2,150 research outputs found

    Revealing networks from dynamics: an introduction

    Full text link
    What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.Comment: Topical review, 48 pages, 7 figure

    A sparse Bayesian learning method for structural equation model-based gene regulatory network inference

    Get PDF
    Gene regulatory networks (GRNs) are underlying networks identified by interactive relationships between genes. Reconstructing GRNs from massive genetic data is important for understanding gene functions and biological mechanism, and can provide effective service for medical treatment and genetic research. A series of artificial intelligence based methods have been proposed to infer GRNs from both gene expression data and genetic perturbations. The accuracy of such algorithms can be better than those models that just consider gene expression data. A structural equation model (SEM), which provides a systematic framework integrating both types of gene data conveniently, is a commonly used model for GRN inference. Considering the sparsity of GRNs, in this paper, we develop a novel sparse Bayesian inference algorithm based on Normal-Equation-Gamma (NEG) type hierarchical prior (BaNEG) to infer GRNs modeled with SEMs more accurately. First, we reparameterize an SEM as a linear type model by integrating the endogenous and exogenous variables; Then, a Bayesian adaptive lasso with a three-level NEG prior is applied to deduce the corresponding posterior mode and estimate the parameters. Simulations on synthetic data are run to compare the performance of BaNEG to some state-of-the-art algorithms, the results demonstrate that the proposed algorithm visibly outperforms the others. What’s more, BaNEG is applied to infer underlying GRNs from a real data set composed of 47 yeast genes from Saccharomyces cerevisiae to discover potential relationships between genes

    A sparse Bayesian learning method for structural equation model-based gene regulatory network inference

    Get PDF
    Gene regulatory networks (GRNs) are underlying networks identified by interactive relationships between genes. Reconstructing GRNs from massive genetic data is important for understanding gene functions and biological mechanism, and can provide effective service for medical treatment and genetic research. A series of artificial intelligence based methods have been proposed to infer GRNs from both gene expression data and genetic perturbations. The accuracy of such algorithms can be better than those models that just consider gene expression data. A structural equation model (SEM), which provides a systematic framework integrating both types of gene data conveniently, is a commonly used model for GRN inference. Considering the sparsity of GRNs, in this paper, we develop a novel sparse Bayesian inference algorithm based on Normal-Equation-Gamma (NEG) type hierarchical prior (BaNEG) to infer GRNs modeled with SEMs more accurately. First, we reparameterize an SEM as a linear type model by integrating the endogenous and exogenous variables; Then, a Bayesian adaptive lasso with a three-level NEG prior is applied to deduce the corresponding posterior mode and estimate the parameters. Simulations on synthetic data are run to compare the performance of BaNEG to some state-of-the-art algorithms, the results demonstrate that the proposed algorithm visibly outperforms the others. What’s more, BaNEG is applied to infer underlying GRNs from a real data set composed of 47 yeast genes from Saccharomyces cerevisiae to discover potential relationships between genes

    Perturbation biology: inferring signaling networks in cellular systems.

    Get PDF
    We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology

    Inference of SNP-Gene Regulatory Networks by Integrating Gene Expressions and Genetic Perturbations

    Get PDF
    In order to elucidate the overall relationships between gene expressions and genetic perturbations, we propose a network inference method to infer gene regulatory network where single nucleotide polymorphism (SNP) is involved as a regulator of genes. In the most of the network inferences named as SNP-gene regulatory network (SGRN) inference, pairs of SNP-gene are given by separately performing expression quantitative trait loci (eQTL) mappings. In this paper, we propose a SGRN inference method without predefined eQTL information assuming a gene is regulated by a single SNP at most. To evaluate the performance, the proposed method was applied to random data generated from synthetic networks and parameters. There are three main contributions. First, the proposed method provides both the gene regulatory inference and the eQTL identification. Second, the experimental results demonstrated that integration of multiple methods can produce competitive performances. Lastly, the proposed method was also applied to psychiatric disorder data in order to explore how the method works with real data
    • …
    corecore