <  l.

Now, we want the above set of 2 x n T  i  equations to have a unique solution for K . 
This requires that 2 x n  +  f  =  I f  ( i - l )  +  T  +  n (note that the later set of l  equations 
does not increases the number of unknowns). So, the dealer can select a suitable value 
for T  (knowing £ and n).

Although we have shown that if £ participants from the set V 2 \ V\ collaborate, then 
they can determine the secret, we must show that every subset of £ participants from the 
set V 2 can also do so. Let j  participants, 0 <  j  <  £ from the set V2\V\ collaborate in the 
secret reconstruction process. Thus, £ — j  participants from the set V\ must collaborate 
in the secret reconstruction. Although this decreases the number of unknown shares 

s i , . . . ,  sn by £ — j ,  the number of unknown shares in the system is still n (since £ — j  
shares regarding the absent participants are now unknown). That is, for every subset of 

£ participants from the set V 2 the above set of equations has n unknown shares.
So, the extended scheme can be constructed if T  is chosen such that £ +  2n =  

1 +  (t — 1) +  T  +  n, or simply,
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T =  n +  ( £ - t )  (4.3)

To construct the polynomial / 2(x), the dealer first selects T random coefficients

« 2,15 • • • 5 « 2,t such that f 2(x) =  K-\-a2,\x-\------\-a2̂ x T satisfies f 2(xi) =  / i ( x t-), 1 <  i <  n.

Next, it selects m distinct and non zero elements Xi {n +  1 <  i <  m), such that x,- ^  Xj 

{i 7̂  j ,  1 <  j  <  m) and computes shares st- =  f 2(xi) (n +  1 <  i <  m). Then the dealer 
privately sends the shares to their correspondence (only to the new m — n participants 
of the extended scheme).

The polynomial / 2(x) can be constructed if T >  t +  1. Because, the condition 
/ 2(xz) =  / i ( x t), 1 <  i <  n is equivalent to:

/ l
1

xi

X 2

\  1 X t- 1

X
T—1 \

XT—1

XT—1 
i- i  /

/  «2,1 -  «1,1 \ 
« 2,2 — « 1,2

«2,i—1 — « l,i- l 
«2,i

V «2,T )

0 /

If T  >  t +  1, then i -  1 x T  matrix above has rank t — 1 <  T — 1, and hence the 
dealer can select fl2,i, • • • ? « 2,T as desired. However, considering equation (4.3) and the 
fact that n > t  (this is a basic condition in Shamir scheme) we have, T >  l. Since £ >  t 
(otherwise, the dealer just generates m — n shares in the constructed (i, n) scheme and 
sends them to their correspondence), we have T >  t y that is,

d eg (/2(z )) >  d e g (/i(s ))  +  2

and the construction o f / 2(x) is possible every time. Thus, we obtain the following 

theorem.

Theorem 4.3 For every Shamir (t,n ) threshold scheme over a set V\, there exists a 
Shamir (£, m)  threshold scheme over a set V 2 (P\ C V 2)  which is an extension o f the 

(t,n ) scheme.

As an example, let a Shamir (2,2) scheme be constructed over a set V\ =  {P i, P2}. 

Let V 2 =  {P i, P2, P3, P4, P5}  and we want to extend the (2,2) scheme to a (3,5) scheme 
(3 members joining the group). Further, let f i (x )  =  K  +  « 1,1® of degree at most 1 be 

the polynomial associated with the (2,2) scheme. In order to compute T, the degree of



4.4. Extended Capabilities for Secret Sharing Schemes 68

X

Figure 4.3: Extension of a Shamir (2,2) scheme to a (3,5) scheme

polynomial f 2(x) =  K  +  0 2 ,1 # +  • • • +  0 2 ,t* T corresponding to the extended scheme, we 
obtain (using equation 4.3)

T  =  2 +  3 — 2 =  3.

Figure 4.3 illustrates such an extension. Note that, in the original Shamir schemes a 
polynomial of degree 3 is associated with a (4, n) scheme. However, as we have shown 
earlier, knowing the fact that a scheme is an extended scheme enables every set of 3 
participants to recover the secret. For example, participants P1? P3 and P4 know that,

I\ + « 1,1 X * 1 =  ¿1

K + 0 i , i X * 2 =  S 2

K + « 2,1 X Xl + « 2 ,2 * 1 + «2 ,3*1 =  Si
K + «2,1 X X2 + 0 2 ,2 * 2 + « 2 ,3 * 2  :=  s2
I< + 02,1 X X 3 + 0 2 ,2 * 1 + 0 2 ,3 * 1  :=  S 3

I< + 02,1 X x4 + 0 2 ,2 * 4 + 0 2 ,3 * 4 =  s4

Since the above set of 6 equations has 6 unknowns (/if, ai,i, « 2 ,1 , « 2 ,2 , « 2 ,3  and s2), the 
secret K  can be easily computed.
N ote . The extension of multiple assignment secret sharing schemes [83] was an attempt 
to solve the problem of sharing a secret in hierarchical groups (see Simmons [154]). 
However, in their method the above scenario indicates an extension of a Shamir (2,2) 

scheme to a Shamir (4,5) scheme, which is not the case.
We shall show in a moment how this extension technique can be used in the con­

struction of our multilevel (hierarchical) secret sharing scheme.

4.4.3 Correctness of the Reconstructed Secret

An important issue in a secret sharing scheme is that the reconstruction procedure must 

provide the valid secret to all participants of an authorised set. There are fundamentally
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different approaches to correctness for shared secret schemes. For example, a verifiable 

secret sharing scheme allows the honest participants to ensure that they can recover 

a unique secret. Verifiable secret sharing schemes were introduced in [39] and then 

discussed by many other authors (see, for example, [58]). Although in verifiable secret 
sharing schemes participants can verify the validity of their own shares, they cannot 
know whether other participants with whom they might collaborate to reconstruct the 
secret also have valid shares. This problem is discussed in publicly verifiable secret 
sharing schemes [164], in which participants of every authorised set are able to convince 
everybody that their shares are related to the secret. That is, in the secret reconstruction 
phase they can recover the secret. Even assuming that the dealer is honest and every 
shareholder received correct shares, there is no guarantee that the secret reconstruction 
protocol provides the original secret for the authorised set of collaborating participants. 
That is, a dishonest participant may fool the others so they obtain an invalid secret. 
This problem has been discussed by several authors (see for example [170], [25], [155] 
and [107]).

In some applications of a secret sharing scheme no additional confirmation that a 
correct value for the secret has been recovered is needed. For example, the bank vault 
door either opens or it does not, after an authorised set of participants have entered 
their shares. This is not the case if the action controlled by a shared secret scheme is 
distant, in either time or place, from where an authorised set of participants apply their 
shares. For example, (following Simmons [155]) if the controlled action is the arming of 
a missile warhead, it is desirable to have confirmation prior to launch that the correct 
arming code has been entered, as opposed to learning after the missile arrives at the 

target that the warhead had not been armed.
We observe two different approaches to solve this problem.

Detection of Cheating - The secret reconstruction protocol has the capability to 
detect cheating (if it occurs). In this case, in general, the cheater(s) can obtain the 
correct secret while the honest participants obtain nothing.

Prevention of Cheating - The secret reconstruction protocol provides no informa­
tion about the secret to the collaborating participants. That is, neither cheater(s) 

nor honest participants obtain any information about the secret.

In [68] we have proposed a protocol that can detect and prevent cheating in online 
secret sharing schemes. We have shown the online secret sharing scheme [134] is vulner­

able to cheating. In this scheme (see Section 4.3.1), a dishonest participant P{ € A  may
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contribute with fake share s[ =  a s { , where a  is a random integer modulo q. Since every 

participant of an authorised set A  (\A\ =  t ) has access to the final result g X "8'r '8\ the 
participant P{ can calculate the value,

(a
•st

r 1 = gsr ‘
•st _  _n PieA

— 9a Va

and hence the correct secret as in Pinch’s scheme, while the other participants calculate 
an invalid secret.

How to Detect Cheating

Suppose in the initialisation phase of the Pinch scheme, the dealer publishes g j f  (corre­
sponding to every authorised set *4). Let the reconstruction protocol be the same as in 
the original Pinch scheme and let VjJ be the final result. Every participant Pi £ A , can 
verify whether

If the verification fails, then a cheating has occurred in the protocol and thus the com­
puted secret is not valid. This protocol detects cheating but does not detect the cheater(s) 
nor prevent cheating. That is, the cheater(s) obtain the secret while the others gain noth­
ing.

How to Prevent Cheating

Let a =  ^2pi€A 9a correspond to an authorised set A. We assume that in the initialisation 
phase of the Pinch scheme the dealer also publishes cla =  9% Note that this extra public 
information gives no useful information about the secret or about participants’ shares. 
Otherwise one could solve the discrete logarithm in G\ and easily solve the Difhe-Hellman 

problem.
Let A  be an authorised set of participants. At the reconstruction phase, every par­

ticipant Pi £ A  computes g J and broadcasts it to all participants in the set A. Thus, 
every participant Pi £ A  receives t — 1 values gsj  corresponding to all Pj £ A , Pj ^  Pi. 
Each participant computes a and verifies a a =  g a - If the verification fails, then the 
protocol stops. Let participants agree to perform computation in the cycle P i , . . . ,  P*. 

If the check a a =  g a 1S successful, then each participant Pi (i =  l , . . . t )  knows the true 
value gj p 1 of its predecessor (Pt is the predecessor of Pi). So participant Pi (i =  l , . . . , t )  
initiates the protocol by computing the value and passing it to Pt+i. The proto­
col proceeds as in the Pinch scheme and ends at P i-2• In this way, the participant Pi-i 

cannot directly contribute to the computation which was started by Pi.
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Let there exist only one cheater, P{ (1 <  i <  t) in the system. So if P{ cheats, 

the computation initiated by Pî+1 must be correct (the correctness can be verified as 

9a =  9a  > where is the result obtained by P;_i). That is, although cheating has 
occurred, the honest set o f participants can recover the secret.

If there exists a group of collaborating cheaters, then each participant must play 
(simultaneously) the role of Pi for every other participant in set A. Although the number 
of computations increases rapidly, before completing the protocol any possible cheating 
will be detected and the protocol will be stopped (for more detail see [68]).

4.5 Secret Sharing in Multilevel Groups

In multilevel ¿¿-out-of-n^ secret sharing schemes, the set of all participants is divided into 
levels (classes). The z-th level contains rii participants. The levels create a hierarchical 
structure. Any t{ participants on the z-th level can recover the secret. When the number 
of cooperating participants from the z-th level is smaller than ti, say r,-, then t{ — r\- 
participants can be taken from higher levels. For example, a bank may require the 
concurrence of two vice-presidents or three senior tellers to authenticate an electronic 
funds transfer (EFT). If there are only two senior tellers available, the missing one can 
be substituted by a vice president.

The concept of multilevel (or hierarchical) secret sharing was considered by several 
authors (see, for example Shamir [147], Kothari [96], Ito et al [83] and Charnes et al [32]). 
Shamir [147] suggests that threshold schemes for hierarchical groups can be realized by 
giving more shares to higher level participants. Kothari [96] considered hierarchical 
threshold schemes in which a simple (£,-, rii) threshold scheme is associated with the z-th 
level of a multilevel group. The obvious drawback of this solution is that it does not 
provide concurrency among different levels of hierarchical groups. Ito et al [83] discussed 
secret sharing for general access structures and proved that every access structure can 
be realized by a perfect secret sharing scheme. The main drawback of their scheme is 
that the more privileged participants are assigned longer shares.

Simmons [154] pointed out that the solutions for secret sharing in multilevel groups 

proposed by earlier authors are not efficient. He suggested efficient geometrical secret 
sharing schemes with the required properties. However, his solution is applicable only 
to a particular case of multilevel groups. More precisely, he discussed secret sharing in 

multilevel groups with particular access structures.
Brickell [22] studied general secret sharing in multilevel groups and proved that it is
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possible to construct ideal secret sharing schemes for any multilevel access structure. In 
Brickell’s vector space construction, the lower bound on the size of the modulus p (size 
of the field in which the calculations are being done) is considerably large.

In this section we present an efficient solution for secret sharing in multilevel groups. 
Our scheme is based on the Shamir scheme and is perfect and ideal. In our scheme, the 
lower bound on the modulus is significantly smaller than in Brickell’s scheme. Indeed, the 
condition p >  n (as in Shamir’s original scheme) is sufficient to implement our proposed 
scheme.

4.5.1 Notations

Assume that a multilevel (or hierarchical) group consists of t  levels. That is, a set 
V  =  { P i , . . . ,  Pn}  of n participants is partitioned into £ disjoint subsets P i , . . . ,  Ve. The 
subset P i is on the highest level of the- hierarchy while P  ̂ is on the least privileged 
level. Denote the number of participants on the i-th level as n* =  \Vi\. The threshold 
t{ indicates the smallest number of participants on the z-th or higher levels, who can 
cooperate to successfully reconstruct the secret. The number of participants in the 

scheme is n =  |P| =  J2i=i |P*| =  X)£=i ni• Let N{ be the total number of participants 
on the z-th and higher levels. That is, Ni =  Yl)=i nj, 1 <  i <  £. Clearly, Ni =  rzi and 
Ne =  n. O f course, we assume that the thresholds on different levels satisfy the following 
relation t\ <  ¿2 <  * • * <  te. Note that the reconstruction of a secret can be initialised by 
any hierarchical subgroup of P t-. If their number is smaller than the threshold number 

the subgroup can ask some participants from the higher levels to collaborate and pool 
their shares. The total number of participants has to be at least The access structure 
is defined as:

i
r  =  { A ç v  I ^ ¡ A n V j l y t i  for » =  1, . . . , £ }  (4.4)

3= 1

Consider again the bank example where monetary transactions can be authenticated 
by three senior tellers or two vice presidents. So, there exist two levels of hierarchy. The 
first (higher) level consists of two vice presidents V\ =  {P i, P2}  with ni =  2. The second 
(lower) level consists of three senior tellers P 2 =  {P 3,P 4,P s} with n<i — 3. To recover 
the secret, it is necessary that two participants on the first level or three participants on 

the second level or three participants from both levels pool their shares. Thus, t\ =  2, 
¿2 — 3 and n =  5.
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4.5.2 The Model

Our model utilises a sequence of related Shamir threshold schemes with overlapping 
shares.

Lem m a 4.4 (transitivity of extension) I f  Y 2 is an e x te n s io n  o f  a n d  is an  

e x te n s io n  o f V 2 th en  1̂  is an e x te n s io n  o f Y \ .

We say 1̂3 is the second extension of IV  Similarly, we define the i th extension of a 
Shamir threshold scheme.

Secret sharing for multilevel access structures displays some common features with 
threshold schemes. However, an implementation of multilevel secret sharing based on a 
sequence of independent threshold schemes on each level i =  1, . . . , 1  makes the
cooperation among participants existing on different levels difficult to achieve. Denoted

by, * '

r = u  ^
3—1

the set of all participants on the z-th and all higher levels. An alternative implementation 
of secret sharing for multilevel access structures would involve a sequence of independent 
threshold schemes for the set V 1 (i =  1 , . . . , ^ )  of participants. This solution
requires I  — i T 1 shares to be assigned to each participant on the z-th level.

A reasonable implementation of secret sharing for a multilevel access structure can be 
done as follows. First a (¿1 , n\) threshold scheme (scheme A \ )  is designed. It corresponds 
to the first (highest) level of participants from V 1. Then a (t2, N2) threshold scheme 
(scheme A 2) for V 2 is constructed as an extension of A \ . Next a (i3, A 3) threshold 
scheme (scheme A3) for V 3 is constructed as an extension of A 2. The process continues 
until a (t t , Ni) threshold scheme (scheme A f )  for V i is constructed by extending the 
threshold scheme A t - \ .  In this implementation, each participant will be assigned a 

single share only.
In Section 2.3 we have shown the extension is possible for every extended set of 

participants. That is, our model is applicable for any multilevel (hierarchical) access 

structure. We use (£t-, A^):rt scheme to denote an extended Shamir (¿¿, Nf) threshold 
scheme in which the polynomial associated with the scheme has a degree of at most Tt 

(in general, T{ >  U ).

At level z, the dealer can easily calculate the value Tj, which is the degree of the 
polynomial associated with a (t{ , threshold scheme for V 1. The dealer observes 

that the available set o f equations with the system is as follows: N\ equations (for level



4.5. Secret Sharing in Multilevel Groups 74

1) with Ti (maximum number of coefficients in f i (x ) ) ]  N2 equations (for level 2) with 

T2 unknowns and, in general, N i-i equations (for level i — 1) with Tt-_ 1 unknowns (plus 
one unknown, corresponding to the secret itself). Since the requirement is that at least 

ti participants must collaborate in order to recover the secret, T* must must satisfy the 
following equality:

ti +  E  N i  =  1 +  È T i  (4-5)
3 = 1  3=1

which contains a single unknown value, Ti (all Th  1 < j < i  — 1 have been calculated in 
previous levels).

Hence, a secret sharing for a given multilevel access structure can be implemented 
according to the following algorithm:

Algorithm 1 -  a (ti, Ni)xt secret sharing scheme.

1. Select at random a polynomial of degree at most T\ =  t\ — 1 and compute ni 
shares for n\ participants from V\. The outcome is a threshold scheme
(N 1 = n 1).

2. For i =  2 to t  do:

• for the given initial (tt-_i, Aii - i ) r i_1 threshold scheme, construct its extension

(ti, Ni)Ti.

• compute rii shares for participants on the ¿-th level,

• take the next i,

3. Distribute the shares to corresponding participants via secure channels.

4.5.3 Security of the Scheme

The following theorem demonstrates that secret sharing schemes obtained using Algo­

rithm 1 are perfect.

Theorem 4.5 Algorithm 1 produces an ideal and perfect secret sharing scheme for  an 

arbitrary multilevel access structure.

Proof. (Sketch) Algorithm 1 produces t  threshold schemes A \,. . . ,  At, where:

A i is defined by polynomial f i (x )  for V\,

Ai is defined by polynomial fi (x )  for V 1 =  U}=i P j, and
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fi (x )  =  K  +  a ^ x  +  . . .  +  aijTix Ti for i =  1 , . . . ,  £.

Without loss of generality, we can assume B =  { P i , . . . ,  Pw}  £ F are the collaborating 
participants. For each level, we can determine B{ =  B H V 1 and the number /?,• =  \Bi\. 

Clearly, /?,• <  t{. So, each system of equations for the ¿-th level does not produce a 
unique solution. Indeed, according to the method of generating polynomials associated 
with Shamir threshold scheme for level every subset of all equations available to the 
set B has more unknowns than the number of equations, and therefore, has no unique 
solution. That is, the solution is a space equivalent to GF(p) ,  and thus, the secret 
remains absolutely undetermined.

4.5.4 The Lower Bound on the Modulus

Brickell proved [22, Theorem 1] that there exists an ideal secret sharing scheme for a 
multilevel access structure over GF(p)  if: -

p > ( £ - l )
n

£ - 1

It is easy to show that, in the construction by Algorithm 1, the above condition on size 
p can be removed.

Corollary 4.6 Let F be a multilevel access structure with £ levels. Assume further that 
the secret sharing scheme for  T is implemented by the sequence o f threshold schemes 
A i , . . . ,  A t; created according to Algorithm 1. That is, A{ is a (t{, threshold scheme. 
Thus, the lower bound o f p in our scheme is given by p > T i

Now we give a simple assessment of the required lower bound for p in our scheme. 

From equation (4.5), since tt <  Ni, we have J2)=i Tj <  Yfj=i Nj (* =  1 , . . . ,^) .  That 
is, in general T{ <  Ni and therefore Tt <  Nt. In other words the basic condition of the 
original Shamir scheme, that is,

p >  n

is sufficient to implement our scheme (since Nt =  n).

Remark 2 It is worth mentioning that, although our proposed multilevel secret sharing 
scheme and Brickell’s multilevel scheme[22] both are ideal, and therefore they have the 
same information rate, they are not equivalent. We observe the following:
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1. The secret space, 1C =  GF(p) ,  is fixed beforehand and the dealer must select the se­

cret from this space. Clearly, for  every p in which Brickell’s construction generates 
an ideal scheme, our scheme does so. However, for  all values

(e - v { e n- i j > p > n

our system produces an ideal scheme, but Brickell’s does not.

2. The secret space, 1C =  GF{p) ,  is chosen by the dealer. In this case, the dealer 
o f our scheme can select considerably smaller values for  p (compared to Brickell’s 
scheme). Hence, the shares in our scheme, in general, are smaller than the shares 
in Brickell’s scheme.

4.6 Secret Sharing in Compartmented Groups

The notion of compartmented secret sharing was introduced by Simmons [154]. In com­
partmented ti-ont-oï-ni secret sharing schemes there are several compartments each con­
sisting of Ui participants. The secret is partitioned in such a way that its reconstruction 
requires the cooperation of at least t{ participants in some, or perhaps all, compartments. 
Consider the example presented by Simmons in [154]. Let two countries agree to control 
the recovery of the secret (which may initiate a common action) by a secret sharing 
scheme. The secret can be recreated only if at least two participants from both countries 
pool their shares together.

Simmons [154] discussed the construction of secret sharing in compartmented groups 
with particular access structures. Brickell [22] studied general secret sharing in compart­
mented groups and proved that it is possible to construct ideal secret sharing schemes 
for any compartmented access structure". In this section, we present an efficient solution 

to this class of secret sharing schemes.

4.6.1 The Scheme

Let the set of participants F  be partitioned into t  disjoint sets . . . ,  Vi. The compart­

mented access structure F is defined as follows.

D efin ition  4.2 A subset A  C V  belongs to the access structure F if:

1. |A  fl Vi\ >  U for  i — and
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2. \A\ >  t where t >  Yfi=i ti­

The number o f participants in different compartments and integers t, ti ,  - •. ,ti determine 
an instance o f the compartmented access structure.

We consider two distinct cases.

Case t =  E L i U

In this case the access structure is:

r = {A Ç V | \AC\Vi\ > ti for i =  1, . . . ,  £} (4.6)

A trivial solution for the above access structure is as follows. The dealer simply chooses 
£ — 1 random values c i , . . . ,  q _ i from elements of GF(p),  and defines a polynomial,

k (x ) =  K  +  C\X +  . . .  +

The secret K  =  k(0) and the partial secrets ki =  n{i) for i =  1 , . . . , A  The dealer 
constructs a Shamir (ti^nf) scheme for each compartment i. The schemes are indepen­
dently designed and the scheme in the i-th compartment allows recovery of the partial 
key ki. The collection of shares for all compartments are later distributed securely to 
the participants. Obviously, if at least U participants of the ¿-th compartment pool their 
shares, they can reconstruct the partial secret ki. A group of fewer than ti collaborating 
participants learns absolutely nothing about k{. Thus, the reconstruction of the secret K  
needs all partial keys to be reconstructed by at least ti participants in each compartment 
i (i =  1

This solution was also proposed by Brickell [22]. However, prior to the results de­
scribed here, no efficient solution has been proposed for a general compartmented access 

structure in which t >  Ŷ i=\ ti-

Case t >  Yfi=i U

The corresponding access structure is:

F  =  { A C V  | \A\ > t ,  \ A n  Vi\ >  ti for ¿ =  1, . . . , ^}  (4.7)

Let T =  t — Yli=i ti. The secret sharing scheme for a compartmented access structure T 

is designed according to the following algorithm.

Algorithm 2 -  a (£,-, i =  secret sharing scheme.
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1. Choose £ — 1 random values c1?. . . ,  q _ i £ GF(p)  and define the polynomial,

f t# )  — K  -f" Ci# -f-. . .  T  h

The secret K  =  « (0 ) and the partial secrets ki =  ftz) for i =  1 , . . .  , £

2. Select randomly and uniformly U — 1 values a . . . ,  aiM_ i  from GF(p)  correspond­
ing to each level z, i =  1 , . . . ,

3. Choose randomly and uniformly T  values f t , . . .  ,/?r from GF(p ),

4. Determine a sequence of £ polynomials,

f i (x)  =  k{ 4- \X +  • • • +  a iji-i # il 1 +  f t # il +  • • • +  0TXtl+T 1

for every level i.

5. Compute shares for all compartments, i.e. sîj?î- =  /»(#,-• |t-) for j  =  1 , ...,n*- and 
i =  1 , . . .  ft  (n; =  17̂ *-1 ) and send them securely to the participants.

4.6.2 Security of the Scheme

The following theorem demonstrates that secret sharing schemes obtained using Algo­
rithm 2 are perfect.

Theorem 4.7 The secret sharing scheme obtained from Algorithm 2 for  a compart­

mented access structure F o f the form given by equation (4-7) is ideal and perfect and 
allows recovery o f the secret only if the set o f cooperating participants A  € F.

Proof. (Sketch) First we prove that if A  £ T, then the participants from A  can recover 
the secret K . Note that to determine the secret AT, each compartment needs to recover 

its associated partial secret ki.

Since A  £ T, there must be at least ti collaborating participants from each com­
partment. Let the actual numbers of collaborating participants be ou , . . . ,  at, such that 

ai >  ti and J2i=i a i >  L The combiner who collects all shares from participants in A
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can establish the following system of linear equations:

ki + H----h d i f o - i x 1*'!1 + P ix ]\ tl H--- h p T X i11jLT ~1 = 5ü,l

, h  +  ai,i®tai>i H--------h +  Pix Yai,i H--------h 1 =  ^ ai,iM + T - l

h  +  ü£tiXilti H--------h H--------f pTxffj —

kt +  H--------1" ai,ti-ixYat\ +  PixY 1 H--------h 1 =  s%a„tti M + T - l  _

In the above system of equations, t{ unknown coefficients ( j  =  1, ...,£*• — 1) are
associated with compartment z, i =  1 , . . . , T  The T  unknown Pi are common in all 
equations. Since we have at least t equations with t unknowns, the system has a unique 
solution. Knowing partial secrets the secret K  can be recovered.

Assume that A  ^ T. Then there are two possibilities. The first possibility is that there 
is a compartment i for which a t- <  This immediately implies that the corresponding 
partial key k{ cannot be found. The second possibility is that all >  ti, but Yf%=1 &i < t .  
This precludes the existence of the unique solution for /A , . . .  ,/?t .

4.6.3 The Lower Bound on the Modulus

Brickell showed that [22, Theorem 3] there exists an ideal secret sharing scheme for a 
compartmented access structure over GF{jp) if:

' T J
where n and t are the the same as in our scheme. In our proposed scheme, independent 
Shamir schemes are constructed for every compartment. Since U +  T <  n, it is easy to 

derive the following corollary.

C oro lla ry  4.8 Let Y be a compartmented access structure with £ levels and n =  \V\ 
participants. Then there is an ideal secret sharing scheme for Y over GF(jp) if:

p > n.

That is, to construct our secret sharing scheme in compartmented groups no additional 

conditions need to be satisfied.

R em a rk  3 With similar arguments (see Remark 2 in Section f-5.4) our proposed scheme 
fo r  secret sharing in compartmented groups has advantages over Brickell’s scheme.
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Contents

The main consideration of this part of thesis is society-oriented cryptographic systems, 
which is the application of secret sharing schemes in cryptography. It consists of Chapters 
5, 6 and 7.

The first chapter of this part, Chapter 5, considers the principals of modern crypto­
graphic algorithms. In spite of the fact that all existing cryptographic algorithms are 
based on computations in finite algebraic structures, it is shown how the concept of 
floating-point arithmetic can be used in the construction of cryptographic algorithms. 
This chapter presents two novel cryptographic algorithms which apply transcendental 
numbers.

In Chapter 6 threshold cryptographic systems are discussed. The concept of society- 
oriented cryptography and the implementation considerations of such systems are stud­
ied. Threshold cryptography and the well known public-key based threshold decryption 
systems are reviewed. Generalised threshold cryptographic schemes is discussed and a 
cryptosystem for hierarchical groups is presented. This chapter also discusses the con­
cept of threshold digital signatures. Some well-known approaches to the construction 
of threshold digital signatures, namely threshold RSA digital signatures and threshold 
ElGamal-type digital signatures are discussed. A particular RSA-type shared generation 
of signatures, the so called Boyd’s scheme, is reviewed and an improvement of the system 

is discussed.
Chapter 7 is devoted to the group-oriented cryptographic systems. A related work 

on this area is studied and a general model for constructing such systems is presented. 
Group-oriented cryptosystems based on public-key and private-key cryptosystems are 
presented. Also a self certified group-oriented cryptosystem that works with no help of 

a combiner has been introduced in this chapter.

8 1



Chapter 5

Cryptography

Modern cryptography deals with integers only; this principle is widely accepted in the 
cryptographic community. Floating-point arithmetic is never used in cryptographic al­
gorithms. In this Chapter, two classes of transcendentals are applied to construct novel 
encryption algorithms. . .

5.1 Transcendental Numbers Based Cryptography

Without exceptions, all cryptographic algorithms are based on computations in finite 
algebraic structures (e.g., groups, rings, fields, and vector spaces). The results of these 
computations are always exact -  no rounding or approximation is involved. On the 
contrary, a single-bit error in the input of any cryptographic algorithm generates an 
unintentional result.

In [132] we described a new and efficient algorithm for the multiplication of floating­
point numbers. We suggested two secure pseudo-random bit generators based on tran­
scendental numbers. These two classes of transcendent als are applied to construct novel 

encryption algorithms.

5.1.1 Introduction

The operational disadvantages of perfectly secure stream cipher cryptosystems (e.g. the 
one-time pad cryptosystem) which apply truly random sequences as the keystream, have 
led to the development of practically secure stream cipher systems [138]. The strength 
of such stream cipher cryptosystems depends on the security of their keystreams. Hence, 
the main challenge in stream cipher design is to produce sequences that appear random. 
Since such sequences are not truly random they are called pseudo-random sequences.

82
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Classical pseudo-random generators are deterministic algorithms with well known math­
ematical structures that output numbers or binary strings which “appear” random1.

A number of pseudo-random generators have been proposed in the literature, several 
of those have been broken (for example see [116], [139], [140], [153], and [76]). The 
common characteristic of these generators is that they produce periodic sequences. Al­
though the period of the sequence is long, and in practice the whole sequence will not 
be generated, this makes the sequence vulnerable.

Here we propose a method for the generation of pseudo-random sequences based on 
the expansion of irrational numbers. In contrast to the conventional pseudo-random 
generators our method produces non-periodic sequences.

5.1.2 Notations and Definitions

In this section we provide the reader with a collection of basic terms and definitions 
which are used throughout this chapter.

The decimal representation of a rational number is either finite or periodic. By con­
trast the decimal representation of every irrational number is infinite and non-periodic. 
Real numbers satisfying an equation of the form:

f ( x )  =  a0 +  cl\x  +  . . .  +  a dx d =  0

with integral coefficients, are either integers or irrationals. Such numbers are called 
algebraic. Irrational numbers which satisfy no such equation are called tran scen d en ta ls.

An attractive feature of real numbers is that they can represent any (infinite or finite) 
sequence of integers. Consider an experiment in which an unbiased coin is flipped an 
‘infinite’ number of times. It is clear that the resulting random sequence is equivalent to 
some real number. Obviously, this sequence (the real) must not be either a rational or 
algebraic number, as in both cases a finite subsequence uniquely determines the rest of 
the (infinite) sequence. All infinite sequences of truly random integers fall into the broad 
class of transcendental. Algebraic irrationals may look ‘random’ but their ‘randomness’ 

is limited to a finite subsequence.

Definition 5.1 [2] A s s u m e  a < b .  T h e c lo sed  in terva l [a,6] is the s e t  { x  \ a <  x  <  &}.

Definition 5.2 [54] A  m ea su re  o n  a s e t  X  is a m a p p in g  (i f r o m  th e s e t  o f  su b sets  o f  X  

to  in terv a l [0 ,1 ] ,  w hich  s a tis fie s :

1The importance of random and pseudo-random number generation in Cryptology is discussed in 
[148] and [173].
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(i) n ( X )  =  1;

(ii)  i f  y  =  U.guXj is a d is jo in t u n io n  a n d  y  € X , th en

t*(y) = £/*(*;)>
i£oj

where lo denotes the set of all non-negative integers.

Definition 5.3 [123] A  s e t  IZ  o f  real n u m b ers  is sa id  to  h a ve the m ea su re  zero  i f  it is 

p o ssib le  to  c o v e r  th e p o in ts  o f  IZ w ith a s e t  o f  in terva ls o f  a rb itra ry  sm a ll to ta l length.

As an example, the set of natural numbers has the measure zero. When the integer 
1 is enclosed in the interval [1 — |, 1 +  |], the integer 2 in the interval [2 — |, 2 +  J], • • •, 
and in general the integer i in the interval [i — +  f ;\,  the natural numbers are covered
by intervals of total length e J J -b * * • — 2e, which can be made arbitrarily small.

Theorem 5.1 [162] E v e r y  c losed  in terva l [a, 6] is a m easurable se t .

Definition 5.4 [169] A  fu n c tio n  f ( x )  is sa id  to  s a tis fy  a L ip sc h itz  co n d itio n  o f  o rd er  m  

o n  the c lo sed  in terva l [a, 6] i f  th ere is a c o n sta n t c su ch  that

1/ 0*2) “  /0*i)| < c \x 2 ~  x x \m 

f o r  all va lu es o f  X \ ,  X2  € [a, 6].

Theorem 5.2 (Approximation) [162] I f  f ( x )  is c o n tin u o u s  in the c losed  in terva l [a,b]  

a n d  e  is a n y  g iv e n  p o s itiv e  n u m b er, th ere ex ists  a p o ly n o m ia l g ( x )  su ch  that the inequality

\ f ( x )  - g ( x ) \  <  £

is sa tisfied  th rou g h ou t th e in terva l [a, b].

Consider a quadratic equation a x 2 +  bx  +  c (a ^  0). Let d  =  b2 — 4a c  be a positive 
integer which is not a perfect square. Then the root of the above quadratic equation is 

a qu adratic irra tio n a l n u m ber. That is,

(6 +  y/d)
a  =  — -------

2a

is an example of quadratic irrational numbers.

Definition 5.5 [3] A  D io p h a n tin e  eq u a tion  is an eq u a tion  in o n e  o r  m o r e  u n kn ow n s  

w hich  is to  be so lv e d  f o r  integral va lu es o f  th e u n k n ow n s.
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For example, the primitive solutions, in non-negative integers, of the Diophantine 
equation,

x 2 +  2 y 2 =  z 2

are given by x  =  =b(r2 — 2s2), y  =  2r s  and z  =  r2 +  2s2, where x  > 0 and r and s are 
non-negative integers, such that gcd(r, 2s) =  1.

5.1.3 Binary Sequences from Expansion of Irrational Numbers

Assume we have a random generator which allows us to select an irrational number, 
randomly with a uniform probability distribution, from the interval [0,1]. We now discuss 
whether the binary expansion of these selected irrational numbers can be used to generate 
(at least in principle) random sequences.

-Lemma 5.3 T h e re  is at lea st o n e  irra tio n a l n u m b er  in w h ose b in a ry  ex p a n sio n  the fin ite  

b in a ry  seq u en c e  W  — Q.W\W 2 • • • W j occu rs.

Proof. The sequence W010010001. . . ,  is an infinite non-periodic sequence which 
contains the sequence W .

Theorem 5.4 T h e re  are in fin ite ly  m a n y  irra tion a l n u m bers in w h o se  b in a ry  ex p a n sio n s  

th e fin ite  b in a r y  seq u en c e  W  =  Q.W 1W 2 • • - W j occu rs.

Proof. Assume that there are a finite number m  of irrational numbers whose binary 
expansions contain the sequence W . Extending W  by just one bit gives two different 
sequences W  || 0 and W  || 1. Thus extending W  by i bits gives 2* different finite length 
sequences (each of length j  +  ¿). We choose an i such that 2* >  m . Hence, there is a 
finite length sequence which can not appear in the binary expansion of any irrational 

number, a contradiction to Lemma 5.3.
We say that a random bit generator passes the stro n g  n ext bit te s t  if the first j  

consecutive bits do not provide any information about the ( j  +  l)-th bit (where j  is an 

arbitrary natural number).
We show that the binary expansion of irrational numbers passes the strong next bit 

test.

Theorem 5.5 T h e  b in a r y  ex p a n sio n  o f  irra tio n a l n u m b ers  p a sse s  the stro n g  n ex t bit 

te st .
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Proof. Let Qq, 02, • • •, be the first j  bits of the binary expansion of an irrational num­
ber and let the rational number b =  O.aqol<i • • • otj be an approximation of all irrational 
numbers whose binary expansions begin with sequence oq, « 2, • • •, aq (there are infinitely 
many such irrational numbers). Clearly, those irrational numbers that produce zero as 
the next bit, belong to the interval Tq =  [6, b +  2“ k'+1)]. Let 7 =  otu a 2, • • •, oq, 0, • • • be 
one such irrational number. No matter what the bits following 0 are, the value of this 
irrational number is greater than b but less than b +  2_(-7+1) and hence 7 € 2o-

Irrational numbers of the interval I q generate the sequence oq, • • •, o^, 0. For any
3+1

irrational number j3 € Tq the irrational number (/3 — b) has the expansion 0.00 • • • 0 • • • 
(but not all zeros, since it is an irrational number). Hence the binary expansion of fd is 
of the form:

3 +1
oq, « 2, • • * .oq, 0, • • • +  0. 00 • • • 0 • • • =  aq, a 2, • • •, aq, 0, •••.

This proves that To contains the set of irrational numbers of the form o q ,• • •, oq, 0,••• 
Similarly, it can be shown that all irrational numbers which generate one as the next bit 
belong to the interval T\ =  [b +  2~^+1\ b +  2" J'], and vice versa.

We assume that the set of real numbers with initial sequence aq,a;2,
• • •, aq is uniformly distributed. Then the probability that oq+i is zero, given the knowl­
edge of aq, « 2, • • •, Qjj, is the measure of the set 2o, which is Likewise, the probability 
that ctj+i is one is Hence, the probability of either bit occurring is the same and
this completes the proof.

How to Implement a Random Selection of Irrationals?

All truly random sequences have to be among the irrationals. This phenomenon is related 
to a well-known property of reals. The set of all reals R, can be split into the subset of all 
rationals, Q, and the subset of all irrationals, I. The cardinality of the rationals, however, 
is |Q| =  N0 and they are equinumerous with natural numbers. On the other hand, the 
cardinality of all irrational numbers is |I| =  2^°. That is, the set I is equinumerous with 
the interval [0,1], and as a matter of fact with any interval [a, 6]; a, b E R, a < b. Cantor’s 

theorem [54] gives that N0 <  2K°.
If there is a measure p which assigns a positive real to a measurable subset from the 

interval T  =  [0,1] with the condition that p(T) =  1, then the measure of any subset of 

rationals in T  equals zero.
A possible solution is to flip an unbiased coin an infinite number of times. Clearly this 

is not a practical solution. Moreover, if the selection of irrationals is to be done within
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a limited period of time, we need to use a finite number of indices to mark all possible 
irrationals. Then we can randomly choose an index and use the corresponding irrational. 
This gives a practical irrational number generator whose security is determined by the 
size of the index. From an attacker’s point of view, who sees polynomially many output 
bits, this is equivalent to the difficulty of finding the selected irrational number from its 
approximation. This brings us to the well-known problem of designing pseudo-random 
bit generators (PBG).

Pseudo-random sequences have to satisfy the following conditions:

1. they have to be generated ‘easily’ ,

2. they have to be indexed by a finite seed which is selected randomly and uniformly 
from all possible values of the seed (or index),

3. they have to pass the next bit test, i.e., it is computationally infeasible to determine 
the ( j  +  l)-th  bit from the sequence of j  polynomially many bits.

5.1.4 Weak Irrational Numbers

A particular subset of irrational numbers is the set of algebraic irrationals. This subset 
of irrationals can be efficiently indexed using coefficients of their minimal polynomials. 
Hence, the resulting sequences are not secure.

An algebraic irrational can be generated by randomly selecting a minimal polynomial
f ( x )  =  do +  d\x -f d2x 2 -|------- K o,dXd and one of the d roots. The polynomial and the root
uniquely define the irrational a. The security parameters of such a generator is the pair 
(d, H ) where d is the degree of f ( x )  and H  is the height of / (# ) ,  that is, all coefficients 
di (i =  1, . . . ,  d) are selected from the set of integers from the interval [—H, H]. Kannan, 
Lenstra and Lovasz [92] have shown that given the knowledge of the first polynomially 
many bits of an algebraic number, that number can be determined (i.e., its defining 

polynomial can be identified).
They use the LLL-algorithm [104] to efficiently determine the minimal polynomial 

f ( x )  of an algebraic irrational a  from its approximation a. More precisely, their method 
(the KLL attack) identifies, in polynomial time, the polynomial f ( x )  given the first 
0(<P +  dlogH ) bits of the binary expansion of the algebraic number. Since we as­
sume that both parameters d and H  are known to a potential cryptanalyst, the binary 
expansions of algebraic irrationals are not secure pseudo-random sequences.

Observe that if the minimal polynomial is restricted to binomials f ( x )  =  do +  x d, the 
KLL attack can identify the irrational from a sufficiently long sequence of consecutive
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bits (which do not necessarily start at the beginning). Since a sufficiently long sequence 
of consecutive bits pinpoints the unique irrational with its minimal polynomial g(x) =  
b o b \ x  &2*£2 T * — hbdXd, the polynomial g(x) can then be reduced to the corresponding 
binomial f ( y )  by applying the transformation x =  y +  N, where N  is an integer. Note 
also that if the analysis of bits in the KLL algorithms does not start from the beginning of 
a number, the parameter H  increases. However, this has a negligible impact on efficiency 
of the algorithm for ‘reasonable’ values of N.

The approximation described in [92] extends to certain classes of transcendental 
numbers. Examples of such numbers are: cos-1 (a ), sin-1 (a) and log(a) where a  is 
an algebraic irrational. This follows from [92, Theorem 2.3]. We examine closely the 
hypothesis of this theorem.

The assumption that there is a complex valued approximable function /  which sat­
isfies the uniform Lipschitz condition, is central to the hypothesis of [92, Theorem 2.3]. 
Examples of such functions are: sin (z ), cos(z). Kannan et al. have extended their algo­
rithm to this setting. The [92, Theorem 2.3] states that there is an “efficient” algorithm 
which takes as input such a function / ,  parameters (d,H), a complex number /?, and 
outputs a complex number f3 which is approximated by ¡3, and an algebraic number 
f(/3) of degree at most d and height at most H. The assertion about the transcendental 
numbers cos-1 (a ), etc., follows from this theorem.

5.1.5 Transcendentals Immune to the KLL Attack

It is obvious that algebraic irrationals should be avoided as they can be “easily” identified. 
The class of transcendentals looks like the only choice. To avoid the KLL attack we 
should choose transcendental numbers not of the type / -1 (/?), where /  and ¡3 satisfy the 
hypothesis of [92, Theorem 2.3]. We will consider two classes of transcendental numbers 
which seem suitable for cryptographic applications.

Class 1 - Simple exponentiation. Consider irrationals of the form a^, where a  is 
a positive integer ^  0,1 and /3 is a real quadratic irrational. They are known 
to be transcendental [5]. In particular 2 ^ , are transcendental. Moreover, 
transcendental numbers of the type oP cannot be determined with the help of 
[92, Theorem 2.3] as long as a  and ¡3 are not revealed. Hence we propose to 
use the binary expansions of numbers of the form cxP, as “secure” pseudo-random 
sequences. Both a  and ¡3 are kept secret and create a seed (index) of the pseudo­

random number generator.
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Class 2 - Composite exponentiation. For our second class we require a theorem of 
Baker [5]. It is proved that numbers of the form o f 1 .. . a fn, such that: a t- ^  0,1 
and pi are algebraic, and l ,P i . . .  ,Pn are linearly independent over the rationals, 
are transcendentals. The simplest numbers of this type have the form 
where pi =  y/m, P2 =  y/n and m ,n  are natural non-square numbers such that 
mn is a non-square. We take these numbers as our second source. It is easily 
shown that if mn is a non-square, then 1, pi and P2 are linearly independent over 
the rationals. Hence for such pi, a^a^2 is transcendental. An example of these 
numbers is 2 ^ 3 ^ .  Clearly, the numbers oq, . . . ,  an, Pi, . . . ,  pn need to be secret 
and constitute a seed (index) of the pseudo-random number generator.

5.1.6 Encryption Primitives Based on Transcendentals

We can-use transcendentals of the form a& for encryption in at least two ways. In stream 
cipher mode, the binary sequence generated by the expansion of the transcendental is 
used as a pseudo-random sequence and is XORed bitwise with the binary representation 
of the message. That is, an n-bit message M  =  is encrypted to C =

( c i , . . . , c n) where C{ =  mi © rt- and rq is the ith bit of the string R =  (rq,. . . ,  rn), 
generated from the expansion of transcendentals of either Class 1 or 2. To decrypt a 
message the receiver needs to know the seed of the PBG, which is used to recreate the 
pseudo-random string R. For a known-plaintext attack, encryption is as secure as R (if 
the system is used once only). We note that unpredictability of R (passing the next-bit 
test) is not proven but we do not know of any algorithm which can predict the next bit 
of the sequence either.

We consider now another approach to encryption. Let the message space be M. =  Z jv- 
The following notation is used. If there are two irrationals 7 and 6, then an equation 

7 =  S means exact equality. We write 7=5  if I7 — <$| < 10-s .
The basic encryption/decryption algorithm is defined as follows. Let K  =  (ol,P) 

be the cryptographic key, where a  £ Z and P is a quadratic irrational from the set 
ij/ =  {y/H | u e Z N}  and u is square free. The cryptogram is generated as

C = (M  +  a)P. (5.1)

Cryptograms are positive rationals which are approximations of transcendentals. Both a 
and P are chosen according to the requirements for Class 1 transcendentals. The security 
parameter of this scheme is the number of different keys which can be used (or the size 
of the key space 1C). The size of the key space, however, relates to the sizes of the spaces
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from which the pair a  and fd is chosen.

In order to decrypt the cryptogram, the reverse operation is applied, that is,

M = d  -  a .

Hence, the message M  can be recovered from the cryptogram, since it is an integer which 
can be determined from the s-place approximation of C.

Proposition 5.6 The encryption scheme defined by equation 5.1 has the multiplicative 
property for a given pair (a, fd) whenever the the following Diophantine equation has a 
solution

(M i +  M2) +  o  =  l.

Since the messages and the key a  are always positive integers, it follows from Propo­
sition 5.6 that the encryption scheme defined by-5.1 is never multiplicative.

5.1.7 Attacks on Class 1 Sources

In a ciphertext only attack, the attacker knows only the ciphertext blocks and is required 
to find the plaintext (or the key). Using the equations which describe the system, the 
cryptanalyst must derive a  and f3 from the following set of equations in which the M f  s 
are unknown.

C\ — (M i +  a)^

C2 =  (M2 +  a f

c t =*= (M t +  a)P

This might seem impossible as the number of equations is always smaller than the 
number of unknowns. However, properties of ofi might help a cryptanalyst to draw some 
conclusions about the value of the key. In particular, for a sufficiently long sequence of 
cipher blocks the enemy can use the monotonicity of to order the cipher blocks and 
use three consecutive values to solve for a, [d and Mi. That is, to solve,

Ci ^  (M i +  ay3,

C2 — (M i +  1 +  <2)^,

C3 =  (M i +  2 +  a)^.
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This can be repeated for a number of triplets Cj and Ck that are likely to correspond 
to consecutive message blocks.

Next, we outline a plaintext attack on the system defined by 5.1. In this situation, 
the attacker knows both the Mi s and C{ s in the above set of equations.

Let (C i, M i) and (C2, M2) be a pair of known plaintexts/ciphertexts. Then we have,

log Ci =  /?(log (l +  a/Mi) +  log M i), 

log C2 — /^(log (1 +  ql/M2) +  log M2).

Now, we will assume that |a/M| <  1 for any key/message pair (a, M ).
We can approximate l o g ( l - f  a/Mi) and log( l  +  a /M 2) as polynomials P(a/M i) 

and Q(a/M 2), by taking a sufficient number of terms in the power series expansion of 
log (1 +  x). With the remainder, a known function of £, we obtain the approximations,

log Ci «  - / ? (P (a /Mi )  +  logM i), 

log C2 «  fi(Q(a/M 2) +  log M2).

By dividing these two expressions we can eliminate ¡3. Now one obtains a polynomial 
in a  with known (approximate) coefficients. This can be solved for a  and determined 
exactly, since a  is an integer. Having the a, one can check if the approximation to 
log (1 +  a /M i) and log (1 +  a/M2) by polynomials was sufficiently accurate. If not, more 
terms of the approximation are taken, until the required degree of accuracy is achieved.

This process yields a number of possibilities a i , . . .  ,a r (roots of a polynomial) for 
the key. But the correct a  can be determined by comparing (Ci, M i) with respect to the 
possibilities a i , . . . ,  a r. Once the correct a  is known we can obtain an approximation for 
¡3 from the pair (Ci, M i). Now we use the KLL algorithm to determine f3 from ¡3.

5.1.8 Encryption Based on Class 2 Numbers

For Class 2 numbers we can, without loss of generality, use composite exponentiation of 
the form of^a^2. The secret key is K  =  (a ii,a2, f3\,(32). Encryption is defined by,

C = a f 1 x (a 2 +  M f 2. (5.2)

Decryption, firstly, involves the division of the cryptogram C  by a f 1, further processing 

is the same as in the previous case.
Since a f1 is fixed, the generator is subject to the attacks applicable on Class 1 sources. 

In particular, observing a long sequence of cryptograms allows the enemy to choose cryp­
tograms that correspond to consecutive plaintexts. In this case, the following equations
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have to be solved,

c ! ±  K (M 1 + a f ,

C2 =  K (M 1 +  l + a ) 13,

C3 =  K iM r +  2 +  a )13,

C4 =  K {M 1 +  Z +  a f .

The above two schemes have a common characteristic -  they are subject to the cluster 
attack. This follows from the property that if the distance d(M , M ') is small, then for 
the corresponding cryptograms, d(C, C ’) tends to be small. The same observation is 
applicable for the key. To fix this problem, we can apply several encryption iterations 
each with the form of either 5.1 or 5.2. As a matter of fact, two iterations are enough. 

There is however a better solution, which we describe below.

An Alternative Algorithm * 7

For an irrational 7 =  6162̂ 3 • • • , we denote,

7 |f— 1̂̂ 2 • • • bt.

7 |t is a rational, which is created from the irrational 7 by truncating all digits after the 
t-th position. For an irrational 7 £ I and any pair of positive integers t and 5 (t < 5), 

we define 7 |* as,

7 l?= 7 1« - 7  11 •

For example, if 7 =  a i<22 . . .  then,

7 \\= aia2a3a4 — a\a2 — a3a4,

That is, 7 12 holds the digits of 7 in positions 3 and 4. We consider 7 |f as subsequence 
of digits from t +  1 to s. It can also be treated as an integer or a rational (the decimal 

point can be placed arbitrarily).

Encryption

A third alternative for the encryption algorithm, is to encode the message in a one-to-one 
way into the minimal polynomial of a random quadratic irrational. Denote this as [3m ; 
so as long as M  is not a square and odd integer, /3m  is a root of x 2 — M  =  0. Next select 

a sufficiently long subsequence (3M \\\ from (3M- The cryptogram is,
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C =oP M$ .  (5.3)

Note that, the subsequence /3m  \t\ must be selected long enough such that the KLL 
algorithm can pinpoint the unique irrational number /3m  from analysing its subsequence. 
As mentioned in Section 5.1.4, if the analysis of bits in the KLL algorithms does not 
start from the beginning of a number, the parameter H  increases. Hence, the length 
of the subsequence /3m  \tl from (3m  depends on the value of t2 (the starting position to 
select a subsequence).

Decryption

For decryption, the receiver, who knows a, retrieves the sequence /3m  \tl and uses the 
KLL algorithm to find the minimal polynomial and the message M.

Note. This-method of encryption creates many different cryptograms for the same 
message if the subsequence /3m  \t\ 1S selected from different places, so the cluster and 
approximation attacks are not applicable.

5.1.9 Efficiency

First, let us consider the problem of generating the expansions of algebraic irrationals. 
This problem can be restated as the well-known problem of root-finding of a minimal 
polynomial (the algebraic irrational is a root of some f ( x ) ) .  Newton’s method, and its 
modifications such as the secant method, gives a very efficient algorithm whose time 
complexity function is 0 (n )  where n is the degree of f ( x )  and the underlying computer 
has fixed precision floating-point arithmetic (see any standard book on numerical analysis 

such as [172],[28],[94]).
We would like, however, to select the precision parameter as an argument of the algo­

rithm. In this setting the best known algorithm, called the splitting circle method [146], 
runs in time bounded by 0 (n 3 log n +  an2) log (an) loglog(an), where n =  deg( f (x ) )  and 
a represents the required precision of computations (the expected error has to be smaller 

than 2- s ).
To generate a pseudo-random sequence (of Class 1 or 2), one has to use floating-point 

arithmetic with arbitrary precision. This facility is available with mathematical packages 
such as Maple or Mathematica. The requested precision automatically determines the 
length of the generated pseudo-random sequence. We experimented with Maple and 
generated transcendentals of both classes. On average, it took 10 minutes to produce a
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pseudo-random string of length 30 Kbits. Obviously dedicated algorithms will generate 
pseudo-random sequences significantly quicker.

5.1.10 Security Considerations

Assume that A  is a subset of positive integers and B is a subset of algebraic numbers. 
Class 1 transcendentals are indexed by two functions. The first, Ta : { 0, l } na —> A , 
assigns a positive integer a  £ A  to a binary string of length na. The second, Z@ : 
{0, l } n/3 —> B , assigns an algebraic number ¡3 £ B to a binary string of length np (or 
equivalently its minimal polynomial). We can apply the KLL algorithm to identify the 
transcendental T =  oP. Note that T  is identified if both a  and /3 are found from a 
sufficiently long sequence of bits of T. Our identification algorithm is the following. 
First randomly select a* £ A  and calculate

‘ P  =  log«, T .

The KLL algorithm is used to determine ¡3'. This attack succeeds if a ' =  a, for then 
the KLL algorithm will identify the irrational algebraic number from the approximation 
of ¡3. The complexity of this algorithm is 0 (2 napKLL(np)), where Pk l l (^p) is the time 
complexity function of the KLL algorithm required to identify the algebraic number (3.

Proposition 5.7 The parameters a  and ¡3 o f Class 1 transcendentals can be identified 
by an algorithm whose time complexity function is

Pdassi(n) <  0 (2 Tla~1pKLL(np)) .

For certain indices U(f3) =  is multiplicative, i.e., satisfies the equation U(/3\ • P2) — 
U(/3i) • U(p2). If Pi and p2 are such that U(Pi -/?2) =  U(pi) • U(/?2), which holds whenever 
Pi- P2 =  Pi + /?2, then an adversary who could determine a polynomial fraction of the key 
pairs (a, P) of Class 1 numbers from their approximations in polynomial time could also, 
using the multiplicative property, determine all such key pairs in random polynomial 
time (Rivest makes this remark about RSA in [137]). The condition under which U(P) 

is multiplicative is the following.

Proposition 5.8 Let Pi =  y/rn and p2 =  y/n be two real irrationals, then U(Pi • P2) =  
U(pi) • U(P2) is equivalent to the solution o f the Diophantine equation

(ran)2 +  m2 +  n2 =  2mn(l +  m +  n).

An easy argument using Proposition 5.8 gives that the necessary condition for U(P) 
to be multiplicative is that m and n are even positive integers. Hence, we should avoid 

these indices when using Class 1 transcendentals.



Chapter 6

Threshold Cryptography

This chapter deals with threshold cryptography. More precisely, it concerns threshold 
decryption and threshold digital signature schemes.

In Section 6.1 we give an introduction to society-oriented cryptography. Threshold 
cryptography will be considered in Section 6.2. In Section 6.3 we study the ElGamal and 
RSA based threshold decryption systems. Generalised threshold cryptosystems will be 
discussed in Section 6.4. In Section 6.5 we present a solution to deciphering a cryptogram 
in hierarchical groups. Section 6.6 is devoted to the consideration of threshold signature 
schemes.

6.1 Society-Oriented Cryptography

Groups play an important role in our modern world. Numerous examples of groups 
(e.g., banks, companies, the board of directors of a company, the administration of a 
university, and so on) can be found in all countries around the world. Groups may have 
different structures. Democratic groups usually exhibit a flat internal structure where 
every member has the same rights, while in hierarchical groups privileges of members 
depend upon their position in the hierarchy. No matter what structure the group has, 
a common aspect of almost all groups is that their roles directly relate to the function­
ality of their organisation. That is, the functional aspects of groups are independent of 
their members. This is the reason why letters addressed to a group usually start with 
some well-known and common expressions like “Dear Sir/Madam” or “To whom it may 

concern” no matter who is in charge.
So, it is desirable that groups can decrypt a ciphertexts or can generate a digital 

signature on a document. Traditional private-key cryptographic systems and conven­
tional public-key cryptosystems, however, are adequate for the cases that there are two 
individuals in the system. Cryptographic transformations by a group of participants is

95
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the subject o f investigation in society-oriented cryptography.

The notion of society-oriented cryptography was introduced by Croft-Harris [42], 
Boyd [21] and Desmedt [45]. Unlike classical cryptography, society-oriented cryptography 

allows groups of cooperating participants to carry out cryptographic transformations. 
That is, society-oriented cryptography requires distributing the power of performing a 
cryptographic transformation among a group of participants such that only designated 
subsets, the so called authorised sets of the group, can perform the required cryptographic 
operation but unauthorised sets cannot do so.

6.1.1 Implementation Consideration

In general, cryptographic keys are not one-time secrets and they must be kept secret and 
reused many times. Hence, the trivial implementation of a society-oriented cryptographic 
system which requires the concatenation of a secret sharing scheme with single user 
cryptography is usually unacceptable as an authorised set of participants must first 
recover the cryptographic key, which compromises the system.

Ideally, one would require collaborating participants to apply their shares and perform 
the required cryptographic transformation at the same time. These results, also called 
partial results, are then sent to the combiner who calculates the final result. Note that, 
in some society-oriented cryptographic systems, cooperating participants first need to 
apply a function on their shares, and produce their modified shares, then use the modified 
shares to generate partial results. Since groups can exhibit different structures and richer 
relations among participants, implementations of such services become more complex for 

groups than for individuals.
It is worth mentioning that almost all implementations of society-oriented crypto­

graphic systems are based on public-key cryptosystems such as the RSA [136], the El- 
Gamal [55], or the Diffie-Hellman public-key distribution system [53]. There has been 
no attempt to base threshold cryptographic algorithms on symmetric cryptosystems like 

DES [122]. We observe two reasons for this.

1. Most existing implementations of society-oriented cryptographic systems are based 

on the concept of a homomorphic secret sharing scheme. The mathematical struc­
ture of the public-key cryptosystems are adequate regarding the homomorphic 
property, but the nonlinearity property of the private-key cryptosystems does not 

allow definition of such a homomorphism.
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2. Although the necessity of the homomorphism property to implement a society- 
oriented cryptographic system has not been proved, symmetric cryptosystems are 
not suitable for this purpose. Assume that a bank wishes to use a symmetric 
cryptosystem based threshold system. In order to communicate with customers, 
it must possess separate cryptographic keys corresponding to different customers, 
otherwise, customers can read the messages communicated between the bank and 

other customers.

6.2 Threshold Cryptography

A particularly interesting class of society-oriented cryptographic transformations in­
cludes threshold cryptographic transformations with a group of n members. Examples of 
the need for threshold cryptographic transformations include the signature by a majority 
in a parliament, signing a document in a bank (e.g., when any two-out-of three senior 
tellers are allowed to authenticate an EFT), deciphering a cryptogram addressed to a 
company (when the intended receivers might have shared responsibility), and so on.

In a threshold cryptographic system, the groups authorised to perform a required 
cryptographic transformation consist of all subsets of t (or more) participants. Such 
schemes are called t-ont-oi-n threshold cryptographic systems or simply (t, n) threshold 
systems. So, the access structure of a (t ,n)  threshold cryptographic system can be 

expressed as:
T = { A C V  | |.4| > t },

where t , the so called threshold parameter, is an integer, t <  n. More precisely, in a (t , n) 
threshold system the power to perform a cryptographic transformation is divided among 
n members of a group, such that the following conditions are satisfied:

• any set of t or more participants can perform the required cryptographic transfor­

mation;

• any set of t — 1 or fewer participants are not able to perform the required crypto­

graphic transformation successfully;

• neither the group secret key nor the shares of collaborating participants can be 
derived from the group/partial cryptographic transformation.

Threshold cryptography was first, independently, introduced by Croft-Harris [42], 
Boyd [21] and Desmedt [45]. In [42] a (t ,n)  authorisation system was proposed. This
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system, however, is insecure for many applications. In [21] a (2, n) threshold RSA signa­

ture scheme was introduced. Although the threshold parameter of this system is fixed, 

it is not ideal, that is, the share assigned to each participant is larger than the secret key 

of the underlying RSA cryptosystem (indeed, no ideal threshold RSA cryptosystem has 
been proposed in the literature). In [45] different kinds of groups and their cryptographic 
needs are discussed. It is shown that in many groups the power to decrypt a cryptogram 
must be shared. The threshold decryption system proposed in [45], however, was based 
on mental games [75] and is therefore interactive and impractical.

6.3 Threshold Decryption

Messages are frequently dispatched to a group of people, e.g. a company. Let a group 
require that any t out of n members be cooperatively able to read the message. In 
[45] it has been shown that such a (i, n) threshold decryption does not satisfy different 
needs of a group at different times. For example, some messages are so urgent that 
every member of the group must be able to read them. On the other hand, there are 
confidential messages in which the cooperation of a majority of group members is required 
to decipher the cryptogram. There are many other needs that can not be accommodated 
by a simple threshold policy with a fixed threshold parameter. However, constructing 
different threshold systems to satisfy different needs of a group at different times requires 
assigning different public keys to the group, which is not a practical solution. Since the 
sender is the only one who knows the nature of the message, Desmedt suggests [45],

“the ideal solution would be that the sender of the information can add a 
few bits to the message such that these few bits enable the group to access 
the information using the method he has decided and no other one. This 
means the group has only to publish one public key and that it can be used 
in cases that all members have to access the information simultaneously as 
well as in case of emergency and all other possible cases (depending on what 

the sender decides).”

However, no such threshold cryptosystem has been constructed so far. The first attempts 

on designing threshold decryption systems [45] were based on mental games [75] and 
therefore completely impractical and interactive. The first practical and non-interactive 
threshold decryption system was introduced by Desmedt and Frankel [48]. Their scheme 

applies the ElGamal [55] public-key cryptosystem.
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6.3.1 Threshold ElGamal Decryption

Desmedt and Frankel [48] proposed a method in which an organisation can employ a 

(i, n ) threshold decryption system. That is, every message intended for the group can be 
deciphered if and only if a set o f t or more members of the organisation want to read the 
message. Their proposed threshold system utilises the ElGamal[55] cryptosystem and 
uses the Shamir (t , n) threshold security policy to determine who can read a message 
intended for the organisation.

The scheme is implemented in such a way that the cooperating participants do not 
need to reconstruct the secret. Instead, they perform the decryption algorithm (using 
their modified shares) and transmit their partial results to a designated combiner. If 
the cooperating participants belong to an authorised set, A ,  that is, \A\ > t then the 
combiner can obtain the correct plaintext.

In order to illustrate the implementation method of this threshold decryption, let K  
and k =  gK be the secret and public keys of an ElGamal cryptosystem and let C — 
(gr, M k r) be the cryptogram of a message M.  (see Section 1.5.2 for a description of the 
ElGamal public-key cryptosystem). We assume a secret sharing scheme can distribute 
the secret K  among a set V  =  { P i , . . . ,  Pn}  of n participants, such that for every set A

(\a \ >  t),

Y ,  Si =  K  (mod ¥>(p)),
Pit A

where Si is the modified share of participant Pi from the secret K . Each participant 
Pi E A  computes (gr )Si and transmits its partial decryption to the combiner. The 

combiner computes,

n  (<?T  =  ( s T +"'+s‘ =  {gr)K =  kr,
Pi&A

and hence recovers the message.
However, considering equation (3.2), this can be computed if ip(p) is a prime number. 

Since, for any prime number p, p >  3, the integer <p(p) =  p — 1 is not prime, Desmedt 
and Frankel [48] suggest performing the ElGamal system in GF(2£) for a large enough 

value of t  such that (p(p) -  p' =  2£ -  1 is a Mersenne prime.

Set-up Phase:

The dealer selects at random a polynomial of degree t — 1 and applies the Shamir (£, n) 
threshold scheme (over Z p/, where p' =  2£ -  1) in order to distribute the secret K  among 

the shareholders. That is;
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1. T> chooses n distinct and non-zero elements of Z p/, denoted . . .  , x n and sends 
X{ to Pi via a public channel,

2. V  chooses (independently at random) t — 2 elements of Z p, denoted a i , . . . ,  at- 2  and 
chooses (at random) an element at~i Zp/ — {0 }. Then he forms the polynomial

/ ( * )  =  K  +  ' £  aiX{,
i= 1

3. for every -R, 1 <  i <  n, the dealer computes the initial share s'-, where

=  /(*.•) (m° d p'),

4. T> gives (in private) s'- to participant Pi.

Shared Decryption:

Participants of an authorised set A , (|*4| >  t) first compute their modified shares Si 
using,

s
t t£*:-n¿=1 j=i

Q xj
Xi — Xj

According to equation (3.2), for every authorised set A  of at least t participants

K  =  si (mod p')
PiCA

and thus the system works as it was described.
Since in any part of the system no share or the group secret key is disclosed, partic­

ipants can use their shares many times without risk of the security of the system being 

compromised.

Remark 4 With contrast to the first part o f this thesis, throughout this part we assume 
that the polynomial f ( x )  in the Shamir (t,n ) threshold secret sharing scheme is o f degree 
exactly t — 1. Otherwise, every set o f t  -  1 collaborating participants can easily realize 
that they can perform the required group transformation and therefore they can break the 

threshold system.

In [131] it is shown that there is no need for a trusted party (dealer) to distribute 
the shares of the key among the participants. However, both threshold ElGamal crypto­
graphic systems [48] and [131] do not work without the help of a trusted combiner. That
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is, a dishonest combiner can choose a message of his choice claiming that the message has 

been extracted from the cryptogram. Since there is no way to control the relationship 
between the retrieved message and the cryptogram the participants have to accept the 
message. .

Here we show that even with the help of trusted combiner their cryptosystems are 
subject to the following attack. Let a dishonest participant Pj E A  contribute with a 
modified share Sj +  a  and transmit a partial decryption (gr)Sj+a to the combiner. The 
combiner computes,

II (S*)" = (/)Ep'^S‘ = (9Tf +a =  kT x (gr)a
PieA

and, using the multiplicative inverse of the result, calculates the message as:

_  M kr _  M

■ s ~  (gT)akr ~  (7 )“ ' •

However, Pj can retrieve the genuine message using,

M f  X (gr )a =  M .

In order to avoid these problems, let fi(-) be a one-way and collision free hash function, 
such that h(-) =  GF(p) .  The sender, who wants to communicate a message M , first 
calculates h(M)  and then constitutes the cryptogram (gĥ M\ M k h(M1). One can see that 
the structure of the system and the cryptographic algorithms (for both encryption and 
decryption) are similar to the original ElGamal system (the random generation part is 
replaced with the hash value of the message itself). This modified ElGamal system, 

however, has the following properties:

• The sender does not need to take care about generating a fresh random exponent 

for each message, since h is collision free.

• The system provides verifiability of the recovered message. The first entity of the
cryptogram must be equal to Since h is collision free, an opponent cannot

find a M f ±  M , such that ghW  =  gh(M') -

6.3.2 Threshold RSA Decryption

In [59] Frankel proposed a RSA based shared decryption system that allows n-out-of- 
n shareholders to decrypt a cryptogram, however, implementation of a (t,n) threshold 

RSA system is more difficult.
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In [48] Desmedt and Frankel’s attempts to implement threshold decryption for the 
RSA system (similar to that proposed for the ElGamal system) failed. The difficulty 
of implementation of the RSA threshold cryptosystem is that of how to apply Lagrange 

interpolation over Z ^ jv), while <p(N) is kept secret. In [49], Desmedt and Frankel have 
shown a solution to this problem.

Desmedt-FrankeFs Scheme

The RSA [136] applies a composite integer N  which is the product of two large and 
safe primes p and <7, that is, p =  2p' +  1 and q =  2q' -f 1. In the original RSA system 
<p(N) =  (p — 1 )(q — 1). However, it is suitable to use A(IV) =  2p'qf instead, where A is 
the Carmichael function, that is, the exponent of Z]y(*). Let k and K  be the public and 
secret keys, respectively (e.g. k x K  =  1 mod A(N)).

In order to construct a (t , n ) threshold RSA decryption, the dealer distributes the 
secret key K  among n members of the group in such a way that for any authorised set 
A,  \A\ >  i, the modified shares of the participants satisfy the following,

y ;  Si — K  mod A(N).
Pi€A

That is, the Shamir scheme, and therefore the Lagrange interpolation formula needs to 
be performed in Z a(at). But X(N)  is even and thus not all (x{ — Xj) have an inverse, 
modulo X(N)  (see equation 3.2). To solve this problem, the dealer selects a random 
polynomial, f ( x ) ,  of degree t — 1, such that all its coefficients are even and the constant 
term is equal to K  — 1 (in RSA K  is odd). The dealer gives, in private, the initial share,

/(*<)/2s'- = (mod p q')
-  X j)  /2

 ̂ /

to participant 1 <  i <  n.
Applying this technique, in the secret reconstruction phase no inverse has to be 

calculated by an authorised set A,  since

f ix ) = e s'- n (x‘ -  xi) n (x - xj ) (m°d
PiGA PjïA 

Pjer
PjZA

Hence, the modified shares of each participant, Pi G A , will be given by,

= n -  xi) n (° - xi ) (6.1)
PjiA
p3ev

Pj<=A
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However, in this method the value K  — 1 was shared among the group members. That 
is, for every authorised set A  the collaborating participants have,

Y  =  K  — 1 mod A(iV).
Pie A

Shared Decryption:

In order to decipher a cryptogram C =  M k (mod N ), participants of an authorised 

set A  compute their modified shares S{ (Pi E A ) and transmit their partial decryptions, 
C St, to the combiner. The combiner recovers the message M , using

C • n  c si =  C ■ =  C ■ C K~l =  C K =  M.
Pi€A

6.4 Generalised Threshold Cryptosystems

So far we have discussed threshold decryption, that is, all authorised sets have the same 
cardinality. In [100], Laih and Harn proposed a RSA based generalised shared decryption 
system that allows any designated sets of participants to perform the required group 
cryptographic transformation. However, Langford [103] has shown that this scheme is 
not secure for some access structures. Desmedt [47] has also pointed out that for some 
access structures the shareholders need exponential computing power.

A widely studied general access structure is the hierarchical structure. Hierarchical 
access structures have been the subject of investigation by several authors (see for exam­
ple, [171] and [32]). In [67], we proposed a cryptographic system for hierarchical groups. 
In that system we examined the simplest case of hierarchical structures in which there 
was only one participant in each level of the hierarchy. In the following, we present a 
cryptosystem for general hierarchical groups.

6.5 Cryptosystems for Hierarchical Groups

The concept of threshold cryptography was originally formulated by Desmedt [46] for 
“democratic” groups where every participant has equal rights in performing crypto­
graphic operations. There were numerous attempts to generalise society-oriented cryp­
tographic systems for an arbitrary access structure. To illustrate the problem consider 

the following quotation from Desmedt [46].

“Suppose that the group decided that the messages are first to be accessed 

by the supervisor and then afterwards by all other members at the same
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moment. The group publishes the corresponding public key. The question 
now is: does the publication o f this key and o f the encryption method, reveal 
what the decision o f the group ¿s? If that would be the case, then everybody 

knows which hierarchy the group has, or more generally knows which kind 
of society that corresponds with the group.”

Cryptographic operations in hierarchical groups can be done in two different ways: 
from top to bottom or from bottom to top. “Top-down” cryptographic operations have 
to be performed after “the go-ahead” is given by the higher level. The permission (or 
denial) for the lower level may depend upon the result of the operation performed by the 
higher level. “Bottom-up” cryptographic operations permit the delegation of a specific 
right from lower levels to the top. The top level successfully executes the cryptographic 
operation when all lower levels have prepared their partial results.

6.5.1 Top-down Cryptography in Hierarchical Groups

Here we investigate the problem of a secure top-down information flow. The proposed 
cryptosystems are designed in such a way that the information flow can be stopped by 
higher level participants. The proposed “top-down” hierarchical cryptosystems are based 
on the ElGamal and RSA cryptosystems.

Let us consider the case when a cryptogram is broadcast to all participants of a 
hierarchical organisation. A top-down cryptosystem should allow the participant on the 
top of the hierarchy to retrieve the plain-text message from the cryptogram. Once the 
higher level participants have decrypted the cryptogram, they may allow the lower level 
participants to decrypt the cryptogram by sending a suitable permission -  a go-ahead 

ticket.

6.5.2 The model

We assume that the hierarchy of participants is described by a tree structure, where 
'P(O) is the set of the highest level participants. Every participant Pj € 'P(O) is the head 
of the group In general each participant of the group V ( i ‘, j i ,  .. • , ji)  is the head

of the group V(i  +  1; j i , . . .  ,j i ,j i+ 1). Any participant can be a member and the head of 
a single group. It is easy to see that each path in the hierarchy is uniquely identified by 
a suitable sequence of heads (supervisors). We also assume that all participants of the 
group defined on the i-th level have the same power, i.e. we are dealing with threshold 

access structures.
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Definition 6.1 A top-down cryptographic system consists o f a single trusted dealer and 

a collection o f combiners. Each combiner on the i-th level acts on behalf o f a specific 
group.

• The trusted dealer (D) sets up the system. T> chooses both the encryption and 
decryption keys. The encryption key k £ JC is public. The decryption key K  £ 1C is 
secret and is used to calculate shares. Next, T) determines shares for  all participants 
(o f all groups o f the hierarchy) according to the following function:

/ £ > : t c x . v ( i - , j 1, . . . , j i) - > s x T ,  » =  0, 1,• • • , £ - i

for  the groups on the i-th levels, and

fip  : K, x . . .  , j i )  —> S

for  the lowest level, where T  denotes the set o f all go-ahead tickets. All secret shar­

ing schemes used for  the groups are designed for threshold access structures. The 
value o f the threshold may be different for each group. The dealer sets up all static 
secret elements which do not change throughout the life-time o f the system. How­

ever, participants may need to calculate their modified shares in order to perform 
the required cryptographic transformations.

• The combiner o f the top level group (on 0-th level) collects partial results from  
participants o f the group 'P(O) and applies the function:

/¿°> : / 0(C,<Si) x • • • x f0(C,St) -¥ M  x ftic(C,T),

where / ° c(«, •) is a function which assigns a go-ahead ticket for a cryptogram. If 
the number o f participants who have provided their shares to the combiner equals 
or exceeds the threshold parameter, fjP  generates the plain message and a valid 
go-ahead ticket which may be given to the lower level groups. •

• A combiner on the i-th level collects partial results o f its group a

go-ahead ticket from the higher level and uses the function:

/ «  : /¿ (C .S i) x • ■ • x fi(C ,St) x } £ ( C , T )  -»■ M  x (C,T) ,  i =  1, 2, • • • ,1 -  1

to retrieve the message and compute the ticket for  the lower level groups. The 

message and the ticket are valid only when the number o f contributing participants 
equals or exceeds the threshold o f the level. The combiner on the lowest level, I,
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retrieves the message (using partial results o f the participants and the go-ahead 
ticket) as:

■ It(C,Si) x ■ • • x fe(C,St) X ft-\C,T) -> M.

Go-ahead tickets may be computed by their immediate predecessors -  groups one level 
above the current ones. More specifically, for the group V ( i m, j i , .. ., j*), only the group 
V(i  — 1; j i , . . .  , j i - 1) can produce the valid ticket. This system is called a hierarchical 
cryptosystem with sequential go-ahead.

The alternative to the above are hierarchical systems in which any higher level group 
belonging to a single path can authorise the lower level groups by passing go-ahead 
tickets to them. So the group . . .  , j i )  can obtain a valid ticket from one of the
following groups: V(i  — 1; j i , . . . ,  j i - i ) ,  . . V ( l ] j i ) ,  and V(0).  These systems are called 
hierarchical cryptosystems with jumping go-ahead.

Next we will discuss two implementations of hierarchical cryptosystems. The first is 
based on the ElGamal cryptosystem. The second uses the RSA system.

6.5.3 ElGamal Based Hierarchical Cryptosystem

Assume that we have a group of participants V  =  {Vo^Vi , . . .  ,Vi } .  Vo is on the top of 
the hierarchy. V\ belongs to the second level, V 2 to the third, etc. Vi is at the bottom of 
the hierarchy. Let \V%\ =  ni and every ti <  n{ participants of level i be an authorised set, 
that is, they can decipher the cryptogram if they have received a go-ahead ticket from 
the higher level. Although in hierarchical structures, in general, ti <  tj and ni <  nj (for 
all i <  j ) ,  our proposed cryptosystem does not require these conditions to be satisfied.

System Set-up phase:

Consider an ElGamal threshold scheme, as described in Section 6.3.1, with parameters 

p, g , the secret key K  and the public key k =  gK.

1. The dealer, V , applies a (£+1, £+1)  Karnin-Green-Hellman threshold secret sharing 

scheme and generates i  +  1 partial keys, such that,

i
K  =  (mod p').

i=0

2. For every level i, 0 <  i <  £, the dealer applies the Shamir (U,ni) threshold scheme 

(as described in Section 6.3.1) and generates the shares of K{.
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3. For every level z, 0 <  i <  £, the dealer applies the Shamir (¿¿, rii) threshold 

scheme (as described in Section 6.3.1) and generates the shares of K { =  E ^ + i  Ki 
(mod p').

4. The dealer publishes p, g and k as the public parameters of the system. The secrets 
(degenerate shares) are distributed via a secured channel to the participants. That 
is, a participant of level z, 0 <  i <  l  receives two shares (corresponding to K{ and 
Ki),  while participants of level £ receives only one share.

Note. According to the homomorphism property of the Shamir secret sharing scheme, 
for any participant of level 0 <  z <  £ the sum of his shares gives a share of K{ -f- K{ 
(mod p'). That is, the sum of the shares of participants of the highest level gives a share 
of the secret K , but the sum of the shares of a participant of level one gives a share of
K - K 0.

Encryption:

The sender, who wants to communicate a message, M  G GF(p ), follows the steps of the 
ElGamal cryptosystem:

1. he selects a random element r G GF(p),

2. computes the cryptogram C  = ( C i , ^ )  =  (gr, M k r) for the message M  G M  =  
G F (P),

3. finally, the sender dispatches the cryptogram C  to the group.

Shared Decryption:

No level, except the highest level whose participants’ shares can determine the secret K , 
is able to decipher the cryptogram. So, the highest level deciphers the cryptogram:

• each participant, P j, o f an authorised set, A  G Vo, computes his modified share, 
50j and So3, corresponding to K 0 and Ko,

• each participant, Pj, generates his partial decryptions, (gr)s°3 and (gr)SQj, and 

sends them to the combiner,

• since the set of collaborating participants is greater than or equal to to, the com­

biner can compute

II = (so*0.
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and, to generate a go-ahead ticket,

To = n (9 T 1=(9rf ° .
p3eA

• the combiner computes,

(grf °  X To =  (grf

and hence retrieves the message M  from the cryptogram.

The highest level may want the lower level, level one, to be able to read the message. 
So, the highest level sends the go-ahead ticket, To, to its lower level. Participants of an 
authorised set, A  € Vi,  do as follows:

1. each participant follows a similar algorithm which was performed at the highest 
level,

2. thus, the combiner of level one can generate two partial decryptions

(SO* 1 and (9rf \

3. since the set of collaborating participants consists of at least t\ participants, the 
combiner can generate a go-ahead ticket

=  To x (gr)Kl,

and

( Z )*1 x 71 =  ( / ) * ,

which enable it to retrieve the message M.

It is not difficult to see that any higher level can issue a go-ahead ticket for its lower 
level. Note that, a valid go-ahead ticket T* =  T _ i x (;gr)Ki. That is, the shares of Ki 
are used to create a valid go-ahead ticket for one level below and the shares of Ki , along 

with the ticket, allow Vi to decrypt the cryptogram.

6.5.4 RSA Based Hierarchical Cryptosystem

Assume, as before, that we have a group of participants V  =  {To, V i , . . . ,  Vt}.  Vo is 
on the top of the hierarchy. V\ creates the second level, V 2 the third, etc. Vi is at the 
bottom of the hierarchy. Level i consists of rii participant and the requirement is that 
at least U (out-of-n;) participants need to collaborate in order to perform the proper 

decryption.
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System Set-up phase:

Let N  =  pq where p, q are two safe primes, that is p =  2p' +  1 and q =  2q' +  1 (p' and q' 

are large and distinct primes). The dealer (T) ) who sets up the system, selects p, q and a 
random integer k such that k and X(N)  are coprime (X(N)  is the least common multiple 
of (p — 1) and (q — 1), and therefore, is equal to 2p'qf). Next T> publishes k and N  as 
public parameters of the system, while the values of p, q and K  (K  has the property that 

k x K  =  1 (mod A (AT))) are kept secret. The dealer also selects l  random even integers
K i, • • •, Kt and solves the equation Ko -f K\ H------- \- Ki =  K  mod A(N ) for the unknown
integer so (note that only Ko is odd). Finally T> distributes Ki among the participants 
of level i, 0 <  i <  l  and distributes Ki =  Y^j=i+1 Kj among the participants of level i, 
0 <  i <  i.

The secret sharing scheme is as described in Section 6.3.2. Since Ko is odd, K 0 — 1 
will be shared among corresponding participants (see Section 6.3.2). Other partial keys 
K{ (1 <  i <  £) and Ki (0 <  i <  i)  can be shared without reducing by one, since they 
are even values.

Encryption:

As in the original RSA system, in order to communicate a message, M , the sender 
computes the cryptogram C =  M k mod N  and dispatches it to the group.

Decryption:

Similarly to the ElGamal based hierarchical cryptosystem, the highest level performs as 

follows:

• each participant of an authorised set, A. G Vo-, sends his partial decryption to the 

combiner,

• the combiner generates C K° and the ticket To,

• since the set o f collaborating participants consists of at least t0 participants, the 
combiner can compute C K° x C K° =  C K~1 and hence decipher the cryptogram as 

C K~1 x C  =  M  (mod N).

Similarly to the ElGamal based hierarchical cryptosystem, the highest level can issue a 
permission (go-ahead ticket) to enable the lower level to read the message. Since this 
system works similarly to the ElGamal based cryptosystem, we do not describe it in 

detail.
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6.5.5 Assessment of the System

In order to assess the proposed system, we briefly discuss the security and efficiency of 
the system.

Security

The proposed cryptosystem for hierarchical groups applies the ElGamal and the RSA 
threshold cryptosystems. Since the encryption and decryption algorithms do not give 
any information more than the corresponding threshold cryptosystems, we can claim 
that the proposed hierarchical cryptosystems are as secure as their underlying threshold 
cryptosystems.

Efficiency

Although from a security point of view the proposed hierarchical cryptosystems are 
equivalent to their underlying threshold cryptosystems, from an efficiency point of view 
they are not equivalent. We observe two major points.

1. In the underlying threshold cryptosystems each participant is responsible for keep­
ing only one secret share. In our hierarchical cryptosystem, however, each partic­
ipant, except participants of the lowest level -  level £, needs to keep two secret 
shares.

2. In the proposed hierarchical cryptosystems the amount of computation that is 
required to decipher a cryptogram is about two times the amount of computation 
in the corresponding threshold cryptosystems.

It is worth mentioning that the inefficiency of our hierarchical system is due to the gener­
ation of go-ahead tickets which enable the higher levels to control the flow of information 
in the group. In fact, if level i does not agree to give permission to its lower level to 
read the message, each participant first adds his shares then applies that share to the 
algorithm. Due to the homomorphism property of Shamir threshold system, the result 

is correct.

6.6 Threshold Signature

A digital signature is an integer, issued by a signer, which depends on both the signer’s 
secret key and the message being signed. In conventional cryptosystems the signer is a
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single user. However, the process of signing may need to be shared by a group of people. 

For example, a bank may require that any transaction is signed by at least two clerks. 
The first attempts at designing a shared signature are due to Boyd [21].

In general, we assume that the signature is generated by a group of t people (instead 
of an individual). Sometimes the t authorised co-signers may not be available at the 
time when the signature is required. To guard against such a failure of the signature 
generation, an organisation may choose a larger group of n individuals and allow every 
t out of n {t <  n) to sign the message. Such a shared generation of signatures is called 
a (t,n) threshold signature. For the case that t =  n, the shared generation is called a 
(n, n) multisignature.

6.6.1 Threshold RSA Signature

In the RSA cryptosystem the deciphering algorithm is identical to signing. So to avoid 
repetition, we refer the reader to Section 6.3.2. However, the proposed (i, n) threshold 
RSA signature suffers the following shortcoming:

1. In [105] Li, Hwang and Lee have discussed that a (t ,n)  threshold signature scheme 
does not only require that less than t users must not be able to generate a cor­
rect signature, but also a particular set of t participants should not be forged by 
another set of t participants. They have pointed out, however, that the Desmedt- 
Frankel’s [49] ( i ,n)  threshold RSA signature is subject to the conspiracy attack. 
That is, if t (or more) participants conspire, then the group secret key and all 
participants’ shares will be revealed. Once the shares are revealed, the set of 
collaborating participants can impersonate another set of shareholders to sign a 
message without holding the responsibility of the signatures, and can deny having 
signed a message though in fact they have signed it.

2. Since A(N ) is unknown, the cooperating participants compute their modified shares 
(equation 6.1) in Z . Although, due to exponentiation, the scheme works properly, 
the size of each modified share Si is about t times the size of the secret K . So 
the system is not very practical for a large group of co-signers (e.g. an electronic 

election with millions of participants).

3. There is no proof of the security of this threshold system.

In Section 6.6.3 we will study a particular RSA type shared signature scheme, which 

is due to Boyd [21].
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6.6.2 Threshold ElGamal-Type Signatures

Implementation o f threshold and multisignature schemes based on the ElGamal and its 

variant (the DSS) signature schemes was the subject of investigation by several authors 
(see, for example, [77], [106], [80], [102] and [129]). In the following we give a brief 
description of the Harn [77] (t,n )  threshold digital signature. This system utilises the 
Shamir threshold scheme and a modified version of the ElGamal signature. A dealer or 
trusted key authentication centre (KAC) selects the system parameters as,

• p, a prime modulus, where 2511 <  p <  2512;

• q, a prime divisor of p — 1, where 2159 <  q <  2160;

• a polynomial f ( x )  =  K  +  a\x H------- b at- i x t_1 mod g, where K  is the secret and a*
are random integers in Z g;

• g =  (mod p), where h E G F(p) is any integer such that g >  1 (g is an
element of order q in G F(p));

The parameters p, q and g are public, but K  and a i , . . . ,  at-1 are secret values.
The KAC uses the Shamir (i, n) threshold secret sharing scheme to share the secret 

K  among the set V =  { P i , . . . , P n}  of participants. That is, it assigns S{ =  f (x i )  to 
participant Pi (1 <  i <  n). It also publishes k =  gK mod p  as the group public key and 
ki =  gttXi) mod p as the public key of participant P{ (1 <  i <  n).

In order to sign the message M , each participant P{ of an authorised set A  (|«4.| >  t) 
chooses a random value r\ (1 <  rj <  q -  1) and computes a public value rt , as

r{ =  gr>i (mod p)

and makes rz publicly available through a broadcast channel. Once all r* are available, 

collaborating participants of the set A  compute,

r =  JJ r{ (mod p). 
Pi€A

Participant Pi E A  uses his secret f (x i )  and his chosen one-time random rj, to sign the 

message M  as,

<?i =  f ( x i )  x M  x n
x Pi£A

- X j

X i  —  X i
r{ x r

/

(mod q).
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and transmits his partial signature to the combiner. The combiner first verifies the 
correctness of the partial signature of participant Pi using,

IL
P£ f x'~Xj =  r[ x g°* l 2 3 (mod p).

If the equation holds true, the partial signature of message M  received from
participant P{ is valid. Once all partial results of an authorised set are received and 
verified, the combiner computes the group signature of message M  as,

cr = ai ( m ° d  q)-
Pie A

To verify the signature, every one who knows the group public key can check,

kM =  rr x ga (mod p).

If the equation holds true, the group signature (r, <r) is valid.

6.6.3 Boyd’s System

The first attempts at designing a shared generation of RSA type signatures are due to 
Boyd [21]. He showed how to adapt the RSA system to implement a (2,2) multisignature 
and a (2, n) threshold RSA signature.

A  (2,2) R SA  Multisignature

Boyd’s (2,2) scheme works as follows.

1. The dealer chooses a modulus N  which is the product of two large primes and 
generates the public and secret keys k and K  (respectively) as in the RSA [136] 

system.

2. The dealer selects at random two secret values 1 <  Si <  N  and 1 <  s2 <  A , 
subject to the condition that Si and s2 are coprime to <p(N) and

si x s2 x k =  1 mod <p(N).

That is, K  =  si x s2 mod (p(N).

3. The dealer sends (in private) the shares sx and s2 to their correspondents and 

publishes the public parameters N  and k.
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In order to sign a message 1 <  M  <  N  one of the co-signers (e.g. participant Pi) 
signs the message using his secret key as

<ri =  M Sl (mod N)

and sends his partial signature to another participant. The second participant computes 
the signature on the message M  using

(ff!)*2 =  (M *1 Y2 =  M S1S2 =  M k  =  SigK(M ) (mod N ).

The recipient of the signature can verify the signature on message M  using the public 
key k as,

(.SigK(M ))k = M  (mod N).

Note that, before signing, the second participant can check

(a i)s*xk± M  (mod N)

to make sure that he is signing the message M . Moreover, the order of co-signers in this 
scheme is not fixed, that is, the protocol works if P2 first signs the message.

It is not difficult to extend the scheme to a (n, n) multisignature, where

K  =  si x s2 x • • • x sn mod <p(N).

The signature generation requires that a participant signs the message and pass it to 
another participant. The message is signed if all participants have signed the previously 
generated partial signature when it is circulated among the group participants. That is, 

the signature generation works as follows:

(• • • ((M Stl)Si2y ) Stn =  M SlXS2X'"XSn =  M k  (mod N).

An alternative scheme can be generated when,

K  =  St +  52 H------- 1- s n mod tp(N).

In this case, each participant Pi generates his partial signature, o*(M) =  M St (mod A ), 
and transmits the result to the combiner. The combiner calculates the final signature

using,
n

IJ  cri =  M Sl+S2+'"+Sn =  M k  (mod N).
i= 1
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A  (2, n) Threshold R SA  Signature

Boyd also proposed an extended version of his (2,2) multisignature scheme to construct 

a (2, n) threshold RSA signature scheme. His (2, n) threshold RSA signature scheme 
scheme works as follows.

1. The dealer selects the RSA parameter k , K  and N  as above.

2. the dealer generates (at random) the set of secret shares S =  { ¿ i , . . . ,  sn},  subject 
to the condition that ¿¿s (1 <  i <  n) are coprime to <p(jV), and

Si x S2 x • • • x sn x k =  1 mod <p(N).

That is, K  =  si x . . .  x sn mod ip(N).

3. The dealer gives (in private) each participant Pi (1 <  i <  n) the set of shares 5  \ St­
and publishes the parameter k and N.

To sign a message 1 <  M  <  N  one participant (e.g. the participant Pj, l <  j  <  n) 
signs the message as,

a, =  M ai82"'8j~lSj+1”'8n (mod N).

Now, every member of the set V  \ Pj can compute the final signature on the message M  

using
(crj)Sj =  M SlS2'"Sn =  M k  =  SigK(M ) (mod A ),

since he knows Sj.

The verification of the signature is the same as in original RSA system. For more
details and other variants, e.g., the secret key K  =  sx H------- h sn in which multiplication

is replaced by summation, see [21].
Note. The main drawback of Boyd’s (2, n) threshold RSA signature scheme is that the 

share of each participant is n — 1 times of the secret in a single user RSA system.

6.6.4 Improvement of the System

In this section we present some improvement1 on the (2,n) RSA threshold signature 

systems.
Let V  =  { P i , . . . ,  Pn}  and let each participant, Pi (1 <  i <  n) be associated with a 

binary string . . .  bit o f length t  =  log2 n that represents the integer value i — 1.

1The results arose by the author from the lectures of Professor Desmedt in the Centre for Computer 
Security Research, University o f Wollongong.
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Set-up the System:

In order to construct a (2, n) threshold RSA system, the dealer selects all system param­

eters k , K  and N  as in the RSA system and distributes the shares of K  as follows:

1. for every j ,  1 <  j  <  £, the dealer applies the Boyd’s (2,2) system and generates 
two shares Sjx and Sj2, such that,

K  =  sh +  sh mod (p(N),

2. for every participant Pt, if =  0 then the dealer assigns Sjx (or Sj2) otherwise 
assigns Sj2 (or 5̂ ).

The dealer sends (via secured channels) the shares to corresponding participants. 

Shared Generation of R SA  Signature:

Let a set A  =  {P Zl ,P h }  C P , H 7̂  ¿2 of two participants want to sign a message M. 
Since the binary representations of two integers 1 <  i\ <  n and 1 <  «2 <  n are different, 
at least for one particular bit bj, 1 <  j  <  l  their shares (corresponding to iteration j  of 
the set-up algorithm) will be different, and therefore, applying the basic Boyd’s (2,n) 
RSA signature they can sign the message.

Example 6.1 Let V  =  { P i , . . . ,  P8}  be a set o f participants. Thus,

Pl P2 p 3 P 4 Ps Pe P7 Ps
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

Table 6.1: Binary strings of participants

In order to distribute the shares corresponding to the first row of the above table, let 

K  =  si T  s2 m od<p(N). The dealer assigns si to participants P\, P2; P3 and Pa (since 
their first bits are zero) and assigns S2 to participants P5 , P&, P7 and Pg. Similarly, for  
the second and third rows, the dealer distributes K  =  53 +  54 and K  =  55 +  56 respectively. 

That is, participants’ shares are as in Table 6.2:
Since any set o f two participants collectively knows K , it can sign the message. For 

example, if a set {P i ,P 2}  wishes to sign a message, M , participants Pi and P2 observe 

that their shares corresponding to the third row are different. Thus they generate M Kb
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Pl P2 p3 P4 Pi Pe Pi Ps
S i S i S l S l S2 S2 S2 S2

S 3 S 3 s4 s4 S 3 S 3 S 4 S 4

S 5 se S 5 se se Se S 5 Se

Table 6.2: Shares assigned to each participant

and M K& (respectively) and send them to the combiner. The combiner computes the 
signature on message M  as,

M Kh x M k& =  M k  (mod N).

N ote . Although the size of the shares assigned to each participant is reduced to 
0 (log2 n ) x K , the system still is far from being ideal.



Chapter 7

Group-Oriented Cryptography

So far, we assumed that the groups have anonymous membership, i.e., it is not necessary 
to know who is a member of the group. Moreover, the internal structure and the access 
policy of the group was hidden (from an outsider point of view, such groups act as 
individuals). In this chapter we consider groups with known members. The sender 
determines an access structure and enciphers the messages such that only authorised 
subsets can decipher the cryptogram.

In Section 7.1 we give a motivation for group-oriented cryptography. Section 7.2 
studies a related work on the construction of group-oriented cryptographic systems. The 
system is based on the Diffie-Hellman [53] key distribution algorithm. In Section 7.3 
we present a model for a group-oriented cryptographic system. Two implementations 
of group-oriented cryptographic systems are presented in this section. The first one is 
based on public-key cryptosystems, while the second one uses the private-key systems. 
Finally, in Section 7.4 we present a self-certified group-oriented cryptosystem.

7.1 Motivation

Although only a small fraction of all groups in our society are groups with known mem­
bers, there exist numerous examples to justify the need for group-oriented cryptography. * 
For example, the Federal Bank may wish to send a message so that a particular set of 
banks, according to an access structure can decipher a cryptogram and hence read the 
message. In this and many other similar examples, the intended group is a group with 
known members. Each member of the intended group is either an individual or a group 
(e.g. banks, which from a cryptographic point of view act as individuals).

As has been discussed earlier, in order to decipher a cryptogram the receiver must 
know the secret key. So, one solution could be to send the message to all members of 
the group, e.g. using their public keys. A second is that the secret key is known to all

1 1 8
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members and that the message is sent only once. These two obvious solutions, however, 

are not adapted to the security needs specific to the protection of information intended 
for groups. Moreover, constructing a threshold cryptosystem, as has been discussed in 

Chapter 6, is not adequate since the group of intended receivers and the access structure 
that determines how the cryptogram can be deciphered are chosen by the sender (see 
Section 6.3 for the justification of such needs).

The goal of implementation of group-oriented cryptographic systems is to solve this 
sort o f cryptographic problem.

7.2 Related Works

There has not been much research on group-oriented cryptography. Hwang [81] proposed 
a shared decryption system in which the sender knows the set of receivers. The Hwang 
system utilises the Diffie-Hellman [53] key distribution scheme and concatenates the 
Shamir [147] secret sharing scheme with a predetermined cryptographic system.

7.2.1 Hwang’s System

Assume that V  =  { P i , . . . ,  Pn}. Let each member Pi5 1 <  i <  n, hold a secret key Ki 

and publish the public key,
ki =  gKt (mod p),

where p is a large prime and g is a fixed primitive element in GF{jp). Furthermore, let 
each participant, Pt-, also be associated with a public prime number Ni (Ni >  p), such 

that N{ 7̂  N j  if i /  j .

Encryption:

Let a sender wish to send a message M  to the group in such a way that M  is readable 
only when any set of t members (t <  n) agree to decipher the cryptogram. The sender 

performs as the following.

1. Obtain the public values p, p, Ni and fe (1 <  * <  n) from the public directory of

Pi-

2. Generate a secret random value K  £ { l , . . . , p  — 1} and compute,

k =  gK (mod p) and Xi =  (h ) K (mod p), 

for all 1 <  i <  n (repeat this step if Xi =  Xj for any i ^  j ) .
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3. Construct a polynomial,

f ( x )  =  S +  a0x i +  • • • +  a*_ix l~l (mod p), 

of degree t — 1 (S  will serve as the encryption/decryption key).

4. Encipher the message M  using

Ci -  ES(M ),

where £  denotes the predetermined encryption algorithm and D  is the correspond­
ing decryption algorithm.

5. Compute n shares yi =  f (x { )  (mod p).

6. Compute a common solution C2 using the Chinese Remainder Theorem (CRT) 
from the following system of equations:

, x =  yi (mod iVt-), i =  1, . . . ,  n.

7. Broadcast the ciphertext,
C =  (Cu C2,N ,k ,t ) ,

where N  =  n?=i an<l t is the threshold parameter.

Group Decryption:

1. The legitimate user Pi G A  can authenticate himself as a legal receiver by verifying

Ni\N .

2. Pi computes his share yi by

C2 =  yi (mod Ni),

and obtains
Xi =  kKi (mod p).

3. If \A\ >  t then the combiner can compute S -  using Shamir’s (t ,n ) threshold 

scheme.

4. Cooperating participants can decipher the cryptogram and recover the message M  

as
M  =  D S(M ).



7.3. Model of Group-Oriented Cryptography- 121

N ote . The sender may wish that anyone in the group can recover the message. Clearly, 
selecting a polynomial o f degree zero does not protect the key. In this case, Hwang 
suggests that the sender generates t — 1 dummy users and perform the algorithm (for 
more detail see [81]).

7.2.2 Other Systems

Franklin and Harber [63] also discussed group-oriented cryptosystems. Their system 
applies the ElGamal cryptosystem in which each user has his own public key. In their 
naive scheme, the size of cryptogram grows as the number of participants increases. In 
their modified system, although the size of an encryption is independent of the number 
of participants, the size of each encrypted bit is four elements of Z* (where p is the 
modulo of their system).

In [69] and [70] we have discussed the model of group-oriented cryptography and 
proposed two group-oriented decryption systems based on the RSA and ElGamal cryp­
tosystems.

7.3 Model of Group-Oriented Cryptography

So far, by V  =  { P i , . . . ,  Pn}  we denote a group of individuals working together. Through­
out this chapter, however, we assume Pi (1 <  i <  n) is either an individual or a group 
with anonymous membership. Moreover, we assume that each participant Pi is assigned 
a cryptosystem. Construction of our group-oriented cryptosystem satisfies the following 

conditions:

• the system is set up by individual participants independently (groups with anony­
mous membership are also considered as individuals);

• each participant sets up their own cryptosystem. There is a trusted public reg­
istry ( “White Pages” ) which keeps the list of authentic public keys of all potential 
participants. It is reasonable to assume that such a registry is already set up for 

single-user public-key cryptography;

• the group of intended receivers of a cryptogram and the access structure to the 

data are chosen by the sender;

• every authorised set (by the choice of the sender) can perform the group crypto­

graphic transformation, while no unauthorised set can do so.
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We assume that the access policy is threshold. An authorised set A  retrieves the mes­
sage iff the number of cooperating participants is equal to or greater than the threshold 
parameter t, that is,

T =  { A C V  | \A \ >t}.

The parameter t is chosen by the sender.

Definition 7.1 A (t,n ) group-oriented cryptosystem is a collection o f two algorithms:

1. the sender, who composes the group of intended receivers V  (for simplicity we 
assume that V  =  { P i , . . . ,  Pn}) ,  selects the threshold parameter t, collects authentic 
public keys {Aq,. . . ,  kn}  G Sn o f participants o f the group V  from White Pages, and 
applies the encryption function

E : M  x Sn -> C.

The cryptogram C  G C is broadcast to all participants V ,

2. the combiner, who collects partial decryptions P^. (C)  G A  from a set A Q V  (for 
the sake o f simplicity assume that A  =  { P i , . . . ,  P i}) and decrypts the cryptogram 

as

fcoM : A i  x . . .  x A* —> A4

where A t- is the set o f partial decryptions for  P{ (i =  1, . . .  ,1) and A  is the set o f 
group decryptions. The decryption is always successful if the number o f cooperating 
participants is equal to or greater than the threshold parameter, that is, t  >  t.

In order to illustrate the model, we present implementations based on both public- 
key and private-key cryptosystems. In the public-key based system, the assumption is 
that all participants have their individual public-key cryptosystems already set up and 
there is a public registry ( “White Pages”) which holds the authentic public elements of 
the participants. The sender creates a group from the public information available from 

the public registry.

7.3.1 Public-key Based Group-Oriented Cryptosystems

A simple scheme is that the sender first chooses the group and a threshold parameter t. 
The message is then embedded as a secret in a (t ,n ) threshold scheme. Shares for the 
scheme are then encrypted individually with each recipient s public key which can be 

broadcast along with the names of the users.
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Consider a group V  o f n participants Pi, P2, • • •, Pn each with their own public-key 
cryptosystem. Their public keys ki are stored in a trusted public registry. The secret 
keys Ki are known to their owners only.

Suppose a sender wants to communicate a message, M , to a group V  =  { P i , . . . ,  Pn}  
such that any t out of n participants can decrypt the cryptogram.

Encryption:

The sender:

1. Obtains the public values from the public registry.

2. Selects at random a polynomial

f ( x )  =  K  +  ctix +  • • • +  at- i£ i_1 (mod p),

where K  will serve as the encryption key. Note that the GF(p) has to be large 

enough so the guessing of K  is not “easy” .

3. Enciphers the message M  using, C\ =  Ek {M ), where E denotes the predetermined 
encryption algorithm and D  is the corresponding decryption algorithm.

4. Compute shares st- =  f (x { )  (mod p) for public values X{ (i =  1 , . . . ,  n).

5. Encrypts the shares of each recipient as;

C{ — * 1, . . . ,  n

and broadcast to correspondents.

Group Decryption:

Upon receiving the cryptogram,

1. The legitimate user Pi G A  computes his share by

— &Ki (q ) i

2. If >  t then the combiner can compute K  -  using Shamir’s (t,n ) threshold 

scheme.

3. Every cooperating participant can decipher the cryptogram and recover the mes­

sage M  as
M  =  Dk (M ).
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7.3.2 Private-Key Based Group-Oriented Cryptosystems

Existing threshold cryptosystems and the proposed group-oriented cryptosystems, so far, 

are based on public-key cryptosystems. The concept of sharing the power to encrypt a 
message makes no sense in a public-key context (since the public keys of the receivers are 
known by every one) however, it makes sense in a private-key context. In this section we 
discuss implementations of group-oriented cryptographic systems based on private-key 
cryptosystems.

Although private-key based systems can be applied in the same manner as in public- 
key based group-oriented cryptosystems, here we show an alternative method. That 
is, instead of enciphering the message, using a private-key cryptosystem, and sharing 
corresponding key among the recipient participants, using a secret sharing scheme, the 
sender transmits the cryptogram of the message itself. In fact, the sender applies As- 
muth and Bloom ’s secret sharing scheme [4] to share a message among the recipient 
participants (see Section 3.5). However, the shares (partial messages) are enciphered 
using the recipients’ cryptosystems.

Let P  =  { P i , . . . ,  Pn}  be a set of participants, each associated with his own private- 
key cryptosystem. Also let V' =  {P [ , . . . ,  P^>} be another set of participants, such that 
they have (collectively) all the cryptographic keys corresponding to the participants of 
set P , that is, if ra' <  n then some participants of set P ' may have more than one private 
key. Further, let each private key be associated with a publicly known polynomial 
fi(x ) £ G F (2X ), where X  is the maximum block-size of messages in the underlying 
cryptographic system (e.g. in case of DES, X  =  64).

The scheme consists of two algorithms: an (n, n) group encryption and a (t, n) group 

decryption.

Group Encryption:

Let A [ x ) denote a polynomial attached to a binary vector A .  Suppose that the group 
P* wants to send a message, M ,  (M {x)  £ G F(2tX 1)) to the group P , such that any t 
out of n participants of the group P  can cooperatively decrypt the cryptogram.

1. Each participant P? (or the combiner, since in this case there may be a combiner in 
the sender group as well) reduces M  to an element of the field generated by /¿(a:), 

that is,
M ( x )  =  M i( x )  mod fi(x ), i =  1 , 2 , . . . ,  n.
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2. P{ uses his secret key, K\, to encrypt the partial message M {(x) as,

Ci =

3. Participants send their cryptogram(s) to their correspondents.

Group Decryption:

Upon receiving the cryptogram, users P,- E i  C P , such that \A\ >  t can recover the 
message as,

1. each Pi deciphers the cryptogram c,* and obtains the partial message Mt,

=  DKi(ci),

2. collaborating participants send their partial messages to the combiner;

3. upon receiving at least t partial messages, Mt, the combiner applies CRT and 
retrieves the message M .

7.4 A Self-Certified Group-Oriented Cryptosystem 
Without a Combiner

Two important issues in the implementation of a public-key based group-oriented cryp­

tosystem are:

1. the sender needs to collect authenticated public keys of the intended receivers;

2. in order to perform the group cryptographic transformation, the combiner needs a 
secure channel to collect (privately) the partial results from collaborating partici­

pants.

7.4.1 Problem with collecting authenticated public keys

When an individual wishes to encrypt a message for a group of users, he has first to 
collect their public keys (that are assumed to be stored in a public directory) and make 
sure that they actually correspond to those users. This assurance may clearly not be 
obtained, if each user is responsible for creating his pair of keys and publishing his public
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key in a directory, because with such a system, nothing can prevent adversaries making 
fake keys related to a given user1.

The obvious solution to this problem is to provide authenticated public keys by 

connecting users’ public keys to their identities. There are three known approaches that 
require the existence of a trusted authority.

1. In the simplest approach, which is often called certificate-based, the authority cre­
ates a certificate for each user, after having checked carefully his identity. In this 
case, each user visiting the authority is given a certificate of the form R =  S(k, / ) ,  
where I  is an identification string based on the user’s identity (prepared by the 
authority), k is the user’s public key and S is the authority’s signature. The cer­
tificate will then be registered in a public directory together with user’s public key 
and his identity. Whenever a user A  needs to encrypt a message for another user 
B , he gets (R b ^ b -, Ib ) from the directory and checks the validity of the authority’s 
signatures on the pair (&b , / b ), using the authority’s public key (that everybody 
is assumed to know). This approach, though having the advantage that even the 
authority does not know users’ secret keys, requires a large amount of storage and 
computation (which essentially depends on the signature scheme in use).

2. Another approach, known as identity-based, is proposed by Shamir [150] and has 
been adopted in many public key schemes. The advantage of this method is that 
the user’s identity serves as his public key and the related secret key is computed 
by some trapdoor originated by the authority, so that nobody can determine a 
valid pair of public and secret keys without knowing that trapdoor. This leads 
to a scheme that needs no certificate and no verification of signatures, hence re­
ducing the amount of storage and computation. This method has, however, the 
disadvantage that the secret keys are known to the authority.

3. A more sophisticated technique combining the advantages of certificate-based and 
identity-based methods is proposed by Girault [74], which is known as self-certified. 
In this approach, contrary to identity-based schemes, each user chooses his secret 
key and creates a shadow w of that secret key using a one-way function and gives 
it to the authority. Then, contrary to certificate-based schemes, instead of creating 
a certificate, the authority computes the public key k from the pair (w, / ) ,  in such

1Even if there is an authority that controls the public directory and protect the write access to it, 
an adversary can still substitute a public key on the transmission line between the user who is asking 
that public key and the server which supports the public directory.
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a way that k may not be computed without the knowledge of some trapdoor, while 
w may be easily determined from &, I.

We adopt the latter approach to guarantee the authenticity of the public keys.

7.4.2 Problem with collecting partial decryption

In society-oriented (threshold or group-oriented) cryptographic systems we assume that 
the combiner is not necessarily trusted. It is assumed that the combiner applies the 
required computations reliably. Since there is no secret information known to the com­
biner, everyone who knows the partial results can compute the final one as well. This 
requires, in society-oriented cryptographic systems, that the partial results must be sent 
(privately) to the combiner.

This may not be a serious problem if collaborating participants are working together. 
For example, members of an organisation may pass their partial results to the combiner 
via an internal mail or personally and in private. But in general, in order to transmit 
partial results to the combiner a secure channel is needed. However, providing secure 
channels may not be available when the group decryption is required.

In order to avoid the above mentioned problems, we present a group-oriented cryp­
tosystem which utilises self-certified public keys and works with no help of any combiner.

7.4.3 Implementation of Self-Certified Public Keys

In this section we briefly consider the implementation of self-certified public keys. 

Setup Phase:

As in all self-certified schemes, our system assumes the existence of an authority that 
delivers certified public keys to the legitimate users. In the setup phase of our scheme, 

the authority chooses: •

• an integer N  as the product of two large distinct random primes p and q of almost 
the same size such that p =  2p' +  1 and q =  2q' +  1, where p' and q' are also prime 

integers,

• a prime integer F > N ,

• a base a ^  1 of order A =  p'q' modulo N , and
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• a collision free and one-way hash function /¿, that outputs integers less than the 
minimum value of p' and q\ that is, h(M ) <  min(//, q').

The authority makes a, h , F  and N  public, keeps A secret and discards p and q. 

Key Generation:

Every legitimate user who wishes to receive messages chooses his secret key K , computes 
the shadow z =  a K (mod N ) and gives it to the authority. The authority first interro­
gates the user about his secret key, using an authentication protocol (e.g., a variation of 
the Schnorr [143] authentication scheme with composite modulus) who must prove his 
knowledge o f K , which is required to be a positive integer. If the authority is convinced 
of this fact, it prepares a string I  corresponding to the user’s identity (his name, his 
address, ...) and computes ID =  h (I). Then, it computes the user’s public key as

k =  (z~1 — ID ) id 1 (mod N)

and registers it together with user’s identity in a public directory.
Note that the inverse of ID  modulo A always exists, due to the fact that h outputs 

integers less than pf and q', which guarantees that ID is co-prime to A, for any I.

7.4.4 Implementation of a (£, n) Group-Oriented Cryptosystem

Let an individual want to send a message 0 <  M  < N  to a group V  =  { P i , . . . ,  Pn}  of n 
users of his choice, such that cooperation of any t members of the group is sufficient to 

retrieve the message.

Encryption:

The sender,

• randomly chooses an integer r and computes c =  ( o -1 )r (mod N ),

• forms at random a polynomial f ( x )  =  v +  a^x +  . . .  +  at- ix * '1 in G F (F )  such that 

/ (0 )  = v  =  a h(M) (mod N),

• computes for i — 1 , . . . ,  n

Wi =  k-Di +  IDi (mod N)

Si =  w\ (mod N) 

di =  f ( s i )

d  =  M  • (mod N)
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and sends (t, c, di, et) to each Pi.

Group Decryption:

Upon receiving the cryptogram, every group, A  C V,  of at least t intended receivers can 
cooperate to retrieve the plaintext message M .  That is, each Pi £ A  first calculates,

Si =  cXi (mod N),

and broadcasts the pair (c?t-,st-). When t values of such pairs are broadcast, each Pi can 
recover v =  a h(Mi (mod N ), which allows computation of the plaintext message as

M  =  v Xiei (mod N ) .

Verification:

Since adversaries may substitute broadcasted messages for some participants or even a 
malicious participant can broadcast a false message, one needs to verify the correctness 
of the plaintext message that he has computed. For this purpose, after having computed 
the message M , each Pi checks,

a h(-M) =  v (mod N ) .  (7.1)

If the equation holds true, the retrieved message is valid, otherwise another collabo­
ration of the intended group can recover the message.

7.4.5 Security Considerations

To discuss the security of the proposed group-oriented cryptographic system we observe 

the following (for more detail see [141]).

• Computing a pair of secret and public keys for a given ID is equivalent to solving 
a “hard” problem. That is, for a given pair ( z , ID) ,  the corresponding k may be 
computed from kID =  z~x — ID  (mod N ) .  However, this is equivalent to breaking 
an instance of the RSA cryptosystem [136] with modulus N. On the other hand, 
if we first fix fc, then K  can be computed form the pair (k, ID)  as

z =  (kID +  ID)~X (mod N ).

However, in order to determine the related secret key K , one has to solve a 
hard instance of the discrete logarithm problem with composite modulus, i.e., a K  

(mod N )  =  z.
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Note that, as pointed out in [74], the authority can create forged keys based on a 
given identity. However, this requires that one has more than one valid public key 

in the public registry.

• The proposed scheme utilises Shamir’s ( i ,n) threshold scheme to share an en­
crypted message, i.e., v =  a h(M  ̂ (mod N ). So, recovering the secret v needs the 

knowledge of at least t pairs (ĉ -, s*). If t — 1 participants { P i , . . . ,  P j-i, Pj+1, • • • 5 Pt] 
try to recover u, then they need to know Sj. However, without knowing K j, one has 
obviously to solve a Diffie-Heilman problem with a composite modulus, which is 
believed to be equivalent to factoring N  and computing discrete logarithms modulo 
each prime factor2.

• Although after broadcasting at least t pairs (</,-, st-) it is easy to compute v =  a ĥ M  ̂
(mod JV), the knowledge of v does not help an adversary to recover M. In fact, 
obtaining the message from a pair v and et- (without knowing K{) is equivalent to 
breaking the ElGamal cryptosystem [55] with composite modulus.

2This problem has been considered by McCurley [112] and is proven to be hard as long as at least 
one of the problems of computing discrete logarithms and factoring large integers remains intractable.



Chapter 8

Summary and Future Directions

In many cases, crucial decisions are left to a group of people rather than to an individual. 
The reasons for this are threefold.

1. A group is more reliable -  even in the absence of one or more members, the group 
can still make proper decisions.

2. A group is more trustworthy than an individual -  it is harder to corrupt the 
majority of the group than a single member.

3. A group is fairer and more equitable in their decision -  the selection of a wide 
range of participants representing different points of views (and interests) can in 
many cases eliminate or substantially reduce bias or prejudice.

Groups try to work out a decision which is an acceptable compromise to all parties 
(or to a majority). For example, to activate a nuclear weapon, at least two senior officers 
must concur. To open a bank vault or a deposit box, the cooperation of at least two 
senior managers is usually required. In these and many other examples, a group must 
agree to act if they are to be successful in recovering a secret element. The underlying 
security mechanisms, however, incorporate some kind of secret sharing schemes.

Society-oriented cryptography can provide for the secrecy of sensitive information 
in an organisation. All known solutions for society-oriented cryptography, however, 

implicitly or explicitly use secret sharing schemes.
In this thesis, we looked at two systems for the management of secret information, 

namely secret sharing schemes and society-oriented cryptography.
In order to study secret sharing schemes we reviewed well known systems proposed 

in the literature and clarified misconceptions about some schemes. Important issues in 
secret sharing schemes, such as verifiability of the shares and the reconstructed secret 
value were discussed and a protocol which prevents cheating in a particular on-line secret

131
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sharing scheme was presented. General schemes have been considered and a method 
which allows the construction of efficient general secret sharing schemes was presented. 
We have also proposed efficient solutions to sharing a secret in multilevel, or hierarchical, 

and compartmented access structures. The author’s contributions to the area of secret 
sharing schemes were presented in [71], [68], [72], [73] and [35].

In the second part, cryptography as a tool for solving security problems was dis­
cussed and a novel cryptosystem was presented. It was shown that traditional private- 
key cryptographic systems and conventional public-key cryptosystems are adequate for 
cases where there are two individuals in the system. Society-oriented cryptographic 
systems were investigated and two major classes of society-oriented cryptographic sys­
tems, threshold and group-oriented cryptographic systems, were discussed. A crypto­
graphic system which allows control of the flow of information in a hierarchical group 
was presented. Group-oriented cryptographic systems were discussed. Implementations 
of group-oriented cryptographic systems based on public-key and private-key cryptosys­
tems were presented. A self-certified group-oriented cryptosystem that works with no 
help of combiner was discussed. Our contributions to society-oriented cryptography were 
published in [67], [70], [132], [69] and [141].

8.1 Future Directions

There are several topics that are the subject of ongoing investigation by researchers in 
the area of secret sharing and society-oriented cryptography. This section outlines some 

of these directions.

8.1.1 Proactive Secret Sharing Schemes

The goal o f the implementation of a secret sharing scheme is to protect sensitive infor­
mation by distributing it among different locations. The idea behind this technique is 
that an adversary cannot obtain the secret as long as specific numbers of shares have not 
been compromised. Compromising the secret information, however, is a matter of time. 
An adversary or a group of adversaries may have enough time to compromise sufficient 
numbers of shares and hence to obtain the secret. This indicates that conventional secret 
sharing schemes might be insufficient to provide the secrecy of long-lived sensitive infor­
mation, such as a contract between two countries, proprietary trade-secret information, 

and so on.
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8.1.2 Ideal Threshold Cryptographic Systems

For ElGamal, DSS, and unconditionally secure threshold authentication (see, for exam­
ple, [51] and [111]), the size of the shares which each user must apply for his partial 
cryptographic operation is as small as the secret. But for an RSA-based (t,n)  threshold 
system the size of the (modified) share for each participant is about t times that of the 
secret. The question is:

in RSA-based threshold systems, is it possible to make shares shorter?

8.1.3 Avoiding the Trusted Dealer

In general, to setup a threshold cryptographic system, a trusted party, also called the 
dealer, distributes the secret among the users. The main drawback of threshold cryp­
tosystems with a trusted party is that the participants may not be able to agree on who . 
can be trusted. Sometimes it is relatively easy to find a trusted party if the members of 
the group know each other well. This is not always the case in practice. For example, it 
is difficult to agree on a party trusted by two countries.

ElGamal based threshold decryption without a trusted party has been proposed in 
[131]. ElGamal based threshold signature without a trusted party also has proposed in 
[77]. DSS based threshold signature without a trusted party has been considered by 
Langford [102] and a (2, n) system is proposed. However, for the RSA case the major 
problem is how to generate (jointly) the prime numbers, such that they are unknown to 
participants. In addition to several theoretical solutions, Boneh and Franklin [20] have 
proposed such an RSA based system, but their limitation is that p ^  2pf +  1.

8.1.4 Robust Threshold Cryptography

Another important issue in a threshold cryptographic system is to provide the assurance 
that the collaborating participants obtain a correct result even if there are some problems 
with communication channels or some participants intentionally cheating by sending false 
data. In some cases, like threshold unconditionally secure systems, it is easy to deal with 
this problem (see for example [51]). However, achieving this goal for arbitrary threshold 
systems is not an easy task. Gennaro, Jarecki, Krawczyk and Rabin [65] have proposed 

a robust sharing of RSA functions.
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8.1.5 Proactive Threshold Cryptosystems

With similar arguments to those regarding the need for a proactive secret sharing scheme, 
threshold cryptosystems are needed that can be applied proactively. Since the initial 
shares of participants are renewed in proactive secret sharing schemes, the collaborating 
participants of a threshold cryptosystem must still be able to compute their modified 
shares. A proactive RSA system has been proposed by Frankel, Gammell, MacKenzie 
and Yung [62].

A major technical difficulty in implementation of a proactive threshold RSA is how 
to update the shares in each time period, while not learning A(iV).
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