7,128 research outputs found

    Deep Adaptive Feature Embedding with Local Sample Distributions for Person Re-identification

    Full text link
    Person re-identification (re-id) aims to match pedestrians observed by disjoint camera views. It attracts increasing attention in computer vision due to its importance to surveillance system. To combat the major challenge of cross-view visual variations, deep embedding approaches are proposed by learning a compact feature space from images such that the Euclidean distances correspond to their cross-view similarity metric. However, the global Euclidean distance cannot faithfully characterize the ideal similarity in a complex visual feature space because features of pedestrian images exhibit unknown distributions due to large variations in poses, illumination and occlusion. Moreover, intra-personal training samples within a local range are robust to guide deep embedding against uncontrolled variations, which however, cannot be captured by a global Euclidean distance. In this paper, we study the problem of person re-id by proposing a novel sampling to mine suitable \textit{positives} (i.e. intra-class) within a local range to improve the deep embedding in the context of large intra-class variations. Our method is capable of learning a deep similarity metric adaptive to local sample structure by minimizing each sample's local distances while propagating through the relationship between samples to attain the whole intra-class minimization. To this end, a novel objective function is proposed to jointly optimize similarity metric learning, local positive mining and robust deep embedding. This yields local discriminations by selecting local-ranged positive samples, and the learned features are robust to dramatic intra-class variations. Experiments on benchmarks show state-of-the-art results achieved by our method.Comment: Published on Pattern Recognitio

    A Simple Iterative Algorithm for Parsimonious Binary Kernel Fisher Discrimination

    Get PDF
    By applying recent results in optimization theory variously known as optimization transfer or majorize/minimize algorithms, an algorithm for binary, kernel, Fisher discriminant analysis is introduced that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The problem is converted into a smooth optimization that can be solved iteratively with no greater overhead than iteratively re-weighted least-squares. The result is simple, easily programmed and is shown to perform, in terms of both accuracy and parsimony, as well as or better than a number of leading machine learning algorithms on two well-studied and substantial benchmarks

    Functional Mixture Discriminant Analysis with hidden process regression for curve classification

    Full text link
    We present a new mixture model-based discriminant analysis approach for functional data using a specific hidden process regression model. The approach allows for fitting flexible curve-models to each class of complex-shaped curves presenting regime changes. The model parameters are learned by maximizing the observed-data log-likelihood for each class by using a dedicated expectation-maximization (EM) algorithm. Comparisons on simulated data with alternative approaches show that the proposed approach provides better results.Comment: In Proceedings of the XXth European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Pages 281-286, 2012, Bruges, Belgiu

    The MM Alternative to EM

    Full text link
    The EM algorithm is a special case of a more general algorithm called the MM algorithm. Specific MM algorithms often have nothing to do with missing data. The first M step of an MM algorithm creates a surrogate function that is optimized in the second M step. In minimization, MM stands for majorize--minimize; in maximization, it stands for minorize--maximize. This two-step process always drives the objective function in the right direction. Construction of MM algorithms relies on recognizing and manipulating inequalities rather than calculating conditional expectations. This survey walks the reader through the construction of several specific MM algorithms. The potential of the MM algorithm in solving high-dimensional optimization and estimation problems is its most attractive feature. Our applications to random graph models, discriminant analysis and image restoration showcase this ability.Comment: Published in at http://dx.doi.org/10.1214/08-STS264 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore