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ABSTRACT 
 

 As the size of the communication through networks and especially through 

Internet grew, there became a huge need for securing these connections. The symmetric 

and asymmetric cryptosystems formed a good complementary approach for providing 

this security. While the asymmetric cryptosystems were a perfect solution for the 

distribution of the keys used by the communicating parties, they were very slow for the 

actual encryption and decryption of the data flowing between them. Therefore, the 

symmetric cryptosystems perfectly filled this space and were used for the encryption 

and decryption process once the session keys had been exchanged securely. 

Parallelism is a hot research topic area in many different fields and being used to 

deal with problems whose solutions take a considerable amount of time. Cryptography 

is no exception and, computer scientists have discovered that parallelism could certainly 

be used for making the algorithms for asymmetric cryptosystems go faster and the 

experimental results have shown a good promise so far.  

This thesis is based on the parallelization of a famous public-key algorithm, 

namely RSA.  
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ÖZET 
 

Ağlar arasında ve de özellikle Internet üzerinde gerçekleşen veri iletişiminin 

boyutları arttıkça bu bağlantıları güvenli bir hale getirme ihtiyacı da önem kazanmıştır. 

Simetrik ve asimertik kriptosystemler ise bu soruna tümleşik bir çözüm sunmaktadırlar. 

Asimetrik kriptosistemler, anahtarların değişimi ile ilgili sorunlara mükemmel çözümler 

getirmesine karşın, veri iletişimi gerçekleşirken kullanılan şifreleme ve deşifreleme 

işlemleri için yavaş kalmaktadırlar. İşte simetrik kriptosistemler de, bağlantı için 

kullanılacak anahtarın değişiminin tamamlanmasını takiben bu boşluğu mükemmel bir 

şekilde doldururlar. 

Paralelizm bir çok alan için sıcak bir araştırma konusu olup çözümleri uzun 

zaman dilimleri gerektiren problemler için kullanılmaktadır. Kriptografi de bunlardan 

biridir ve asimetrik kriptosistemlerin daha hızlı çalıştırılması için paralel algoritmaların 

kullanılabileceği farkına varılmış ve deneysel sonuçlar da gayet umut verici sonuçlar 

ortaya koymuştur. 

Bu tez, sıkça kullanılan bir açık anahtar kriptosistemi olan RSA’nın 

paralelizasyonu ile ilgilidir. 
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CHAPTER 1 

 

PRIMES 
 

1.1 . Primes and Cryptography 

 

Complexity theory classifies a problem according to the minimum time and 

space needed to solve the hardest instances of the problem on a Turing Machine (or 

some other abstract model of computation). A Turing Machine (TM) is a finite state 

machine with an infinite read-write tape. A TM is a “realistic” model of computation in 

that problems that are polynomial solvable on a TM are also polynomial solvable on real 

systems and vice versa. 

Problems that are solvable in polynomial time are called tractable because they 

can usually be solved for reasonable size inputs. Problems that cannot be systemically 

solved in polynomial time are called intractable or simply “hard” because as the size of 

the input increases, their solution becomes infeasible on even the fastest computers. 

Turing proved that some problems are so hard they are undecidable in the sense that it 

is impossible to write an algorithm to solve them. In particular, he showed the problem 

of determining whether an arbitrary TM (or program) halts is undecidable. Many other 

problems have been shown to be undecidable by providing that if they could be solved, 

then the “halting problem” could be solved. 

There are several important complexity classes and they have several 

relationships with others. 

The class P consists of all problems solvable in polynomial time. 

The class NP (nondeterministic polynomial) consists of all problems solvable in 

polynomial time on a nondeterministic TM. This means if the machine guesses the 

solution, it can check its correctness in polynomial time. Of course, this does not really 

“solve” the problem, because there is no guarantee the machine will guess the right 

answer; it depends on the capability of the computer to guess the answer correctly. 

To systematically (deterministically) solve certain problems in NP seems to 

require exponential time. An example of such a problem is the “knapsack problem”: 

given a set of n integers A = {a1, ..., an} and an integer S, determine whether there exists 

a subset of A that sums to S. The problem is clearly in NP because for any given subset, 
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it is easy to check whether it sums to S. Finding a subset that sums to S is much harder, 

however, as there are 2
n
 possible subsets; trying all of them has time complexity T = 

O(2
n
). Another example of a problem that seems to have exponential time complexity is 

the “satisfiability problem”, which is to determine whether there exists an assignment of 

values to a set of n boolean variables v1, ..., vn such that a given set of clauses over the 

variables is true. 

The class NP includes the class P because any problem polynomial solvable on 

a deterministic TM is polynomial solvable on a nondeterministic one. If all NP 

problems are polynomial solvable on a deterministic TM, then P = NP. Although many 

problems in NP seem much “harder” then the problems in P (e.g., the knapsack problem 

and satisfiability) no one has yet proved P ≠ NP. 

It has been shown that the satisfiability problem has the property that every other 

problem in NP can be reduced to it in polynomial time. This means that if the 

satisfiability problem is polynomial solvable, then every problem in NP is polynomial 

solvable, and if some problem in NP is intractable, then satisfiability must also be 

intractable. Since then, other problems (including the knapsack problem) have been 

shown to be equivalent to satisfiability in the preceding sense. This set of equivalent 

problems is called the NP-complete problems, and has the property that if any one of 

the problems is in P, then all NP problems are in P and P = NP. Thus, the NP-complete 

problems are the “hardest” problems in NP. The fastest known algorithms for 

systematically solving these problems have worst-case time complexities exponential in 

the size n of the problem. Finding a polynomial-time solution to one of them would be a 

major breakthrough in computer science. 

A problem is shown to be NP-complete by proving it is NP-hard and in NP. A 

problem is NP-hard if it cannot be solved in polynomial time unless P = NP. To show a 

problem A is NP-Hard, it is necessary to show that some NP-Complete problem B is 

polynomial-time reducible to an instance of A, and a polynomial-time algorithm for 

solving A would also solve B. To show A is in NP, it is necessary to prove that a correct 

solution can be proved correct in polynomial time. 

The class CoNP consists of all problems that are the complement of some 

problem in NP. Intuitively, problems in NP are of the form “determine whether a 

solution exists,” whereas the complementary problems in CoNP are of the form “show 

there are no solutions.” It is now known whether NP=CoNP, but there are problems that 

fall in the intersection NP ∩ CoNP. An example of such a problem is the “composite 
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numbers problem”: given an integer n, determine whether n is composite (i.e., there 

exist factors p and q such that n = pq or prime (i.e., there are no such factors). The 

problem of finding factors, however, may be harder than showing their existence. 

 

 

 

Figure 1.1. Complexity Classes.  

  

The class PSPACE consists of those problems solvable in polynomial space, but 

not necessarily polynomial time. It includes NP and CoNP, but there are problems in 

PSPACE that are thought by some to be harder than problems in NP and CoNP. The 

PSPACE-complete problems have the property that if any one of them is in NP, then 

PSPACE = NP, or if any one is in P, then PSPACE = P. The class EXPTIME consists 

of those problems solvable in exponential time, and includes PSPACE. 

 

1.1.1. Ciphers Based on Computationally Hard Problems 
 

In their 1976 paper, Diffie and Hellman suggested applying computational 

complexity to the design of encryption algorithm. They noted that NP-complete 
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problems might make excellent candidates for ciphers because they cannot be solved in 

polynomial time by any known techniques. Problems that are computationally more 

difficult than the problems in NP are not suitable for encryption because the enciphering 

and deciphering transformations must be fast (i.e., computable in polynomial time). But 

this means the cryptanalyst could guess a key and check the solution in polynomial time 

(e.g., by enciphering known plaintext). Thus, the cryptanalytic effort to break any 

polynomial-time encryption algorithm must be in NP. 

Diffie and Hellman speculated that cryptography could draw from the theory of 

NP complexity but examining ways in which NP-complete problems could be adapted 

to cryptographic use. Information could be enciphered by encoding it in an NP-

complete problem in such a way that breaking the cipher would require solving the 

problem in the usual way. With the deciphering key, however, a shortcut solution would 

be possible. 

To construct such a cipher, secret “trapdoor” information is inserted into a 

computationally hard problem that involves inverting a one-way function. A function f 

is a one-way function if it is easy to compute f(x) for any x in the domain of f, while, 

for almost all y in the range of f, it is computationally infeasible to compute f
−1

(y) even 

if y is known. It is a trapdoor one-way function if it is easy to compute f
−1

 given 

certain additional information. This additional information is the secret deciphering key. 

Public-key systems are based on this principle. The trapdoor knapsack schemes 

are based on the knapsack problem. The RSA scheme forming the basis of this thesis 

work is based on factoring composite numbers.  

The strength of such a cipher depends on the computational complexity of the 

problem on which it is based. A computationally difficult problem does not necessarily 

imply a strong cryptosystem; however, Shamir gives three reasons: 

 

1. Complexity theory usually deals with single isolated instances of a problem. 

A   cryptanalyst often has a large collection of statistically related problems 

to solve (e.g., several ciphertexts generated by the same key). 

2. The computational complexity of a problem is typically measured by its 

worst-case or average-case behavior. To be useful as a cipher, the problem 

must be hard to solve in almost all cases. 

3. An arbitrarily difficult problem cannot necessarily be transformed into a 

cryptosystem, and it must be possible to insert trapdoor information into the 
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problem in such a way that a shortcut solution is possible with this 

information and only with this information (Denning 1982).
1
 

 

1.2 . Prime Number 

 

Definition 1.1. A prime number is an integer greater than 1 that can only be divided by 

1 and itself with no remainder. 

 

Here are the first few prime numbers: 

 

2,3,5,7,11,13,17,19,23,29 … (1.1) 

 

As proceeded in the set of natural numbers N = {1,2,3, . . .}, primes are seen less 

and less frequent in general. However, there is no largest prime number. As the Greek 

mathematician Euclid stated in the ancient times, for every prime number p, there exists 

a prime number p′ such that p′ is greater than p. 

Prime numbers are important since they form the building blocks of the 

multiplicative structure on integers, which means that every integer can be factorized in 

terms of prime numbers and this assertion is known as The Fundamental Theorem of 

Arithmetic. This property is very useful in many application areas of mathematics 

(WEB_1 2002). 

 

1.3. Strong Prime 

 

The security of the RSA cryptosystem relies heavily upon the characteristics of 

the modulus chosen for the encryption and decryption process. 

 

 

 

 

 

                                                 
1
 Denning, E. R. D., 1982. “Cryptography and Data Security”, Purdue University, (Addison-Wesley, 

USA), pp. 31-35. 
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1.3.1. Strong Prime Definition 

 

It is desired that the modulus is not to be factorized by any special-purpose 

factoring algorithm within any feasible amount of time. There are four basic factoring 

attacks that can be applied to an RSA modulus. 

The first factoring technique is related with the polynomial running time passed 

until the smallest prime factor of the product is found. One simple technique is to divide 

the product by increasing numbers starting from a small number until a factor is found, 

which is called as trial division. If a small factor p is found, then it means that the 

running time is O(p). There are also more complex algorithms that can perform the 

same task faster than O(p). To prevent this attack, the prime numbers must be chosen 

approximately the same size during the formation of the RSA modulus to make this 

attack infeasible for the attacker. 

The second factoring technique developed by Fermat is similar to the previous 

technique, however, it starts searching starting from the square root of the product. The 

running time of the algorithm is directly proportional to the difference between the two 

prime factors of the RSA modulus. It means that if the two primes are chosen very close 

to each other, then this factoring technique will be able to find them easily using the 

product. Therefore, there must be a substantial difference between the primes. 

The first and the second factoring technique have a contradictory nature. To 

avoid the RSA modulus from being factored by these two techniques, the primes must 

not only be approximately the same size but also be far from each other significantly. 

For example, if the primes with two hundred decimal digits will be used, the first prime 

might be 2x10
100

 whereas the second might be 4x10
100

. Since they have the same size 

and there is a substantial difference between them (which is 2x10
100

), then the two 

requirements have been satisfied. In fact, if the two primes are selected very large with 

the same size, these requirements can be fulfilled more easily. 

For the third factoring technique, there are two special-purpose algorithms that 

are very similar indeed. The first algorithm is called Pollard’s p − 1 method. 

Considering a product with a prime factor p, if p−1 has only small prime factors, then 

this algorithm can factor the product in a reasonable amount of time. The second 

algorithm,   Williams’ p + 1 method, differs from the first one by taking p + 1 into 

consideration instead of p − 1. As a consequence, to avoid suffering from this kind of 
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attacks, for each prime p factor of the RSA modulus, p + 1 and p − 1 must contain at 

least one large prime factor, which means that p − 1 and p + 1 must be a multiple of 

large primes r and s, respectively. Mathematically; 

 

p ≡ 1 (mod r) (1.2) 

 

p ≡ s − 1(mod s) (1.3) 

 

The last kind of attacks is related with the repeatedly application of the 

encryption algorithm to the ciphertext produced by the RSA encryption. This method 

will get a large percentage of the plaintext after the application of the algorithm for a 

small number of times if the chosen RSA modulus is poor. There are two approaches 

proposed to decrease the probability of success of these attacks: 

 

1. Each prime factor p of the RSA modulus should be chosen such that             

p − 1 = 2r   where r is a large prime, which is a case of p ≡ 1 (mod r) 

described in the previous paragraph. 

2. Each prime factor p of the RSA modulus should be chosen such that p − 1 is 

a multiple of r where r is a large prime and r − 1 is also a multiple of another 

large prime t. 

 

Among these two approaches, the second one will be preferred since it is much 

easier to satisfy its requirements than the first one. 

Combining all the requirements described above, the definition of a strong prime 

comes to the scene: 

 

Definition 1.2. A strong prime is a prime that satisfies all the conditions shown below: 

 

p ≡ 1 (mod r) (1.4) 

 

p ≡ s − 1 (mod s) (1.5) 

 

r ≡ 1 (mod t) (1.6) 
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where p, r, s, and t are all large primes. 

 

1.3.2. Strong Prime Construction 

 

Some primes possess special characteristics over the others and they are given 

certain names. Other than strong prime, there is also another kind of prime called as 

double prime. 

 

Definition 1.3. A prime r is a double prime if it satisfies the requirement of 

 

r ≡ 1 (mod t) (1.7) 

 

where t is another prime. 

 

Definition 1.4. A prime p is a simple prime if it does not possess any special 

characteristics. 

 

The definitions of these primes are not mutually exclusive. In fact, a strong 

prime is also a double prime and thus a simple prime in turn. However, the reverse is 

not always true. It means, a simple prime may be a double prime or not until it is looked 

for if it satisfies the requirements. 

To generate a strong prime, first, two simple primes, s and t must be generated. 

After this, a double prime r should be chosen such that r − 1 is a multiple of t. To 

search for such a double prime r, an integer k can be used to calculate kt + 1 and 

iterated until kt + 1 is a prime. 

Using Theorem 1.1, a strong prime p can be calculated. 

 

Theorem 1.1. If r and s are odd primes, then prime p satisfies 

 

p ≡ 1 (mod r) ≡ s − 1 (mod s) (1.8) 

 

if p is of the form 
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p = u(r, s) + krs (1.9) 

 

where 

 

u(r, s) = s
r−1

 − r
s−1

 mod rs (1.10) 

 

and k is an integer. 

 

Since r and s are both odd, rs is odd and krs is alternately odd and even while 

iterating k. The initial value of p (denoted as p0) should be chosen so that p0 is odd, 

which means that if u(r, s) is odd then p0 = u(r, s), otherwise p0 = u(r, s) + rs. 

Then, 2krs will be added to p0 continuously until a prime is found since the sum 

of an odd number by an even number is always odd. Consequently, the prime p takes 

the form of p0 + 2krs. 

The pseudocodes related to simple, strong and double prime generation are 

given in Algorithm 1.1, Algorithm 1.2, and Algorithm 1.3. 

 

Algorithm 1.1. Generating Strong Primes. 

procedure StrongPrime(seed1,seed2:positive integers) 

{seed1 and seed2 will be used to feed the random number generator} 

 

s:=SimplePrime(seed1) 

t:=SimplePrime(seed2) 

r:=DoublePrime(t) 

rs:=r*s 

u:=(rs+modpower(s,r-1,rs)-modpower(r,s-1,rs)) mod rs 

/*  modpower(a,b,c) calculates aˆb mod c  */ 

if even(u) then u:=u+rs 

while not certify(u) 

begin 

u:=u+2rs 

end 

{u is the value of the strong prime} 
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Algorithm 1.2. Generating Double Primes. 

 

 

Algorithm 1.3. Generating Simple Primes. 

 

1.4. Prime Certification 

 

Primality testing is the process of distinguishing primes from composites 

(products of more than one prime). In the last two decades, the importance of primality 

testing gained much importance after the introduction of the public-key cryptography 

that is now the standard form for encryption for electronic commerce. The security of 

this type of cryptography primarily relies on the difficulty involved in factoring a large 

integer into its prime factors. Certification of a prime candidate is accomplished by 

using mathematical methods some of which will be described soon (Greenfield 1994).
2
 

                                                 
2
 Greenfield, J. S., 1994. “Distributed Programming Paradigms with Cryptography Applications”, 

Distributed Computing Environments Group, M/S B272, Los Alamos, New Mexico, USA, pp. 37-44. 

procedure DoublePrime(x:positive integer) 

{x is assumed to be a prime that will be used to find a double prime} 

 

do 

begin 

y:=k*x+1 

k:=k+2 

end while(not certify(y)) 

{y is the value of the double prime} 

procedure SimplePrime(x:positive integer) 

{x is the starting point for searching a prime} 

 

if even(start) then start:=start+1 

while not certify(start) 

begin 

start:=start+2 

end 

{start is the value of the simple prime} 
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Both the ancient Greeks and the ancient Chinese independently developed 

primality tests. One of the simplest and most famous primality test is the Sieve of 

Eratosthenes. 

The Sieve of Eratosthenes. Eratosthenes lived in Greece circa 200 B.C. His 

method works as follows. A number n is chosen to test for primality. A list of all 

integers up to the largest integer that is less than or equal to n  is made. Next, 2 is 

circled and all its multiples are crossed off. Then, 3 is circled and all its multiples are 

crossed off. This process is repeated by circling the next least integer that has not been 

crossed off yet and again, crossing off its multiples. Each of these circled numbers is 

tested to see if any divides n. If the list of circled numbers is exhausted and no divisor is 

found, then n is prime. This algorithm is based on the simple observation that, if n is 

composite, then n has a prime factor less than or equal to n . Although the algorithm 

itself is very straightforward and easy to implement, it is not efficient. In the application 

of cryptography, most primality testing is concerned with large numbers, usually in 

excess of 100 digits and often much larger. For example, if a number with 100 digits is 

to be tested for primality, then at least all the primes up to 10
50

 must be found, which 

makes the method inefficient. 

There are other approaches to the problem of finding a faster algorithm for 

primality testing. One way is to find a pattern among primes, and then determine if a 

given integer n follows that pattern. So far, no complete and easily implementable 

pattern has been found. Another method is to find a pattern among all composites, and 

then determine if a given n follows that pattern. In fact, these two methods are the same, 

since if an integer is not prime, then it is composite and vice versa. 

The two more approaches discussed below are all based on finding patterns that 

are unique to composites. However, these approaches are not perfect. The patterns that 

they rely on fit most, but not all, composites. In other words, the numbers fitting the 

patterns are always composite, but there are some exceptions. These exceptions are 

called as pseudoprimes. Despite this flaw, test with almost perfect accuracy are quite 

useful in many applications. 

There are some tests such as the Sieve of Erastosthenes that fully establish 

primality and do so even faster. One such test is the Elliptic Curve Primality Procedure 

(ECPP). However, whereas composite-based tests can digest a 500-digit number in only 

a few minutes, ECPP takes several hours. Therefore, though ECPP is much more 
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efficient than the Sieve of Eratosthenes, it is not nearly as efficient as other tests. 

Generally, ECPP is used to verify results given by the other tests. 

Two composite-based tests will be discussed below: Fermat Primality Test and 

Strong Pseudoprimality Test (Miller-Rabin Test). 

 

1. Fermat Primality Test. In 1640, Fermat rediscovered what the ancient 

Chinese had known nearly 200 years before him. The result of his work is 

now known as Fermat’s Little Theorem. 

 

Theorem 1.2. (Fermat’s Little Theorem). Let p be a prime, and a any 

positive integer. If gcd(p, a) = 1, then 

 

a
p−1

 ≡ 1 (mod p) (1.11) 

 

Fermat’s primality test is another form of this theorem: 

 

Theorem 1.3. (Fermat’s Primality Test). An odd positive whole number n 

is composite if there exists a positive whole number a such that 

 

gcd(a, n) = 1 and a
n−1

 ≠ 1 (mod n) (1.12) 

 

Unfortunately, some composites are pseudoprimes. 

 

Definition 1.5. Let n be a composite. If a
n−1

 ≡ 1 (mod n) for every positive 

integer a with gcd(a, n) = 1, then n is called a Carmichael number. 

 

Carmichael numbers are few and far between. Richard Pinch (unpublished) 

has recently found that there are 246,683 Carmichael numbers below 10
16

. 

Below 10
16

, there are 279,238,341,033,925 primes; so there is less than a 

one-in-a-billion chance that a number is a Carmichael number. Fermat’s Test 

could be a perfect test if there were some way to easily distinguish a prime 

from a Carmichael number, however, nobody has succeeded that. 

2. Strong Pseudoprimality Test. Fermat’s Test can be improved with an 

algorithm based on the following theorem given by G. Miller. 
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Theorem 1.4. Let n be an odd prime, and write n in the form 1 + 2
s
 * d 

where d is odd. Then the Miller-Rabin sequence 

 

a
d
, a

2d
, . . . , ds

a
*2 1−

, ds

a
*2

 (mod n) (1.13) 

 

ends with 1; moreover, if a
d
 is not congruent to 1 (mod n), then the value 

directly preceding the first appearance of 1 is n − 1. 

 

This theorem also suggests a concept of pseudoprime: 

 

Definition 1.6. If a composite n has the characteristics described in the 

previous theorem for some base a, then n is called a strong pseudoprime to 

the base a. If n is either a prime or a pseudoprime, then n is called probably 

prime. 

 

To implement this theorem, it can be restated as follows: 

 

Proposition 1.1. (Strong Pseudoprimality Test). If n − 1 = 2
s
 * d with d odd 

and s nonnegative, then n is probably prime if a
d
 ≡ 1 (mod n) or

r
d

a
2

≡ n − 1 

(mod n) for some nonnegative r less than s. 

 

This test is even stronger than Fermat’s Test; in fact, it reduces the number 

of pseudoprimes by half. If S(x) is the probability that x is a strong 

pseudoprime, as x goes to infinity, S(x) goes to zero. So, the larger x is, the 

better the Strong Test is. More important, there is no strong pseudoprime 

equivalent to the Carmichael number. 

Since Miller-Rabin Test is a probabilistic test, the accuracy is really 

important, which is stated as follows: 

 

Proposition 1.2. (Miller-Rabin Probabilistic Primality Test). While testing 

an odd integer n for k randomly selected bases, if n is prime, then the result 
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of the test is always correct. If n is composite, then the probability that n 

passes all k tests is at most 

k










4

1
( McGregor-Dorsey 1991).

3
 

 

Miller-Rabin test is the prime certification algorithm for this thesis since it is fast 

when compared to nonprobabilistic prime certification methods (which is the main 

reason for the existence of probabilistic prime certification methods), highly reliable 

since the probability of the test to erroneously certify a composite number as a prime 

number is equal to 

k










4

1
as stated in Proposition 1.2 where k is number of tests applied, 

and does not have a flaw caused by Carmichael numbers. The pseudocode for the 

Miller-Rabin Test is given in Algorithm 1.4. 

 

Algorithm 1.4. Miller-Rabin Test 

                                                 
3
 McGregor-Dorsey Z. S., 1991. “Methods of Primality Testing”, pp. 133-141. 

 

procedure miller rabin test(p,factor:integer) 

{p is the prime candidate and factor is to identify how many times to repeat 

the test to decrease the probability of an undetected composite selected as a 

prime} 

 

composite:=false 

write p in the form of p = 1 + 2ˆs * t where t is an odd number 

while factor > 0 

begin 

select a random base b that is between 1 and p-1 

if bˆt (mod n) := 1 or bˆt (mod n) := n-1 then continue with the next base to test 

else 

begin 

for i:=1 to s 

begin 

t:=t*2 

if bˆt (mod n) := 1 composite := true 

else if bˆt (mod n) := n -1 then continue with the next base to test 

end 

composite:=true 

end 

factor := factor - 1 

end 

{composite is the return value} 
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To decrease the time passed while certifying a prime candidate, trial division 

will be performed with small prime numbers to test if the candidate can be divided by 

them or not before using the other slower test, that is, Miller- Rabin Test. The complete 

certify algorithm is now complete and shown in Algorithm 1.5. 

 

Algorithm 1.5. Certification Procedure. 

 

The trial division algorithm shown in Algorithm 1.6 uses the first n small primes to test 

if the candidate is divisible by any of them or not. 

 

Algorithm 1.6. Testing for Small Factors. 

 

 

 

 

 

 

 

procedure certify(p:integer) 

{p is the prime candidate} 

 

passed:=false 

if not SmallFactor(p) then 

passed:=miller rabin test(p,40) 

{passed is the return value} 

procedure SmallFactor(p:integer) 

{p is the prime candidate} 

found:=false 

while not found and j < NumPrimes do begin 

found:=(p mod primes[j]=0) 

j:=j+1 

end 

{found is the return value} 
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CHAPTER 2 

 

RSA 

 

2.1. Cryptosystems and Cryptanalysis 

 

Cryptography deals with the transformation of ordinary text (plaintext) into 

coded form (ciphertext) by encryption, and transformation of ciphertext into plaintext 

by decryption. Normally these transformations are parameterized by one or more keys. 

The reason for encrypting text is security for transmissions over insecure channels 

(Simmons 1992).
4
  

Until the advent of computers, one of the main constraints on cryptography had 

been the ability of the code clerk to perform the necessary transformations, often on a 

battlefield with little equipment. An additional constraint has been the difficulty in 

switching over quickly from one cryptographic method to another one, since this entails 

retraining a large number of people. However, the danger of a code clerk being captured 

by the enemy has made it essential to be able to change the cryptographic method 

instantly if need be. These conflicting requirements have given rise to the model shown 

below. 

The messages to be encrypted, known as the plaintext, are transformed by a 

function that is parameterized by a key. The output of the encryption process, known as 

the ciphertext, is then transmitted, often by messenger or radio. The so-called enemy, 

or intruder, hears and accurately copies down the complete ciphertext. However, 

unlike the intended recipient, he does not know what the decryption key is and so 

cannot decrypt the ciphertext easily. Sometimes the intruder can not only listen to the 

communication channel (passive intruder) but can also record messages and play them  

back later, inject his own messages, or modify legitimate messages before they get to 

the receiver (active intruder). The art of breaking ciphers, called cryptanalysis, and the 

art devising them (cryptography) is collectively known as cryptology (Tanenbaum 

2003). 

 

                                                 
4
 Simmons, G. J., 1992. “Contemporary Cryptology”, (IEEE Press, New York, USA), p. 180. 
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Figure 2.1. The Encryption Model (Symmetric Case). 

(Source: Tanenbaum 2003) 

 

Three of the most important services provided by cryptosystems are secrecy, 

authenticity, and integrity. Secrecy refers to denial of access to information by 

unauthorized individuals. Authenticity refers to validating the source of a message; that 

is, that it was transmitted by a properly identified sender and is not a replay of a 

previously transmitted message. Integrity refers to assurance that a message was not 

modified accidentally or deliberately in transit, by replacement, insertion, or deletion. A 

fourth service that may be provided is nonrepudiation of origin, that is, protection 

against a sender of a message later denying transmission. 

Classic cryptography deals mainly with the secrecy aspect. It also treats keys as 

secret. In the past 15 years, two new trends have emerged: 

 

1. Authenticity as a consideration that rivals and sometimes exceeds secrecy in 

importance. 

2. The notion that some key material need not be secret. 

 

The first trend has arisen in connection with applications such as electronic mail 

systems and electronic funds transfers. In such settings, an electronic equivalent of the 

handwritten signature may be desirable. Also, intruders into a system often gain entry 

by masquerading as legitimate users; cryptography presents an alternative to password 

systems for access control. 

The second trend addresses difficulties that have traditionally accompanied the 

management of secret keys. This may entail the use of couriers or other costly, 
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inefficient, and not really secure methods. In contrast, if keys are public, the task of key 

management may be substantially simplified. 

An ideal system might solve all of these problems concurrently, that is, using 

public keys, providing secrecy, and providing authenticity. Unfortunately, no single 

technique proposed to date has met all three criteria. Conventional systems such as the 

Data Encryption Standard (DES) or the Advanced Encryption Standard (AES) require 

management of secret keys; systems using public key components may provide 

authenticity but are inefficient for bulk encryption of data due to low bandwidths. 

Fortunately, conventional and public key systems are not mutually exclusive; in 

fact, they can complement each other. Public key systems can be used for signatures 

and also for distribution of keys used in systems such as DES or AES. Thus, it is 

possible to construct hybrids of conventional and public key systems that can meet all 

of the above goals: secrecy, authenticity, and ease of key management. 

In the following, E and D represent encryption and decryption transformations, 

respectively. It is always required that D(E(M)) = M. It may also be the case that 

E(D(M)) = M; in this event E or D can be employed for encryption. Normally, D is 

assumed to be secret, but E may be public. In addition, it may be assumed that E and D 

are relatively easy to compute when they are known. 

 

2.1.1. Requirements for Secrecy 

 

Secrecy requires that a cryptanalyst (i.e., an intruder) should not be able to 

determine the plaintext corresponding to given ciphertext, and should not be able 

reconstruct D by examining ciphertext for known plaintext. This translates into two 

requirements for a cryptosystem to provide secrecy: 

 

1. A cryptanalyst should not be able to determine M from E(M); that is, the 

cryptosystem should be immune to ciphertext-only attacks. 

2. A cryptanalyst should not be able to determine D given E(Mi) for any 

sequence of plaintexts M1,M2,...; that is, the cryptosystem should be immune 

to known-plaintext attacks. This should remain true even the cryptanalyst 

can choose Mi (chosen-plaintext attack), including the case in which the 
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cryptanalyst can inspect E(Mi),...,E(Mj) before specifying Mj+1 (adaptive 

chosen-plaintext attack). 

 

To illustrate the difference between these two categories, two examples will be 

used. First, it is supposed that E(M) = M
3 

modN, N = p * q, where p and q are large 

secret primes. Then, it is infeasible for a cryptanalyst to determine D, even after 

inspecting numerous pairs of the form M, E(M). However, an eavesdropper who 

intercepts E(M) = 8 can conclude M = 2. Thus, a ciphertext-only attack may be feasible 

in an instance where known- or chosen-plaintext attack is not useful. 

On the other hand, it is supposed that E(M)=5M mod N where N is secret. Then, 

interception of E(M) would not reveal M or N; this would remain true even if several 

ciphertexts were intercepted. However, an intruder who learns that E(12) = 3 and   

E(16) = 4 could conclude N = 19. Thus, a known- or chosen-plaintext attack may 

succeed where a ciphertext-only attack fails. 

Deficiencies in (1), that is, vulnerability to ciphertext-only attack, can frequently 

be corrected by slight modifications of the encoding scheme, as in the M
3 

mod N 

encoding above. Adaptive chosen-plaintext is often regarded as the strongest attack. 

Secrecy ensures that decryption of messages is infeasible. However, the 

enciphering transformation E is not covered by the above requirements; it could even be 

public. Thus, secrecy leaves open the possibility that an intruder could masquerade as a 

legitimate user, or could compromise the integrity of a message by altering it. That is, 

secrecy does not imply authenticity/integrity. 

 

2.1.2. Requirements for Authenticity and Integrity 

 

Authenticity requires that an intruder should not be able to masquerade as a 

legitimate user of a system. Integrity requires that an intruder should not be able to 

substitute false ciphertext for legitimate ciphertext. Two minimal requirements should 

be met for a cryptosystem to provide these services: 

 

1. It should be possible for the recipient of a message to ascertain its origin. 

2. It should be possible for the recipient of a message to verify that it has not 

been modified in transit. 
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These requirements are independent of secrecy. For example, a message M 

could be encoded by using D instead of E. Then, assuming D is secret, the recipient of 

C = D(M) is assured that this message was not generated by an intruder. However, E 

might be public; C could then be decoded by anyone intercepting it. 

A related service which may be provided is nonrepudiation; that is, a third 

requirement may be added if desired: 

 

3. A sender should not be able to deny later that he sent a message. 

It may also be added that: 

4. It should be possible for the recipient of a message to detect whether it is a 

replay of a previous transmission (Simmons 1992).
5
 

 

2.2. Public-Key Cryptography 

 

2.2.1. The Need for Public-Key Cryptography 

 

Before going on to the concept of public-key systems, the reason for their 

existence must be argued. Before these systems, there was symmetric ones and their 

weaknesses resulted in a need for the asymmetric ones. One of the problems is the key 

distribution problem. Since each party must have the key to encrypt or decrypt a 

message, it soon became a problem to distribute this key to everyone as the number of 

the parties increased. Furthermore, if the conversations are distinct, then each one must 

have a unique key. 

If sharing keys is not an option, a trusted third party (TTP) can be used. In this 

scheme, the trusted third party shares a key with each individual. Actually, the keys are 

key-encrypting keys, or KEKs. When one individual wants to communicate with the 

other side, he requests a session key from the TTP. To fulfill the request, the TTP 

generates a new session key, encrypts it with the KEK they are sharing and sends it to 

the requester. The TTP also sends the session key to the other side by encrypting it with 

the other KEK they are sharing this time. Now, each side can exchange messages 

securely without using the TTP. However, the main disadvantage with this solution is 

                                                 
5
 Simmons, G. J., 1992. “Contemporary Cryptology”, (IEEE Press, New York, USA), pp. 180-183. 
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that the TTP can read all the messages and some people may not want to trust such a 

TTP (Burnett and Paine 2001).
6
  

 

2.2.2. Historical Background 

 

In the mid-1970s, Stanford University graduate student Whitfield Diffie and 

professor Martin Hellman investigated cryptography in general and the key distribution 

problem in particular. The two came up with a scheme whereby two people could create 

a shared secret key by exchanging public information. They could communicate over 

public lines, sending information back and forth in a form readable by eavesdroppers, at 

the same time generating a secret values not made public. The two correspondents 

would then be able to use that secret value as a symmetric session key. The name given 

to this is Diffie-Hellman, or DH. 

DH solves a problem –sharing a key– but it is not encryption. That does not 

make it unusable; in fact, DH is in use to this day. But it was not the “ultimate” 

algoritm, one that could be used for encryption. Diffie and Hellman published their 

result in 1976. That paper outlined the idea of public-key cryptography (one key 

encrypts, the other descrpts), pointed out that the authors did not yet have such an 

algorithm, and described what they had so far. 

Ron Rivest, a professor at MIT, liked Diffie and Hellman’s idea of public-key 

cryptography and decided to create the ultimate algorithm. He recruited two colleagues 

–Adi Shamir and Len Adleman– to work on the problem. In 1977, the trio developed an 

algorithm that could indeed encrypt data. They published the algorithm in 1978, and it 

became known as RSA, the initials of its inventors. 

In 1985, working independently, two men Neal Koblitz of the University of 

Washington and Victor Miller of IBM’s Watson Research Center– proposed that an 

obscure branch of math called elliptic curves could be used to perform public-key 

cryptography. By the late 1990s, this class of algorithms had begun to gain momentum. 

Since 1977 (and 1985), many researchers have invented many public-key 

algorithms. 

To this day, however, the most commonly used public-key algorithm for solving 

the key distribution problem is RSA. In second place is DH, followed by elliptic curves. 

                                                 
6
 Burnett, S. and Paine, S. 2001. “RSA Security’s Official Guide to Cryptography”, (Osborne, Berkeley, 

California, USA), p. 85. 
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2.2.3. Public-Key Cryptosystems 

 

As explained before, a cryptosystem is an algorithm that can convert input data 

into something unrecognizable (encryption), and convert the unrecognizable data back 

to its original form (decryption). The idea behind any public-key cryptosystem is that a 

user can release a public key which can be used only for encryption; in other words, that 

key cannot be used to decipher encrypted text without performing a lot of work. Private 

and public keys are associated by a function. In the RSA cryptosystem, the private and 

public keys are linked by the factorization of prime numbers.  

Public-key cryptosystems are based on trap-door one-way functions. A one-way 

function is a function for which forward computation is easy, while the backward 

computation is very hard. In other words, a function f : X → Y (where X and Y are 

arbitrary sets) is one-way if it is easy to compute f(x) for every x € X, while it is hard for 

most y € Y to find any x € X such that f(x) = y. 

A function is said to be trap-door one-way if it is possible to easily perform both 

forward and backward computation; however, the algorithm for backward computation 

cannot be easily determined without certain secret information, even with knowledge of 

the complete algorithm for forward computation. In a public-key cryptosystem, an 

individual makes the algorithm public to allow anyone encipher a message by using it. 

All the messages directed to a specific receiver are encrypted using a key that is known 

by every individual, but the key which will be used to do the backward computation for 

getting the original message is known only by the receiver. 

It has not been proven that any one-way functions exist, but some known 

functions are candidates. For example, integer multiplication is very easy, while the 

inverse function, integer factoring, is currently considered to be very hard. The 

existence of one-way functions is related to the P = NP question (Greenfield 1994).
7
  

 

2.2.3.1. Secrecy and Authenticity 

 

To support secrecy, the transformations of a public key system must satisfy   

D(E(M)) = M. For example, if A wishes to send a secure message M to B. Then, A must 

                                                 
7
 Greenfield, J. S., 1994. “Distributed Programming Paradigms with Cryptography Applications”, 

Distributed Computing Environments Group, M/S B272, Los Alamos, New Mexico, USA, p. 11. 
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have access to EB, the public transformation of B. Now, A encrypts M via C = EB(M) 

and sends C to B. On receipt, B employs his private transformation DB for decryption; 

that is, B computes DB(C) = DB(EB(M)) = M. If A’s transmission is overheard, the 

intruder cannot decrypt C since DB is private. Thus, secrecy is ensured. However, 

presumably anyone can access EB; B has no way knowing the identity of the sender. 

Also, A’s transmission could have been altered. Thus, authenticity and integrity are not 

assured. 

To support authentication and integrity, the transformations in a public key 

system must satisfy E(D(M)) = M. If A wished to send an authenticated message M to 

B, that is, B will be able to verify that the message was sent by A and was not altered; in 

this case, A could use his private transformation DA to compute C = DA(M) and send C 

to B. That is, A employs DA as a de facto encryption function. Now B can use A’s 

public transformation EA to find EA(C) = EA(DA(M)) = M; that is, EA acts as a de facto 

decryption function. Assuming M is valid plaintext, B knows that C was in fact sent by 

A, and was not altered in transit. This follows from the one-way nature of EA: if a 

cryptanalyst, starting with a message M, could find C′ such that EA(C′) = M, this would 

imply that he can invert EA, a contradiction. 

If M, or any portion of M, is a random string, then it may be difficult for B to 

ascertain that C is authentic procedure and unaltered merely by examining EA(C). 

Actually, however, a slightly more complex procedure is generally employed: an 

auxiliary public function H is used to produce a much smaller message S = DA(H(M)) 

that A sends to B along with M. On receipt, B can compute H(M) directly. The latter 

may be checked against EA(S) to ensure authenticity and integrity, since once again the 

ability of a cryptanalyst to find S′ for a given M would violate the one-way nature of EA. 

Actually, H must also be one-way. 

Sending C or S above ensures authenticity, but secrecy is nonexistent. In the 

second scheme, M was sent in the clear along with S; in the first scheme, an intruder 

who intercepts C = DA(M) presumably has access to EA and hence can compute M = 

EA(C). Thus in either case, M is accessible to an eavesdropper. 

It may be necessary to use a combination of systems to provide secrecy, 

authenticity, and integrity. However, in some cases, it is possible to employ the same 

public-key system for these services simultaneously. It has been noted that for 

authenticity and integrity purposes, D is regarded as an encryptor; for secrecy, E is the 

encryptor. If the same public key system is to be used in both cases, then D(E(M)) = M 
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and E(D(M)) = M must both hold; that is, D and E are inverse functions. A requirement 

is that the plaintext space (i.e., the domain of E) must be the same as the ciphertext 

space (i.e., the domain of D). 

In addition to E and D being inverses for each user, for each pair of users A and 

B, the functions EA, DA, EB, and DB all have a common domain. Then, both secrecy and 

authenticity can be accomplished with a single transmission: A sends C = EB(DA(M)) to 

B; then B computes EA(DB(C)) = EA(DA(M)) = M. An intruder cannot decrypt C since 

he lacks DB; hence secrecy is assured. If the intruder sends C′ instead of C, C′ cannot 

produce a valid M since DA is needed to produce a valid C. This assures authenticity. 

 

2.2.3.2. Applicability and Limitations 

 

The range of applicability of public key systems is limited in practice by the 

relatively low bandwidths associated with public key ciphers, compared to their 

conventional counterparts. It has not been proven that time or space complexity must 

necessarily be greater for public key systems than for conventional systems. However, 

the public key systems that have withstood cryptanalytic attacks are all characterized by 

relatively low efficiency. For example, some are based on modular exponentiation, a 

relatively slow operation. Others are characterized by high data expansion (ciphertext 

much larger than plaintext). This inefficiency, under the conservative assumption that it 

is in fact inherent, seems to preclude the use of public key systems as replacements for 

conventional systems utilizing fast encryption techniques such as permutations and 

substitutions. That is, using public key systems for bulk data encryption is not feasible, 

at least for the present. 

On the other hand, there are two major application areas for public key 

cryptosystems: 

 

1. Distribution of secret keys 

2. Digital signatures 

 

The first involves using public key systems for secure and authenticated 

Exchange of data-encrypting keys (DEKs) between two parties as explained before. 

DEKs are secret shared keys connected with a conventional system used for bulk data 
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encryption. This permits users to establish common keys for use with a system such as 

DES. Classically, users have had to rely on a mechanism such as a courier service or a 

central authority for assistance in the key exchange process. Use of a public key system 

permits users to establish a common key that does not need to be generated by or 

revealed to any third party, providing both enhanced security and greater convenience 

and robustness. 

Digital signatures are a second major application. They provide authentication, 

nonrepudiation, and integrity checks. As noted above, in some settings, authentication is 

a major consideration; in some cases, it is desirable even when secrecy is not a 

consideration. Moreover, nonrepudiation is another property desirable for digital 

signatures. Public key cryptosystems provide this property as well. 

No bulk encryption is needed when public key cryptography is used to distribute 

keys, since the latter are generally short. Also, digital signatures are generally applied 

only to outputs of hash functions. In both cases, the data to be encrypted or decrypted 

are restricted in size. Thus, the bandwidth limitation of public key is not a major 

restriction for either application (Simmons 1992).
8
 

 

2.3. RSA Cryptosystem 

 

Three natural numbers < e, d, M > define a particular instance of an RSA 

cryptosystem, where e is the public enciphering component, d is the secret deciphering 

exponent, and M is the modulus. A plaintext message m (assumed to be in the form of 

an integer that is greater than 1 and less than M) is enciphered into a cryptogram            

c = E(m), where E(m) = m
e
 mod M. The cryptogram may subsequently be deciphered to 

retrieve the plaintext message m = D(c), where D(c) = c
d
 mod M. < e, M > is called the 

public-key and < d, M > is called the secret-key. The modulus M is chosen to be the 

product of two large primes, p and q. This fact allows a cryptographer to publish an 

RSA public-key without revealing the secret-key. 

 

 

 

 

                                                 
8
 Simmons, G. J., 1992. “Contemporary Cryptology”, (IEEE Press, New York, USA), pp. 185-187. 
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2.4. The Mathematics of RSA 

 

The RSA cryptosystem exploits a property of modular arithmetic described by 

Euler’s Generalization of Fermat’s Theorem. Fermat made the following conjecture, 

now known as Fermat’s Theorem: 

 

Theorem 2.1. Fermat’s Theorem. If p is prime, and gcd(a, p) = 1 then a
p−1

 ≡ 1 (mod 

p).  

 

The term gcd(a, p) is used to mean the greatest common divisor of a and p. 

When the greatest common divisor of any two numbers is equal to one, then they are 

said to be relatively prime to each other. Euler generalized Fermat’s theorem into a form 

that applied to both prime and non-prime moduli: 

 

Theorem 2.2. Euler’s Generalization. If gcd(a, n) = 1 then a
Φ(n)

 ≡ 1 (mod n). 

 

Here, Φ(n) is known as Euler’s totient function, and is defined to be the number 

of non-negative integers less than n that are relatively prime to n. For a prime p, every 

integer from 1 to p − 1 is relatively prime to p. Accordingly, Φ(p) is defined to be p − 1. 

For an RSA modulus M = pq, Φ(M) is easily computed from p and q. There are     

M −1 positive integers less than M. Of those integers, p−1 are divisible by q: 

 

q, 2q, 3q, ..., (p − 1)q (2.1) 

 

and q-1 are divisible by p: 

 

p, 2p, 3p, ..., (q − 1)p (2.2) 

 

Therefore, 

 

Φ(M) = (M − 1) − (p − 1) − (q − 1) 

                                              = pq − p − q + 1 

                                              = (p − 1)(q − 1) 

(2.3) 
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Using RSA cryptosystem, a message m is enciphered into a cryptogram 

 

c = m
e
 mod M (2.4) 

 

and similarly, the cryptogram is deciphered to reveal the message 

 

m = c
d
 mod M (2.5) 

 

Substituting 2.4 into 2.5 gives 

 

m = c
d
 mod M                                                              

                     = (m
e
 mod M)

d
 mod M 

      = m
ed

 mod M 

(2.6) 

                                                            

This specifies a relationship between e,d, and M necessary for the cryptosystem to 

function. The keys must be chosen so that 

 

m = m
ed

 mod M (2.7) 

 

If the two prime factors of M have approximately 100 digits each, the number of 

possible messages that can be enciphered is approximately 10
200

. Since M = pq, 

(p−1)+(q−1) ≈ 10
100

 integers between 1 and M are not relatively prime to M. So the 

probability that any given message shares a factor with M is approximately       

10
100

/10
200

 = 10
−100

. Consequently, even if an RSA modulus were used to encipher a 

million different messages, the probability that any of the messages would share a factor 

with the modulus would be negligibly small. 

Therefore, it may be assumed that an arbitrary message m is relatively prime to 

modulus M. By Euler’s Generalization, 

 

m
Φ(M)

 ≡ 1 (mod M) (2.8) 

 

It can be shown that 2.7 is satisfied when the keys are chosen so that 
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ed ≡ 1 (mod Φ(M)) (2.9) 

 

which is equivalent to 

 

ed = uΦ(M) + 1 (2.10) 

 

for some positive integer u. 

When 2.10 is true: 

 

M
ed

 mod M = m
uΦ(M)+1 

mod M 

                                                           = (m
uΦ(M) 

mod M)(m
1
 mod M) 

                                                           = (m
uΦ(M)

 mod M)m 

                                                           = ((m
Φ(M)

 mod M)
u
modM)m 

                                                           = (1
u 

mod M)m 

                                                           = m 

(2.11) 

 

                                               

and requirement 2.7 is satisfied. 

A set of RSA keys is created by first constructing the modulus as the product of 

two primes (M = pq). Φ(M) is easily computed from the prime factors p and q, as 

described. 

Next, an enciphering exponent e, relatively prime to Φ(M), is chosen. Finally, 

the deciphering component d is computed so that ed ≡ 1(mod Φ(M)). Such a d is called 

the inverse of e modulo Φ(M). When Φ(M) and e are known, this inverse can be found 

by means of a fast extended gcd algorithm. 

There is no known method for computing Φ(M) without knowing the factors of 

M. Furthermore, there is no known algorithm to compute an inverse modulo Φ(M) 

without Φ(M). 

RSA security requires, therefore, that modulus M be chosen so that it cannot be 

factored. If a cryptanalyst could factor the modulus, Φ(M) and d could be easily 

computed, and the system would be broken. 

To prevent a factoring attack, the modulus is chosen to be the product of two 

large primes. By making the prime factors sufficiently large, general-purpose factoring 
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algorithms are useless. In addition, the prime factors are chosen to have special 

properties that make the modulus safe from special-purpose factoring attacks. 

The choice of the size of the prime factors represents a balance between security 

from factoring attacks and speed of enciphering and deciphering. The execution times 

for general-purpose factoring algorithms are exponential in the number of digits of the 

modulus. On the other hand, the running time for RSA enciphering and deciphering, 

using a standard modular exponentiation algorithm, is cubic. 

As a result, the time required to factor a modulus grows much faster with 

modulus size than does the time required to perform enciphering and deciphering 

operations (Greenfield 1994).
9
 

 

2.5. Modes of Operation 

 

While applying many encryption techniques to long messages, there is a need to 

break the plaintext message into short blocks for enciphering. For example, an RSA 

enciphered message is encoded modulo M. Such an RSA enciphering can encode no 

more than M distinct messages. An arbitrary plaintext message to be enciphered, 

however, may contain considerably more information than could be encoded without 

loss, by a single application of the RSA enciphering algorithm.  

To prevent any information loss, a long plaintext message is broken into short 

blocks, each of a size that may be encoded using the desired enciphering technique, 

without loss. The plaintext message becomes a sequence of plaintext message blocks 

and the enciphered message becomes a sequence of ciphertext blocks. 

A variety of modes of operation exist for breaking a large message into short 

blocks and each will be described below. 

 

2.5.1. Electronic Code Book (ECB) 

 

The simplest mode of operation is known as Electronic Code Book (ECB). ECB 

consists of splitting the plaintext message into a sequence of short blocks, m0,m1,m2, …., 
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and subsequently enciphering each of the short blocks, independently, to form a 

sequence of ciphertext blocks, c0 = E(m0), c1 = E(m1), c2 = E(m2), ... . 

While this mode of operation is particularly simple to understand and 

implement, it suffers from a number of security problems when used for certain 

applications. In particular, ECB enciphering has the undesirable property that duplicate 

portions of plaintext may be encoded into duplicate ciphertext portions, with a relatively 

high probability. This can make cryptanalysis of the ciphertext considerably easier. In 

addition, since the ECB enciphering of a block is independent of its position within the 

plaintext message, a cryptanalyst may be able to cut and paste segments of ciphertext, in 

order to forge a message (Greenfield 1994).
10

 

To see how this monoalphabetic substitution cipher property can be used to 

partially defeat the cipher, (triple) DES will be used because it is easier to depict 64-bit 

blocks than 128-bit blocks, but AES has exactly the same problem (and other 

cryptosystems). The straightforward way to use DES to encrypt a long piece of plaintext 

is to break it up into consecutive 8-byte (64-bit) blocks and encrypt them one after 

another with the same key. The last piece of plaintext is padded out to 64 bits, if need 

be. 

 

 

 

Figure 2.2. The Plaintext of a File Encrypted as 16 DES Blocks.  

 

In Figure 2.2, there is the start of a computer file listing the annual bonuses a 

company has decided to award to its employees. This file consists of consecutive 32-

byte records, one per employee, in the format shown: 16 bytes for the name, 8 bytes for 

the position, and 8 bytes for the bonus. Each of the sixteen 8-byte blocks (numbered 

from 0 to 15) is encrypted by (triple) DES. 

Leslie can get access to the file after it is encrypted but before it is sent to the 

bank. All Leslie has to do is make a copy of the 12th ciphertext block (which contains 
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Kim’s bonus and Leslie can guess that Kim has a higher bonus) and use it to replace the 

4th ciphertext block (which contains Leslie’s bonus) (Tanenbaum 2003). 

 

2.5.2. Cipher Block Chaining (CBC) 

 

A second mode of operation is known as Cipher Block Chaining. This is the 

mode of operation normally used for RSA enciphering. Like ECB, cipher block 

chaining starts with splitting the plaintext message into a sequence of short blocks, m0, 

m1, m2, .... The first plaintext block is then encoded to form ciphertext block c0 = E(m0). 

The remaining blocks are encoded using a chaining technique, so that the second 

plaintext block is encoded to form ciphertext block c1 = E(c0 ⊕  m1), where oplus 

represents bitwise exclusive-or. The third plaintext block is enciphered to form 

ciphertext block c2 = E(ci−1 ⊕ mi), for i > 0. 

 

 

 

Figure 2.3. Cipher Block Chaining. (a) Encryption. (b) Decryption.  

 

Cipher text block chaining possesses a number of properties that make it a 

desirable mode of operation. Duplicate portions of plaintext, encoded using this 

technique, have a very low probability of being encoded into duplicate portions of 

ciphertext. In addition, due to the chaining of ciphertext blocks, each ciphertext block 

depends upon all previous blocks of the message. This makes it virtually impossible for 

a cryptanalyst to simply cut and paste blocks of ciphertext in order to form a forged 

message. 

At the same time, arbitrary blocks of ciphertext can be deciphered individually, 

without the need to decipher the entire ciphertext message. For i > 0, mi = ci−1 ⊕ D(ci), 

so only one deciphering operation is required. 

Similarly, cipher block chaining allows the deciphering algorithm to recover 

from temporary transmission or enciphering errors. For example, if ciphertext block ci is 
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improperly transmitted, only message blocks mi = ci−1 ⊕ D(ci) and mi+1 = ci ⊕ D(ci+1), 

depend on the value of ci. Therefore, only those two blocks are affected by the 

transmission error. 

As a result, cipher block chaining maintains much of its simplicity of ECB, 

while providing more secure encoding (Greenfield 1994).
11

 There are also other modes 

of operation that may be used. The sequential algorithm of RSA encryption and 

decryption with cipher block chaining is shown below: 

 

Algoritm 2.1. RSA Encryption and Cipher Block Chaining. 
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procedure encrypt(e,N:positive integers) 

{e is the encryption key and N is the modulus} 

 

ulast:=0 

do 

begin 

ReadBlock(mi) 

chain(ui,ulast,mi) 

ci:=modpower(ui,e,M) 

WriteBlock(ci) 

end while not eof ci is the encrypted form of the message mi 

 

procedure chain(ui,ulast,mi:positive integers) 

{ui is the value of the message block mi after chained, ulast is the value of the last 

chained block and mi is the message to be chained} 

 

ui:=xor(ulast,mi) 

ulast:=ui 

{ui is the chained value of mi} 
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Algoritm 2.2. RSA Decryption and Cipher Block Unchaining. 

 

2.5.3. Cipher Feedback Mode (CFM) 

 

Cipher block chaining requires an entire 64-bit block to arrive before decryption 

can begin. For use with interactive terminals, where people can type lines shorter than 

eight characters and then stop, waiting for a response, this mode is unsuitable. For byte-

by-byte encryption, cipher feedback mode, using (triple) DES is used, as shown in 

Figure 2.4. For AES, the idea is exactly the same, only a 128-bit shift register is used. In 

this figure, the state of the encryption machine is shown after bytes 0 through 9 have 

been encrypted and sent. When plaintext byte 10 arrives, as illustrated in the left part, 

the DES algorithm operates on the 64-bit shift register to generate a 64-bit ciphertext. 

The leftmost byte of that ciphertext is extracted and XORed with P10. That byte is 

transmitted on the transmission line. In addition, the shift register is shifted left 8 bits, 

causing C2 to fall off the left end, and C10 is inserted in the position just vacated at the 

right end by C9. It should be noted that the contents of the shift register depend on the 

entire previous history of the plaintext, so a pattern that repeats multiple times in the 

plaintext will be encrypted differently each time in the ciphertext. As with cipher block 

chaining, an initialization vector is needed to start the process. 

procedure decrypt(d,N:positive integers) 

{d is the decryption key and N is the modulus} 

 

ulast:=0 

do 

begin 

ui:=modpower(ci,d,M) 

unchain(mi,ulast,ui) 

WriteBlock(ci) 

end while not eof 

{mi is the decrypted form of the cipherblock ci} 

 

procedure unchain(mi,ulast,ui:positive integers) 

{ui is the value of the message block mi after chained, ulast is the value of the last 

chained block and mi is the message that is unchained} 

 

mi:=xor(ulast,ui) 

ulast:=ui 

{mi is the unchained value of ui} 
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Figure 2.4. Cipher Feedback Mode. (a) Encryption. (b) Decryption.  

 

Decryption with cipher feedback mode just does the same thing as encryption. In 

particular, the content of the shift register is encrypted, not decrypted, so the selected 

byte that is XORed with C10 to get P10 is the same one that was XORed with P10 to 

generate C10 in the first place. As long as the two shift registers remain identical, 

decryption works correctly. It is illustrated in the right part. 

A problem with cipher feedback mode is that if one bit of the ciphertext is 

accidentally inverted during transmission, the 8 bytes that are decrypted while the bad 

byte is in the shift register will be corrupted. Once the bad byte is pushed out of the shift 

register, correct plaintext will once again be generated. Thus, the effects of a single 

inverted bit are relatively localized and do not ruin the rest of the message, but they do 

ruin as many bits as the shift register is wide. 

 

2.5.4. Stream Cipher Mode (SCM) 

 

Nevertheless, applications exist in which having a 1-bit transmission error mess 

up 64 bits of plaintext is too large an effect. For these applications, a fourth option, 

stream cipher mode, exists. It works by encrypting an initialization vector, using a key 

to get an output block. The output block is then encrypted, using the key to get a second 

output block. This block is then encrypted to get a third block, and so on. The 

(arbitrarily large) sequence of output blocks, called the keystream, is treated like a one-

time pad and XORed with the plaintext to get the ciphertext, as shown in the left part of 

the related figure. It should be noted that the IV is used only on the first step. After that, 

the output is encrypted. Also it should be noted that the keystream is independent of the 
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data, so it can be computed in advance, if need be, and is completely insensitive to 

transmission errors. Decryption is shown in the right part. 

 

 

 

Figure 2.5. Stream Cipher Mode. (a) Encryption. (b) Decryption.  

 

Decryption occurs by generating the same keystream at the receiving side. Since 

the keystream depends only on the IV and the key, it is not affected by transmission 

errors in the ciphertext. Thus, a 1-bit error in the transmitted ciphertext generates only a 

1-bit error in the decrypted plaintext. 

It is essential never to use the same (key, IV) pair twice with a stream cipher 

because doing so will generate the same keystream each time. Using the same 

keystream twice exposes the ciphertext to a keystream reuse attack. For example, the 

plaintext block, P0, is encrypted with the keystream to get P0 XOR K0. Later, a second 

plaintext block, Q0, is encrypted with the same keystream to get Q0 XOR K0. An 

intruder who captures both of these ciphertext blocks can simply XOR them together to 

get P0 XOR Q0, which eliminates the key. The intruder now has the XOR of the two 

plaintext blocks. If one of them is known or can be guessed, the other can also be found. 

In any event, the XOR of two plaintext streams can be attacked by using statistical 

properties of the message. For example, for English text, the most common character in 

the stream will probably be the XOR of two spaces, followed by the XOR of space and 

the letter “e”, etc. In short, equipped with the XOR of two plaintexts, the cryptanalyst 

has an excellent chance of deducing both of them. 

 

2.5.5. Counter Mode 

 

One problem that all the modes except electronic code book mode have is that 

random access to encrypted data is impossible. For example, suppose a file is 

transmitted over a network and then stored on disk in encrypted form. This might be a 
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reasonable way to operate if the receiving computer is a notebook computer that might 

be stolen. Storing all critical files in encrypted form greatly reduces the damage due to 

secret information leaking out in the event that the computer falls into the wrong hands. 

However, disk files are often accessed in nonsequential order, especially files in 

databases. With a file encrypted using cipher block chaining, accessing a random block 

requires first decrypting all the blocks ahead of it, an expensive proposition. For this 

reason, yet another mode has been invented, counter mode, as illustrated in the figure. 

Here, the plaintext is not encrypted directly. Instead, the initialization vector plus a 

constant is encrypted, and the resulting ciphertext XORed with the plaintext. By 

stepping the initialization vector by 1 for each new block, it is easy to decrypt a block 

anywhere in the file without first having to decrypt all of its predecessors. 

 

 

 

Figure 2.6. Encryption Using Counter Mode.  

 

Although counter mode is useful, it has a weakness that is worth pointing out. 

For example, the same key, K, may be used again in the future (with a different 

plaintext but the same IV) and an attacker may acquire all the ciphertext from both runs. 

The keystreams are the same in both cases, exposing the cipher to a keystream reuse 

attack of the same kind we saw with stream ciphers. All the cryptanalyst has to do is to 

XOR the two ciphertexts together to eliminate all the cryptographic protection and just 

get the XOR of the plaintexts. This weakness does not mean counter mode is a bad idea. 

It just means that both keys and initialization vectors should be chosen independently 

and at random. Even if the same key is accidentally used twice, if the IV is different 

each time, the plaintext is safe (Tanenbaum 2003). 
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CHAPTER 3 

 

PARALLEL COMPUTING 

 

3.1. Introduction 

 

Parallel computing is accomplished by splitting up a large computational 

problem into smaller tasks that may be performed simultaneously by multiple 

processors. For example, the addition of two very long vectors of numbers, A and B, 

can be performed by two processors if one of them adds the first half of vector A to the 

first half of vector B, while the second adds the second half of vector A to the second 

half of vector B. While this theoretically halves the time needed to solve the problem, 

the resulting vector, C, is now split across two different processor memories.  

Because of this split, communication must occur to get the entire solution in one 

place. The distribution of the initial data, A and B, and the collection of the result, C, 

adds overhead to the computational problem and reduces the actual speedup of the 

entire task to less than double. 

Symmetric multi-processor (SMP) and other shared memory computers can be 

used to reduce the amount and cost (in terms of time) of this communication; however, 

these systems typically have only a small number of processors or are very expensive, 

custom-built supercomputers. On the other hand, distributed memory platforms -- 

including Beowulf clusters -- are relatively inexpensive and can be scaled to hundreds 

or thousands of processors.  

Most clusters built today are hybrids; they consist of many nodes (i.e., individual 

computers), each having two or more processors. 

 

3.1.1. Decomposition and Granularity 

 

Computational problems may be parallelized in a variety of ways. Parallelization 

may be accomplished by decomposing the data (as in the vector addition example 

above), by decomposing functionality so that one processor performs one type of 
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operation while other processors simultaneously perform different operations, or by 

decomposing both the data and the functionality.  

This decomposition may be established a priori or, more often, is performed 

dynamically once the program is running. Good parallel code most often automatically 

decomposes the problem at hand and allows the processors to communicate with each 

other when necessary -- this is called "message passing" -- while performing individual 

tasks. 

Not all computational problems are amenable to parallel computing. If an 

algorithm cannot be restructured so that sub-tasks can be performed simultaneously or if 

the model components are highly interdependent, attempts to parallelize these codes 

may result in increased time-to-solution. Such "fine grained" problems do not scale well 

as more processors are applied to the computation. Performance of the finest-grained 

problems is limited by the speed of the fastest single CPU that is available. 

Other computational problems, such as image processing where which each 

pixel may be manipulated independently, are "coarse grained". Image processing is a 

good example of this type of problem. These problems are generally easier to parallelize 

and tend to benefit the most from parallel processing, particularly in distributed memory 

environments. The coarsest grained problems are often referred to as "embarrassingly 

parallel". 

Fortunately, most complex scientific problems may be decomposed by 

performing separate tasks independently and simultaneously on multiple processors or 

by splitting up the space and/or time coordinates of the system being modeled. These 

problems tend to fall somewhere between coarse and fine granularity and usually 

require a moderate amount of interprocessor communication to coordinate activities and 

share data. 

For example, values for cells on a map may depend on neighboring cell values. 

If the map is decomposed into two pieces, each being processed on a separate CPU, the 

processors must exchange cell values along the adjacent edges of the map. 

Problem decomposition is very important for successful parallel processing. A 

balance must be struck between computation and communication so that what was a 

computational problem on a single processor does not become a communications 

problem in a parallel environment. Writing good parallel code is actually more of an art 

than a science; practitioners must be able to think about algorithms in novel ways 

(WEB_3 2002). 
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3.1.2. Historical Background 

 

Until relatively recently, the standard architecture model for most digital 

computers was that introduced by von Neumann. The von Neumann model assumes that 

the program and data are held in the store of the machine and that a central processing 

unit (CPU) fetches instructions from the store and executes them. The instructions result 

in either data in the store being manipulated or information being input or output. 

Machines based on this model are entirely sequential in operation – one instruction is 

executed in each time interval. 

The first general-purpose electronic digital computer, called ENIAC, was 

developed at the University of Pennsylvania, USA, in 1946. Programming of the 

machine was achieved by special wiring, and rewiring was necessary if the operations 

were to be modified. The first stored-program computers, and thus the first realizations 

of the von Neumann model, were the EDSAC and the EDVAC prototype machines, 

leading to commercial systems such as the UNIVAC 1. These early machines used bit-

serial access to memory and consequently performed bit-serial arithmetic. By 1953 the 

IBM 701, the first commercial computer with bit-parallel access to memory and bit-

parallel arithmetic, was available; thus from the earliest days, parallelism was 

introduced into digital computers. 

The four decades that have elapsed since the development of the first 

commercial systems have witness to dramatic improvements in computer technology. 

Between 1950 and 1980, every five-year period has seen an approximately tenfold 

increase in the achievable performance of computers. These improvements were partly 

the result of advances in semiconductor technology, but also arose from an evolution of 

the original von Neumann model in which the requirement of purely serial processing 

was abandoned. 

The development of parallel computers has been at two levels, both of which 

have attempted to enhance the performance of a particular class of machine. Early 

efforts centered on the development of high performance supercomputers to solve very 

large scientific problems such as are encountered in accurate weather forecasting. The 

most popular supercomputer of the mid-1970s was the Cray-1, a vector processor 

capable of 130 Mflops (megaflops, or millions of flops, floating-point operations per 

second). The eight-processor Cray Y-MP and the four-processor Cray-2 of the late 
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1980s are capable of Gflops (gigaflops, or thousands of Mflops) performance. These 

machines exhibit limited parallelism (as far as the user is concerned) with just a small 

number of powerful processing units operating in parallel. The race is on for the 

development of  Tflops (teraflops, or millions of Mflops) machines. 

The second strand of parallel computer development has centered around the 

desire to produce machines (minisupercomputers, or superminicomputers) which are 

capable of performances approaching that of a supercomputer, but at considerably 

reduced cost. These machines achieve their performance either by using vector 

processing capabilities, or by including a number of parallel processing units, or both. 

Thus, parallelism in computing is not only present in supercomputers, but also 

increasingly common less powerful machines. 

It is instructive to relate these developments in computer architecture to the 

computer solution of numerical problems. Throughout the decades 1950-1980, the 

architectural developments were, for the most part, invisible to the user. Programs 

which worked optimally on one machine were likely also to work well on some other 

system. The only hardware feature of which the programmer might need to be aware 

was the available memory. Virtual memory aided portability; programs simply had to 

minimize the amount of data transfer between main and secondary storage. The 

development of units possessing vector processing capabilities meant that the way a 

user chose to express his algorithm could have a significant affect on the performance 

of an implementation. By making the vector structure of the algorithm visible to the 

compiler, significant improvements could be obtained over a corresponding code for 

which this structure was not apparent. The impact of the computer architecture on the 

user is greater in the case of a multiprocessor system and is compounded if its memory 

is distributed over the individual processors. Such architectural considerations crucially 

affect the choice of algorithm and the way that an algorithm is expressed. 

The demand for increased performance may result from a desire 

 

• to decrease the execution time of certain programs so that results can be 

obtained in a reasonable time (possibly even in real time), or 

• to run programs for the same amount of time but obtain higher accuracy or 

more accurate modeling of the underlying physical problem by increasing 

the problem size in some way, or 

• to solve problems previously considered too large for existing architectures. 
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In the history of computing, it has been largely possible to achieve these 

requirements by improved technology aimed at a uniprocessor. However, there are 

physical limits to just how far such a machine can be improved and the use of 

parallelism is seen to be one of the most attractive avenues to explore in the quest for 

increased performance (Freeman and Phillips 1992).
12

 

 

3.2. Parallel Programming Platforms 

 

The traditional logical view of a sequential computer consists of a memory 

connected to a processor via a datapath. All three components – processor, memory, and 

datapath – present bottlenecks to the overall processing rate of a computer system. A 

number of architectural innovations over the years have addressed these bottlenecks. 

One of the most important innovations is multiplicity – in processing units, datapaths, 

and memory units. This multiplicity is either entirely hidden from the programmer, as in 

the case of implicit parallelism, or exposed to the programmer in different forms. 

 

3.2.1. Implicit Parallelism: Trends in Microprocessor Architectures 

 

While microprocessor technology has delivered significant improvements in 

clock speeds over the past decade, it has also exposed a variety of other performance 

bottlenecks. To alleviate these bottlenecks, microprocessor designers have explored 

alternate routes to cost-effective performance gains. 

Clock speeds of microprocessors have posted impressive gains - two to three 

orders of magnitude over the past 20 years. However, these increments in clock speed 

are severely diluted by the limitations of memory technology. At the same time, higher 

levels of device integration have also resulted in a very large transistor count, raising the 

obvious issue of how best to utilize them. Consequently, techniques that enable 

execution of multiple instructions in a single clock cycle have become popular. Indeed, 

this trend is evident in the current generation of microprocessors such as the Itanium, 

Sparc Ultra, MIPS, and Power4. 
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3.2.1.1. Pipelining and Superscalar Execution 

 

Processors have long relied on pipelines for improving execution rates. By 

overlapping various stages in instruction execution (fetch, schedule, decode, operand 

fetch, execute, store, among others), pipelining enables faster execution. The assembly-

line analogy works well for understanding pipelines. It should be noted that the speed of 

a single pipeline is ultimately limited by the largest atomic task in the pipeline. 

Furthermore, in typical instruction traces, every fifth to sixth instruction is a branch 

instruction. Long instruction pipelines therefore need effective techniques for predicting 

branch destinations so that pipelines can be speculatively filled. The penalty of a 

misprediction increases as the pipelines become deeper since a larger number of 

instructions need to be flushed. These factors place limitations on the depth of a 

processor pipeline and the resulting performance gains. 

An obvious way to improve instruction execution rate beyond this level is to use 

multiple pipelines. During each clock cycle, multiple instructions are piped into the 

processor in parallel. These instructions are executed on multiple functional units. 

 

3.2.1.2. Very Long Instruction Word Processors 

 

The parallelism extracted by superscalar processors is often limited by the 

instruction look-ahead. The hardware logic for dynamic dependency analysis is 

typically in the range of 5-10% of the total logic on conventional microprocessors 

(about 5% on the four-way superscalar Sun UltraSPARC). This complexity grows 

roughly quadratically with the number of issues and can become a bottleneck. An 

alternate concept for exploiting instruction-level parallelism used in very long 

instruction word (VLIW) processors relies on the compiler to resolve dependencies and 

resource availability at compile time. Instructions that can be executed concurrently are 

packed into groups and parceled off to the processor as a single long instruction word 

(thus the name) to be executed on multiple functional units at the same time. 

The VLIW concept, first used in Multiflow Trace (circa 1984) and subsequently 

as a variant in the Intel IA64 architecture, has both advantages and disadvantages 

compared to superscalar processors. Since scheduling is done in software, the decoding 

and instruction issue mechanisms are simpler in VLIW processors. The compiler has a 
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larger context from which to select instructions and can use a variety of transformations 

to optimize parallelism when compared to a hardware issue unit. Additional parallel 

instructions are typically made available to the compiler to control parallel execution. 

However, compilers do not have the dynamic program state (e.g., the branch history 

buffer) available to make scheduling decisions. This reduces the accuracy of branch and 

memory prediction, but allows the use of more sophisticated static prediction schemes. 

Other runtime situations such as stalls on data fetch because of cache misses are 

extremely difficult to predict accurately. This limits the scope and performance of static 

compiler-based scheduling. 

Finally, the performance of VLIW processors is very sensitive to the compilers' 

ability to detect data and resource dependencies and read and write hazards, and to 

schedule instructions for maximum parallelism. Loop unrolling, branch prediction and 

speculative execution all play important roles in the performance of VLIW processors. 

While superscalar and VLIW processors have been successful in exploiting implicit 

parallelism, they are generally limited to smaller scales of concurrency in the range of 

four- to eight-way parallelism. 

 

3.2.2. Dichotomy of Parallel Computing Platforms 

 

The increasing gap in peak and sustainable performance of current 

microprocessors, the impact of memory system performance, and the distributed nature 

of many problems present overarching motivations for parallelism. Now, the elements 

of parallel computing platforms that are critical for performance oriented and portable 

parallel programming will be produced at a high level. The logical organization refers to 

a programmer's view of the platform while the physical organization refers to the actual 

hardware organization of the platform. The two critical components of parallel 

computing from a programmer's perspective are ways of expressing parallel tasks and 

mechanisms for specifying interaction between these tasks. The former is sometimes 

also referred to as the control structure and the latter as the communication model. 
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3.2.2.1. Control Structure of Parallel Platforms 

 

Parallel tasks can be specified at various levels of granularity. At one extreme, 

each program in a set of programs can be viewed as one parallel task. At the other 

extreme, individual instructions within a program can be viewed as parallel tasks. 

Between these extremes lie a range of models for specifying the control structure of 

programs and the corresponding architectural support for them. 

Processing units in parallel computers either operate under the centralized 

control of a single control unit or work independently. In architectures referred to as 

single instruction stream, multiple data stream (SIMD), a single control unit 

dispatches instructions to each processing unit. Figure 3.1(a) illustrates a typical SIMD 

architecture. In an SIMD parallel computer, the same instruction is executed 

synchronously by all processing units. Some of the earliest parallel computers such as 

the Illiac IV, MPP, DAP, CM-2, and MasPar MP-1 belonged to this class of machines. 

More recently, variants of this concept have found use in co-processing units such as the 

MMX units in Intel processors and DSP chips such as the Sharc. The Intel Pentium 

processor with its SSE (Streaming SIMD Extensions) provides a number of instructions 

that execute the same instruction on multiple data items. These architectural 

enhancements rely on the highly structured (regular) nature of the underlying 

computations, for example in image processing and graphics, to deliver improved 

performance. 

 

 

 

Figure 3.1. A typical SIMD architecture (a) and a typical MIMD architecture (b).  
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While the SIMD concept works well for structured computations on parallel data 

structures such as arrays, often it is necessary to selectively turn off operations on 

certain data items. For this reason, most SIMD programming paradigms allow for an 

"activity mask". This is a binary mask associated with each data item and operation that 

specifies whether it should participate in the operation or not. Primitives such as     

where (condition) then <stmnt> <elsewhere stmnt> are used to support selective 

execution. Conditional execution can be detrimental to the performance of SIMD 

processors and therefore must be used with care. 

In contrast to SIMD architectures, computers in which each processing element 

is capable of executing a different program independent of the other processing 

elements are called multiple instruction stream, multiple data stream (MIMD) 

computers. Figure 3.1(b) depicts a typical MIMD computer. A simple variant of this 

model, called the single program multiple data (SPMD) model, relies on multiple 

instances of the same program executing on different data. It is easy to see that the 

SPMD model has the same expressiveness as the MIMD model since each of the 

multiple programs can be inserted into one large if-else block with conditions specified 

by the task identifiers. The SPMD model is widely used by many parallel platforms and 

requires minimal architectural support. Examples of such platforms include the Sun 

Ultra Servers, multiprocessor PCs, workstation clusters, and the IBM SP. 

SIMD computers require less hardware than MIMD computers because they 

have only one global control unit. Furthermore, SIMD computers require less memory 

because only one copy of the program needs to be stored. In contrast, MIMD computers 

store the program and operating system at each processor. However, the relative 

unpopularity of SIMD processors as general purpose compute engines can be attributed 

to their specialized hardware architectures, economic factors, design constraints, 

product life-cycle, and application characteristics. In contrast, platforms supporting the 

SPMD paradigm can be built from inexpensive off-the-shelf components with relatively 

little effort in a short amount of time. SIMD computers require extensive design effort 

resulting in longer product development times. Since the underlying serial processors 

change so rapidly, SIMD computers suffer from fast obsolescence. The irregular nature 

of many applications also makes SIMD architectures less suitable. 
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3.2.2.2. Communication Model of Parallel Platforms 

 

There are two primary forms of data exchange between parallel tasks – 

accessing a shared data space and exchanging messages. 

 

3.2.2.2.1. Shared-Address-Space Platforms 

 

The "shared-address-space" view of a parallel platform supports a common data 

space that is accessible to all processors. Processors interact by modifying data objects 

stored in this shared-address-space. Shared-address-space platforms supporting SPMD 

programming are also referred to as multiprocessors. Memory in shared-address-space 

platforms can be local (exclusive to a processor) or global (common to all processors). 

If the time taken by a processor to access any memory word in the system (global or 

local) is identical, the platform is classified as a uniform memory access (UMA) 

multicomputer. On the other hand, if the time taken to access certain memory words is 

longer than others, the platform is called a non-uniform memory access (NUMA) 

multicomputer. Figures 3.2(a) and (b) illustrate UMA platforms, whereas Figure 3.2(c) 

illustrates a NUMA platform. An interesting case is illustrated in Figure 3.2(b). Here, it 

is faster to access a memory word in cache than a location in memory. However, we 

still classify this as a UMA architecture. The reason for this is that all current 

microprocessors have cache hierarchies. Consequently, even a uniprocessor would not 

be termed UMA if cache access times are considered. For this reason, we define NUMA 

and UMA architectures only in terms of memory access times and not cache access 

times. Machines such as the SGI Origin 2000 and Sun Ultra HPC servers belong to the 

class of NUMA multiprocessors. The distinction between UMA and NUMA platforms 

is important. If accessing local memory is cheaper than accessing global memory, 

algorithms must build locality and structure data and computation accordingly. 
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Figure 3.2. Typical shared-address-space architectures: (a) Uniform-memory-access 

shared-address-space computer; (b) Uniform-memory-access shared-address-space 

computer with caches and memories; (c) Non-uniform-memory-access shared-address-

space computer with local memory only.  

 

The presence of a global memory space makes programming such platforms 

much easier. All read-only interactions are invisible to the programmer, as they are 

coded no differently than in a serial program. This greatly eases the burden of writing 

parallel programs. Read/write interactions are, however, harder to program than the 

read-only interactions, as these operations require mutual exclusion for concurrent 

accesses. Shared-address-space programming paradigms such as threads (POSIX, NT) 

and directives (OpenMP) therefore support synchronization using locks and related 

mechanisms. 

The presence of caches on processors also raises the issue of multiple copies of a 

single memory word being manipulated by two or more processors at the same time. 

Supporting a shared-address-space in this context involves two major tasks: providing 

an address translation mechanism that locates a memory word in the system, and 

ensuring that concurrent operations on multiple copies of the same memory word have 

well-defined semantics. The latter is also referred to as the cache coherence 

mechanism. Supporting cache coherence requires considerable hardware support. 

Consequently, some shared-address-space machines only support an address translation 

mechanism and leave the task of ensuring coherence to the programmer. The native 

programming model for such platforms consists of primitives such as get and put. These 

primitives allow a processor to get (and put) variables stored at a remote processor. 

However, if one of the copies of this variable is changed, the other copies are not 

automatically updated or invalidated. 
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It is important to note the difference between two commonly used and often 

misunderstood terms – shared-address-space and shared-memory computers. The term 

shared-memory computer is historically used for architectures in which the memory is 

physically shared among various processors, i.e., each processor has equal access to any 

memory segment. This is identical to the UMA model we just discussed. This is in 

contrast to a distributed-memory computer, in which different segments of the memory 

are physically associated with different processing elements. The dichotomy of shared- 

versus distributed-memory computers pertains to the physical organization of the 

machine. Either of these physical models, shared or distributed memory, can present the 

logical view of a disjoint or shared-address-space platform. A distributed-memory 

shared-address-space computer is identical to a NUMA machine. 

 

3.2.2.2.2. Message-Passing Platforms 

 

The logical machine view of a message-passing platform consists of p 

processing nodes, each with its own exclusive address space. Each of these processing 

nodes can either be single processors or a shared-address-space multiprocessor – a trend 

that is fast gaining momentum in modern message-passing parallel computers. Instances 

of such a view come naturally from clustered workstations and non-shared-address-

space multicomputers. On such platforms, interactions between processes running on 

different nodes must be accomplished using messages, hence the name message 

passing. This exchange of messages is used to transfer data, work, and to synchronize 

actions among the processes. In its most general form, message-passing paradigms 

support execution of a different program on each of the p nodes. 

Since interactions are accomplished by sending and receiving messages, the 

basic operations in this programming paradigm are send and receive (the corresponding 

calls may differ across APIs but the semantics are largely identical). In addition, since 

the send and receive operations must specify target addresses, there must be a 

mechanism to assign a unique identification or ID to each of the multiple processes 

executing a parallel program. This ID is typically made available to the program using a 

function such as whoami, which returns to a calling process its ID. There is one other 

function that is typically needed to complete the basic set of message-passing operations 

– numprocs, which specifies the number of processes participating in the ensemble. 
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With these four basic operations, it is possible to write any message-passing program. 

Different message-passing APIs, such as the Message Passing Interface (MPI) and 

Parallel Virtual Machine (PVM), support these basic operations and a variety of higher 

level functionality under different function names. Examples of parallel platforms that 

support the message-passing paradigm include the IBM SP, SGI Origin 2000, and 

workstation clusters. 

It is easy to emulate a message-passing architecture containing p nodes on a 

shared-address-space computer with an identical number of nodes. Assuming 

uniprocessor nodes, this can be done by partitioning the shared-address-space into p 

disjoint parts and assigning one such partition exclusively to each processor. A 

processor can then "send" or "receive" messages by writing to or reading from another 

processor's partition while using appropriate synchronization primitives to inform its 

communication partner when it has finished reading or writing the data. However, 

emulating a shared-address-space architecture on a message-passing computer is costly, 

since accessing another node's memory requires sending and receiving messages 

(Grama et al. 2003). 

 

3.3. Message Passing Interface (MPI) 

 

Of the many parallel programming languages, the three main ones are HPF 

(High Performance Fortran), OpenMP (Open Message Passing) and MPI (Message 

Passing Interface). The choice of which one to use is simply governed by the following 

key issues: 

 

• Portability 

• Ease of use 

• Efficiency 

• Cost/Effort 

 

HPF was the first widely supported, portable parallel programming language. It 

is basically a set of directive-based extensions to Fortran 90, available on both shared 

and distributed memory machines from workstation clusters to massively parallel 

supercomputers. One of the advantages of HPF is that the interactions between 
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processors do not have to be specified explicitly. Unfortunately, HPF has not been 

adopted by many developers. 

OpenMP is a set of compiler directives and callable runtime libraries that extend 

Fortran and C to allow the development of scalable parallel programs on shared 

memory machines. OpenMP takes account of developments in the programming 

languages (e.g. can handle the implementation of pointers in F90) and has been 

designed to be extensible. Shared memory usage appears to be growing rapidly through 

the use of OpenMP, perhaps because it is targeted at programmers who need to quickly 

parallize existing programs without rewriting. OpenMP provides access to the strengths 

of shared memory parallel computation without excessive programming effort. For 

example, a single loop can be parallelized by simply inserting standard directives, 

facilitating incremental parallelism – a real bonus if most of the program execution time 

is dominated by a single, simple do loop. 

Despite the promise of simplicity and scalability, developers have resisted 

adopting the shared memory programming model because of portability concerns. 

Previously, every vendor of shared memory systems had created its own extensions to 

Fortran and C for developers to produce parallel code. The absence of portability has 

encouraged many developers to adopt a portable message passing model like MPI or 

PVM. In Message Passing, a distributed memory machine holds all variables in local 

memory. Work shared across processes requires communication and message passing is 

the context in which this communication takes place. 

Currently, there are a number of Message Passing standards, the main ones 

being summarized in Table 3.1. 

 

Table 3.1. Message Passing Libraries.  

 

Standard Acronym Usage Portability 

Message Passing Interface MPI Common All vendors 

Paralel Virtual Machine PVM Used less often Most vendors 

Shared Memory SHMEM Machine specific SGI/CRAY 

Portable SHMEM library BSP Uncommon Unknown 

 

From the table, it is perhaps clear that MPI would be the library of choice if one 

wanted to write a portable message passing program. Its popularity is partly due to the 

fact that it was developed by an international consortium that involved virtually every 
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parallel computing vendor. As a consequence of the almost universal acceptance of MPI 

as standard message passing library, many manufacturers have invested a great deal of 

effort into the performance of MPI. Furthermore, programs can be written in several 

dialects of FORTRAN and in C. In short, one can use MPI on virtually any computer, 

even a serial one. This last comment may seem rather pointless, but its worth pointing 

out that some researchers do not have access to parallel machines and have published 

research in which the parallel computation was simulated. 

The reasons for choosing MPI among the alternatives may be summarized as 

follows: 

 

• Standardization - MPI is the only message passing library which can be 

considered a standard. It is supported on virtually all HPC platforms. 

Practically, it has replaced all previous message passing libraries. 

• Portability - There is no need to modify your source code when you port 

your application to a different platform that supports (and is compliant with) 

the MPI standard. 

• Performance Opportunities - Vendor implementations should be able to 

exploit native hardware features to optimize performance. 

• Functionality - Over 115 routines are defined. 

• Availability - A variety of implementations are available, both vendor and 

public domain (WEB_4 2003). 

 

3.3.1. Introduction to MPI 

 

Message passing is a programming paradigm used widely on parallel computers, 

especially Scalable Parallel Computers (SPCs) with distributed memory, and on 

Networks of Workstations (NOWs). Although there are many variations, the basic 

concept of processes communicating through messages is well understood. Over the last 

ten years, substantial progress has been made in casting significant applications into this 

paradigm. Each vendor has implemented its own variant. More recently, several public-

domain systems have demonstrated that a message-passing system can be efficiently 

and portably implemented. It is thus an appropriate time to define both the syntax and 

semantics of a standard core of library routines that will be useful to a wide range of 
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users and efficiently implementable on a wide range of computers. This effort has been 

undertaken over the last three years by the Message Passing Interface (MPI) Forum, a 

group of more than 80 people from 40 organizations, representing vendors of parallel 

systems, industrial users, industrial and national research laboratories, and universities. 

The designers of MPI sought to make use of the most attractive features of a 

number of existing message-passing systems, rather than selecting one of them and 

adopting it as the standard. Thus, MPI has been strongly influenced by work at the IBM 

T. J. Watson Research Center, Intel's NX/2, Express, nCUBE's Vertex, p4, and 

PARMACS. Other important contributions have come from Zipcode, Chimp, PVM, 

Chameleon, and PICL. The MPI Forum identified some critical shortcomings of 

existing message-passing systems, in areas such as complex data layouts or support for 

modularity and safe communication. This led to the introduction of new features in 

MPI. 

The MPI standard defines the user interface and functionality for a wide range of 

message-passing capabilities. Since its completion in June of 1994, MPI has become 

widely accepted and used. Implementations are available on a range of machines from 

SPCs to NOWs. A growing number of SPCs have an MPI supplied and supported by 

the vendor. Because of this, MPI has achieved one of its goals - adding credibility to 

parallel computing. Third party vendors, researchers, and others now have a reliable and 

portable way to express message-passing, parallel programs.  

The major goal of MPI, as with most standards, is a degree of portability across 

different machines. The expectation is for a degree of portability comparable to that 

given by programming languages such as Fortran. This means that the same message-

passing source code can be executed on a variety of machines as long as the MPI library 

is available, while some tuning might be needed to take best advantage of the features 

of each system. portability Though message passing is often thought of in the context of 

distributed-memory parallel computers, the same code can run well on a shared-

memory parallel computer. It can run on a network of workstations, or, indeed, as a set 

of processes running on a single workstation. Knowing that efficient MPI 

implementations exist across a wide variety of computers gives a high degree of 

flexibility in code development, debugging, and in choosing a platform for production 

runs.  

Another type of compatibility offered by MPI is the ability to run transparently 

on heterogeneous systems, that is, collections of processors with distinct architectures. 
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It is possible for an MPI implementation to span such a heterogeneous collection, yet 

provide a virtual computing model that hides many architectural differences. The user 

need not worry whether the code is sending messages between processors of like or 

unlike architecture. The MPI implementation will automatically do any necessary data 

conversion and utilize the correct communications protocol. However, MPI does not 

prohibit implementations that are targeted to a single, homogeneous system, and does 

not mandate that distinct implementations be interoperable. Users that wish to run on an 

heterogeneous system must use an MPI implementation designed to support 

heterogeneity. heterogeneous interoperability  

Portability is central but the standard will not gain wide usage if this was 

achieved at the expense of performance. For example, Fortran is commonly used over 

assembly languages because compilers are almost always available that yield acceptable 

performance compared to the non-portable alternative of assembly languages. A crucial 

point is that MPI was carefully designed so as to allow efficient implementations. The 

design choices seem to have been made correctly, since MPI implementations over a 

wide range of platforms are achieving high performance, comparable to that of less 

portable, vendor-specific systems.  

An important design goal of MPI was to allow efficient implementations across 

machines of differing characteristics. efficiency For example, MPI carefully avoids 

specifying how operations will take place. It only specifies what an operation does 

logically. As a result, MPI can be easily implemented on systems that buffer messages 

at the sender, receiver, or do no buffering at all. Implementations can take advantage of 

specific features of the communication subsystem of various machines. On machines 

with intelligent communication coprocessors, much of the message passing protocol can 

be offloaded to this coprocessor. On other systems, most of the communication code is 

executed by the main processor. Another example is the use of opaque objects in MPI. 

By hiding the details of how MPI-specific objects are represented, each implementation 

is free to do whatever is best under the circumstances.  

Another design choice leading to efficiency is the avoidance of unnecessary 

work. MPI was carefully designed so as to avoid a requirement for large amounts of 

extra information with each message, or the need for complex encoding or decoding of 

message headers. MPI also avoids extra computation or tests in critical routines since 

this can degrade performance. Another way of minimizing work is to encourage the 

reuse of previous computations. MPI provides this capability through constructs such as 
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persistent communication requests and caching of attributes on communicators. The 

design of MPI avoids the need for extra copying and buffering of data: in many cases, 

data can be moved from the user memory directly to the wire, and be received directly 

from the wire to the receiver memory.  

MPI was designed to encourage overlap of communication and computation, so 

as to take advantage of intelligent communication agents, and to hide communication 

latencies. This is achieved by the use of nonblocking communication calls, which 

separate the initiation of a communication from its completion.  

Scalability is an important goal of parallel processing. MPI allows or supports 

scalability through several of its design features. For example, an application can create 

subgroups of processes that, in turn, allows collective communication operations to 

limit their scope to the processes involved. Another technique used is to provide 

functionality without a computation that scales as the number of processes. For 

example, a two-dimensional Cartesian topology can be subdivided into its one-

dimensional rows or columns without explicitly enumerating the processes. scalability  

Finally, MPI, as all good standards, is valuable in that it defines a known, 

minimum behavior of message-passing implementations. This relieves the programmer 

from having to worry about certain problems that can arise. One example is that MPI 

guarantees that the underlying transmission of messages is reliable. The user need not 

check if a message is received correctly. 

 

3.4. Inclusions of MPI 

 

The goal of the Message Passing Interface, simply stated, is to develop a widely 

used standard for writing message-passing programs. As such the interface should 

establish a practical, portable, efficient, and flexible standard for message passing. 

 

• Design an applciation programming interface. Although MPI is currently 

used as a run-time for parallel compilers and for various libraries, the design 

of MPI primarily reflects the perceived needs of applications programmers. 

• Allow efficient communication. Avoid memory-to-memory copying, allow 

overlap of computation and communication, and offload to a communication 

coprocessor-processor, where available. 
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• Allow for implementations that can be used in a heterogeneous environment. 

• Allow convenient C and Fortran 77 bindings for the interface. Also, the 

semantics of the interface should be language independent. 

• Provide a reliable communication interface. The user need not cope with 

communication failures. 

• Define an interface not too different from current practice, such as PVM, 

NX, Express, p4, etc., and provides extensions that allow greater flexibility. 

• Define an interface that can be implemented on many vendor’s platforms, 

with no significant changes in the underlying communication and system 

software. 

• The interface should be designed to allow for thread-safety. 

 

3.5. MPI Standard 

 

The standard includes: 

 

• Point-to-point communication 

• Collective operations 

• Process groups 

• Communication domains 

• Process topologies 

• Environmental management and inquiry 

• Profiling interface 

• Bindings for Fortran 77 and C (WEB_2 1995) 

 

MPI standard supports point-to-point, multicast, and broadcast communication 

styles. From computer networks, it is well known that to use multicast communication, 

there must be a mechanism to create/destroy groups. MPI provides this mechanism via 

process groups and communication domains. The communicating parties can also 

collaborate with each other effectively to reach a single solution collectively. Among 

many popular programming languages, C and Fortran 77 can be preferred to code 

parallel programs using MPI.  
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In fact, MPI has a huge library, however, it has been documented and designed 

in a good fashion; therefore it does not require enormous effort to get accustomed to it. 
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CHAPTER 4 

 

PARALLEL ALGORITHMS 

 

The parallel platform chosen for this thesis is not a shared-address-space 

platform but message-passing platform instead, which means that each process is 

executed in a completely-isolated memory space and the communication is only 

available through the passing of messages between. Therefore, the algorithms will be 

illustrated suited for those platforms. 

There are two classes of nodes used to perform a task in parallel. One is the 

master process and the other is the slave one. There is probably more than one slave 

process, however, there is usually only one master process coordinating the others. The 

algorithms are also grouped that way: some algorithms are only for the master process, 

whereas some are for the others. 

 

4.1. Simple Prime Generation 

 

To generate a prime candidate y, again a seed value x should be selected to 

define a starting point for the search process. The parameter id is the process number. 

The servers are numbered from 0 to p − 1. 

The servers must examine disjoint portions of the search space. To achieve this, 

each server starts searching at x + 2 * id using increments of 2p. This interleaves the 

numbers examined by each server, and allows the node array, as a whole, to examine 

odd numbers greater than or equal to x until a prime candidate is found. 
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Algorithm 4.1. Simple Prime Generation Algorithm at Master. 

 

 

Algorithm 4.2. Simple Prime Generation Algorithm at Slave. 

 

 

 

 

 

 

 

 

procedure SimplePrimeGenerationMaster(x:positive integer) 

{x is the starting point for searching a prime} 

 

if even(x) x:=x+1 

do 

begin 

broadcast the value of x to all the other nodes 

wait until the slave nodes find a candidate and certify it 

get the collective result found 

x:=x+2 

end until not found 

get the simple prime p 

procedure SimplePrimeGeneration(x:positive integer) 

{x will be used to calculate the starting point for this node} 

 

x:=x+2*id 

do 

begin 

start := start + 2*p 

if not SmallFactor(start) then 

found:=miller rabin test(start,1) 

end while not found and any other node has not found a prime candidate yet 

share the candidate with other nodes 

collectively certify the candidate 

return the result found to the master 
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4.2. Double Prime Generation 

 

While finding a double prime, the servers will again search disjoint search 

places. The only difference from the simple prime generation algorithm is that a search 

is initiated for double prime r = kt + 1, for some k ≥ 0. If received candidate r is not 

prime, the process is repeated with a new search starting at k = (r div t) + 2. 

 

 

Algorithm 4.3. Double Prime Generation Algorithm at Master. 

 

 

 

Algorithm 4.4. Double Prime Generation Algorithm at Slave. 

 

 

procedure DoublePrimeGenerationMaster(t:positive integer) 

{x is the simple prime to be used for finding a double prime} 

 

k:=0 

do 

begin 

broadcast the value of t and k to all the other nodes 

wait until the slave nodes find a candidate r and certify it 

get the collective result found 

k:=(r div t) + 2 

end until not found 

get the double prime r 

procedure DoublePrimeGeneration(x,k:positive integer) 

{t is the simple prime to calculate a double prime using the formula kt+1 by iterating 

k } 

 

k:=k+2*(id+1) 

do 

begin 

y := k*start + 1 

if not SmallFactor(y) then found:=miller rabin test(y,1) 

k:=k+2*p 

end while not found and any other node has not found a prime candidate yet 

share the candidate with other nodes and master 

collectively certify the candidate 

return the result found to the master 
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4.3. Strong Prime Generation 

 

While finding a strong prime, the servers will again search disjoint search 

places. The only difference from the two previous algorithms is that a search is initiated 

for strong prime p = p0 + krs, for some k ≥ 0. If received candidate p is not prime, the 

process is repeated with a new search starting at k = (p div rs) + 2. 

 

 

Algorithm 4.5. Strong Prime Generation Algorithm at Master. 

 

 

 

Algorithm 4.6. Strong Prime Generation Algorithm at Slave. 

 

procedure StrongPrimeGenerationMaster(r,s:positive integer) 

{r is the double prime whereas s is the simple prime to be used while generating the

strong prime} 

 

rs:=r*s 

u:=(rs+modpower(s,r-1,rs)-modpower(r,s-1,rs)) mod rs; 

if odd(u) then p0:=u else p0:=u+rs 

k:=0 

do 

begin 

broadcast the value of p0, rs and k to all the other nodes 

wait until the slave nodes find a candidate p and certify it 

get the collective result found 

k:=(p div rs) + 2 

end until not found 

get the double prime r 

procedure StrongPrimeGeneration(p0,rs,k:positive integer) 

{p0 is the starting point to be used in the formula p = p0+krs, s is the simple prime 

and r is the double prime. k is the value to be iterated until a prime p is found} 

 

k:=k+2*(id+1) 

do 

begin 

y := p0+k*rs 

if not SmallFactor(y) then found:=miller rabin test(y,1) 

k:=k+2*p 

end while not found and any other node has not found a prime candidate yet 

share the candidate with other nodes and master 

collectively certify the candidate 

return the result found to the master 
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4.4. Parallel Prime Certification 

 

The parallelization of the Miller-Rabin Test is quite straightforward: if the 

primality test is applied m times to a prime candidate n in a serial algorithm; in the 

parallel case, each slave applies the test for m/p times where p is the number of total 

nodes. Then, the results are combined to see if any of these nodes has found that the 

candidate is composite. If not, the candidate is prime, otherwise it is composite. 

 

4.5. RSA in Operation 

 

After generating the strong primes to compute the encryption and generation 

keys, the process is again distributed among the slaves. The pseudocode will only be 

shown for the encryption process since the decryption process is the symmetric of it. 

 

Algorithm 4.7. RSA Encryption at Master. 

procedure RSAEncryptionMaster(p,q:positive integer; srcFile, dstFile: 

character array) 

{p and q are the strong primes that will be used for generating the keys; srcFile and 

dstFile are the source file to be encrypted and the destination file where the 

encrypted data will be output, respectively} 

 

Compute M := p*q 

Compute N := (p-1)*(q-1) 

Find an exponent e that is relatively prime to N 

Find an exponent d where e*d := 1 mod N 

Share e, d and N with the slaves 

open srcFile 

open dstFile 

begin 

Read n times the BLOCKSIZE from srcfile to be encrypted 

Apply the chaining operation to the multiple block 

Send each partition to a distinct slave 

Collect the results and write to dstFile 

end until there is any remaining block with a size of n * BLOCKSIZE 

if there is any data left in the file then  

encrypt it yourself 

write the result to the file end and the remaining data size to the header field of   

       dstFile 

end if 

close srcFile 

close dstFile 
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Algorithm 4.8. RSA Encryption at Slave. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

procedure RSAEncryption(e,N:positive integer; buf[]:character array) 

{e is the encryption key, N is the modulus and buf is the array holding the partition 

of the file to be encrypted} 

 

Encrypt the data found in buf using the key and the modulus by using the equation of     

        c = m^e modM 

Send c to the master 
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CHAPTER 5 
 

EXPERIMENTAL RESULTS 

 

Since approximately one in every Ln(n) numbers around n is prime, testing can 

be averaged over O(Ln(n)) trials (Greenfield 1994).
13

 However, to see the probabilistic 

distribution of primes clearly, another approach has been selected in this thesis. That is, 

two modes have been used to collect the measures. In one mode, the prime searching 

process for the serial and parallel case has been initiated from randomly chosen origins; 

and in the other mode, the same origin has been selected for both. It is expected that 

when the origins are randomly chosen, the speedup measures will have a higher 

variability than the ones which are taken when the same origin is used. 

After the pseudocodes were converted into source code representations and then 

compiled, the executable program was run against a sample file with a size of 9820 

bytes that was used for the encryption/decryption process using different key sizes and 

different modes. As explained before, these two modes differ in the selection of using 

either different seeds or the same seed for the random number generator which is 

supplied by a multiprecision arithmetic library, namely MIRACL. The measures taken 

for this work are the times elapsed for the strong prime generation (p and q), the 

creation of the keys, the encryption process and the decryption process; and the speedup 

values related to those measures. The measures were entered in two tables one set for 

each seeding mode; namely, different seeds and the same seed for the random number 

generator. To be able to make a sound judgement based on the measures shown in Table 

5.1 and Table 5.2 more easily, the measures related to strong prime generation are 

plotted in Figure 5.1.  

Figure 5.1 illustrates the speedup measures in two modes. On average, the speed 

up value is greater than one for all key lengths in each mode, however, for the case of 

using the same seed, it can be observed schematically that the speedup measures have a 

smaller variability (it does not have sharp edges like the other one). Mathematically, the 

standard deviation of speedup values for the case of using different seeds is 3.67439, 

where as the standard deviation of speedup values for the other case is 1.473729. This 

                                                 
13

 Greenfield, J. S., 1994. “Distributed Programming Paradigms with Cryptography Applications”, 

Distributed Computing Environments Group, M/S B272, Los Alamos, New Mexico, USA, p. 108. 
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result can be explained as such: if the sequential and the parallel algorithm starts 

searching the prime numbers randomly, then the starting point for one of them may be 

very close to a prime number, and moreover, if that algorithm is the sequential one, the 

results may show wrongly that the parallel one is less efficient than the sequential one. 

The luck comes into the play in this scenario and may add very much noise to the 

measures. To overcome this problem, the algorithms should be started from the same 

origin for searching and the noise may be decreased as much as possible. Using that 

method, they will run in the same search space starting from the same origin and the 

comparison will be more accurate. The standard deviations calculated also justifies this 

fact. 

 

Table 5.1. The Measured Values Using Different Seeds.  

 

TIME ELAPSED (secs) SPEEDUP 

DIFFERENT 
SEEDS 
(k = 4) 

Strong 
Prime 
Gen. 
(p , q) 

Key 
Gen. 

E
n

c
ry

p
tio

n
 

D
e
c
ry

p
tio

n
 

Strong 
Prime 
Gen. 
(p , q) 

Key 
Gen. 

E
n

c
ry

p
tio

n
 

D
e
c
ry

p
tio

n
 

Serial 7,806 0,034 3,013 3,202 
1024 

Parallel 1,162 0,033 0,822 0,804 
6,720 1,028 3,665 3,984 

Serial 11,829 0,069 9,345 9,410 
2048 

Parallel 5,823 0,074 2,956 2,977 
2,031 0,938 3,161 3,160 

Serial 50,241 0,116 19,788 19,920 
3072 

Parallel 11,295 0,121 6,099 6,077 
4,448 0,957 3,245 3,278 

Serial 376,63 0,148 34,069 34,770 
4096 

Parallel 45,036 0,159 13,795 13,774 
8,363 0,932 2,470 2,524 

Serial 1079,663 0,197 51,712 52,286 
5120 

Parallel 120,716 0,197 22,941 22,938 
8,944 1,001 2,254 2,279 

Serial 1978,144 0,286 71,538 71,772 
6144 

Parallel 153,130 0,285 22,176 22,245 
12,918 1,002 3,226 3,226 

Serial 1445,904 0,351 93,451 93,964 
7168 

Parallel 485,526 0,568 42,904 43,611 
2,978 0,617 2,178 2,155 

Serial 3797,425 0,399 124,936 126,250 
8192 

Parallel 1184,646 0,450 50,645 50,601 
3,206 0,885 2,467 2,495 

Serial 2641,749 0,627 159,090 160,244 
9216 

Parallel 1205,353 0,503 53,438 54,125 
2,192 1,246 2,977 2,961 

Serial 2448,290 0,542 193,214 193,330 

K
E

Y
 L

E
N

G
T

H
 (b

its
) 

10240 
Parallel 998,131 0,496 121,686 122,144 

2,453 1,092 1,588 1,583 
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Table 5.2. The Measured Values Using the Same Seed.  

 

TIME ELAPSED (secs) SPEEDUP 

SAME SEED 
(k = 4) 

Strong 
Prime 
Gen. 
(p , q) 

Key 
Gen. 

E
n

c
ry

p
tio

n
 

D
e
c
ry

p
tio

n
 

Strong 
Prime 
Gen.  
(p , q) 

Key 
Gen. 

E
n

c
ry

p
tio

n
 

D
e
c
ry

p
tio

n
 

Serial 3,322 0,031 2,934 3,011 
1024 

Parallel 1,048 0,032 0,861 0,843 
3,170 0,969 3,407 3,570 

Serial 22,147 0,070 9,765 9,894 
2048 

Parallel 3,589 0,065 2,923 2,953 
6,171 1,071 3,341 3,350 

Serial 62,914 0,148 19,743 19,645 
3072 

Parallel 23,161 0,130 6,113 6,198 
2,716 1,135 3,230 3,170 

Serial 179,319 0,167 34,020 34,341 
4096 

Parallel 68,038 0,156 13,140 13,244 
2,636 1,068 2,589 2,593 

Serial 367,050 0,237 51,436 52,658 
5120 

Parallel 82,935 0,197 22,770 23,090 
4,426 1,198 2,259 2,280 

Serial 972,797 0,249 70,565 71,726 
6144 

Parallel 207,798 0,250 21,985 22,121 
4,681 0,995 3,210 3,242 

Serial 2812,432 0,307 94,817 96,474 
7168 

Parallel 511,983 0,448 42,896 43,978 
5,493 0,686 2,210 2,194 

Serial 1376,377 0,551 124,575 125,200 
8192 

Parallel 813,666 0,580 50,552 51,596 
1,692 0,950 2,464 2,427 

Serial 4408,174 0,504 160,328 161,161 
9216 

Parallel 1016,627 0,431 53,627 54,002 
4,336 1,167 2,990 2,984 

Serial 11644,961 0,830 196,065 194,632 

K
E

Y
 L

E
N

G
T

H
 (b

its
) 

10240 
Parallel 2098,976 0,537 121,142 122,839 

5,548 1,546 1,618 1,584 
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Figure 5.1. Strong Primes Generation.  
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CHAPTER 6 
 

CONCLUSION AND RECOMMENDED FURTHER 

WORKS 

 

As seen from the experimental results, there is little doubt that the parallelism 

can be used for speeding up the operation of several cryptosystems. However, it should 

be noted that the amount of speedup achieved has a strong relationship with the choice 

of the platform used for parallelism. If the data to be exchanged between nodes are 

large, then the shared memory approach will be better. On the other hand, if the data to 

be exchanged can be limited to a small amount, then message-passing platforms will 

certainly be more useful. Each method has its own advantages and disadvantages. 

Shared-memory approach makes the communication faster since all the nodes share a 

common place for data storage; however, it is more difficult to code and debug due to 

synchronization and contention problems, and to scale when new nodes are added to 

increase the speedup value. Message-passing platforms make the programming and 

maintenance task easier, but they are less efficient when there needs to be heavy 

communication between the nodes since each data exchanged means a message going 

between the parties.  

It is certain that parallelism can not only be used on the cryptographers’ side for 

forming an unbreakable cryptosystem but also on the cryptanalysts’ side to try to break 

a cryptosystem as soon as possible. In this thesis, the impact of parallelism on 

generation and certification of primes numbers and the encryption and decryption 

processes were discussed, but this does not mean that the parallelism can only be used 

in a constructive manner; in fact, it can also be used in destructive manner – 

cryptanalysis. This means that the usage of parallelism is not limited to any specific area 

but has a general usability. 

This work may certainly be extended by parallelizing other cryptosystems such 

as El-Gammal and several techniques used for cryptanalysis such as factoring large 

primes, which can be used for testing the strength of any new cryptosystem before it is 

standardized for public usage. In fact, the parallelism is used much more by 

cryptanalysts than cryptographers in real life.  
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It should never be overlooked that the hardest work is not just to set up a parallel 

environment for running parallel algorithms but to find the logic for devising effective 

parallel solutions; otherwise, it is inevitable to code a parallel program that is inefficient 

or even worse, that executes slower than its serial counterpart. 
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APPENDIX A 

 

DISTRIBUTED ENVIRONMENT 

  

The distributed environment used in this thesis is formed by four identical PCs 

each with Pentium IV 2 GHz processor and 512 MB RAM connected via a 100 Mbps 

Ethernet LAN. The operating system preferred is RedHat Linux 9 which is the popular 

version of RedHat during the time of writing this thesis. Although some parts of the 

environment setup is a must (such as a multiprecision integer arithmetic library), some 

other parts are optional (such as NFS) just for increasing the efficiency. All of the 

environment work will be discussed. 

Since the programs are all written in C programming language, the standard C 

compiler, gcc, is preferred and the parallel platform is constructed with MPI (Message 

Passing Interface). There are many implementations of MPI, and among them, MPICH1 

is used which is just a library that can be linked with other C programs. The usual 

registers used in a standard PC nowadays are at most 64 bits long which forces the users 

dealing with cryptography to use a multiprecision integer arithmetic library. MIRACL2 

is a popular one in this area and it is also another library just like MPICH. To allow 

each PC send messages to each other, there must be a remote login mechanism used by 

them, which is Secure Shell (SSH) in this work. SSH allows the remote login process to 

be done with public-key cryptographic techniques. 

The components mentioned in the previous paragraph are the must-part of the 

work. Besides those, there are also some optional parts to improve the efficiency. NFS 

and NIS are two techniques used for sharing any directory or system-wide file (such as 

the shadow file) between several computers, respectively. Using them, there is no need 

to compile a program in one computer and then copying it to others or to create several 

accounts on each of them to allow login from terminals. 
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A.1. Network Setup 

 

The four PCS are connected to each other via an Ethernet LAN using a switch. 

The PCS are given virtual IPS starting from 192.168.0.1 up to 192.168.0.4 using a 

netmask of 255.255.255.0. 

 

A.2. MIRACL Setup 

 

After downloading MIRACL to a temporary location, it can be extracted by using a 

command like 

% unzip -j -aa -L miracl.zip 

Next, a tailored build of MIRACL for the underlying system can be created by typing 

% bash linux 

All C programs must be linked with miracl.a and during compilation, the MIRACL 

header files must be included by using specific gcc parameters. For example, a typical 

compilation and linking command can be 

% gcc -c <filename>.c -o <obj>.o I/location/to/miracl/include 

% gcc -o <output> <objname>.o /location/to/miracl/miracl.a 

 

A.3. MPICH Setup 

 

The downloaded TAR.GZ file can be extracted with 

% tar -zxvf mpich.X.X.X.tar.gz 

Then, the unzipped and untarred MPICH source must be configured by giving the target 

location using –prefix option, and the login procedure between PCs using                       

-RSHCOMMAND option and it must be compiled and installed using make utility. A 

typical example may be 

% ./configure --prefix=/location/to/targetdir -RSHCOMMAND=ssh 

% make 

% make install 

Successfully completing all of these, the source program can be compiled and linked 

with MPICH (and also MIRACL) by typing 
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% gcc -c <filename>.c -o <obj>.o -I/location/to/mpich 

-I/location/to/miracl/include 

% gcc -o <output> <objname>.o -L/location/to/mpich/lib    

-lmpich /location/to/miracl/miracl.a  

 

A.4. SSH Setup 

 

sshd is the name of the server daemon and ssh is the name of the client program. 

Both of them are set up in each PC to allow each of them to communicate with each 

other. To use SSH, a user must create a public and private key and save the public key 

in the server he/she wants to connect to, whereas save the rivate key in the client 

system. The command for creating the key is 

% ssh-keygen -t rsa 

This command creates the keys using RSA as the public-key cryptosystem and puts 

them under the .ssh directory under the user’s home as default. 

There are two configuration files for the server daemon and the client program: 

sshd_config and ssh_config, respectively, residing under /etc/ssh directory. The 

contents of them are shown in Configuration A.1 and Configuration A.2. 

 

 

Configuration A.1. /etc/ssh/sshd config. 

 

Port 22 

Protocol 2 

ListenAddress 0.0.0.0 

HostKey /etc/ssh/ssh host rsa key 

SyslogFacility AUTHPRIV 

PermitRootLogin no 

RSAAuthentication yes 

PubkeyAuthentication yes 

AuthorizedKeysFile .ssh/id rsa.pub 

RhostsAuthentication no 

IgnoreRhosts yes 

RhostsRSAAuthentication no 

PasswordAuthentication no 

PermitEmptyPasswords no 

X11Forwarding yes 

PrintMotd yes 

Subsystem sftp /usr/libexec/openssh/sftp-server 
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Configuration A.2. /etc/ssh/ssh config. 

 

A.5. NFS Setup 

 

NFS is used to share a directory between hosts. To avoid the executable file 

from copying each PC individually, the user’s home directory has been shared between 

each one. 

The steps for sharing a directory is a two-step process: 

At the server-side, the directory to be shared is defined in a configuration file, 

namely /etc/exports. The content is shown below: 

 

Configuration A.3. /etc/exports 

 
At the client-side, the shared directory can be mounted at startup by entering the 

necessary directive in the /etc/fstab configuration file which is shown below: 

 

 

Configuration A.4. /etc/fstab. 

 

 

 

ForwardX11 yes 

RhostsAuthentication no 

RhostsRSAAuthentication no 

RSAAuthentication yes 

PasswordAuthentication yes 

IdentityFile /.ssh/identity 

IdentityFile /.ssh/id rsa 

IdentityFile /.ssh/id dsa 

Port 22 

Protocol 2 

Host * 

ForwardX11 yes 

/user/home/dir 192.168.0.0/24(rw) 

# This configuration allows the user directory to be shared with 

# the hosts in the network of 192.168.0.0/24 with read/write 

# access 

<serverIP or hostname>:<remotePathToBeMounted> </local/mount/point>  

nfs soft 0 0 
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A.6. NIS Setup 

 

NIS is used to share system-wide files between hosts. In this work, it is preferred 

to ease the management of login accounts. NIS setup is again a two-step process like 

NFS. The tool to be used is yp that comes with standard RedHat distributions. 

At the server-side, the configuration file /etc/ypserv.conf is used to define what 

kind of system-wide information will be shared (passwd info, shadow info etc.) and 

among which hosts it can be shared. The content of it, which is shown below, says that 

all system-wide info can be shared with any host. Since the LAN is a virtual one, there 

is no need to think about security restrictions to avoid any attacks. 

 

Configuration A.5. /etc/ypserv.conf. 

 

Then, the database that will be used by yp tool must be created by the ypinit command: 

% /usr/lib/yp/ypinit -m 

At the client-side, the /etc/yp.conf file is used to direct the host to which server it must 

bind for getting the system-wide information. Its content is shown below: 

 

 

Configuration A.6. /etc/yp.conf. 

 

Then, another configuration file, namely /etc/nsswitch.conf, must be adjusted to define 

the order of the lookups for an account, service or other system-wide information when 

needed. The content shown below directs the client to search its own shadow, group, or 

passwd file and then the server’s if it cannot find the necessary information in its own 

one.  

 

 

 

 

# * : * : * : none 

domain test server <serverIP> 
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Configuration A.7. /etc/nsswitch.conf. 

 

There is one important point left to be mentioned: all the hosts must share a common 

NIS domain which can be set in /etc/sysconfig/network. An example is shown: 

 

 

Configuration A.8. /etc/sysconfig/network. 

 

 

 

 

passwd: files nis 

shadow: files nis 

group: files nis 

hosts: files dns 

bootparams: nisplus [NOTFOUND=return] files 

ethers: files 

netmasks: files 

networks: files 

protocols: files 

rpc: files 

services: files 

netgroup: files 

publickey: nisplus 

automount: files 

aliases: files nisplus 

NETWORKING=yes 

HOSTNAME=<hostname> 

NISDOMAIN=<nisdomain> 


