405 research outputs found

    SUBIC: A Supervised Bi-Clustering Approach for Precision Medicine

    Full text link
    Traditional medicine typically applies one-size-fits-all treatment for the entire patient population whereas precision medicine develops tailored treatment schemes for different patient subgroups. The fact that some factors may be more significant for a specific patient subgroup motivates clinicians and medical researchers to develop new approaches to subgroup detection and analysis, which is an effective strategy to personalize treatment. In this study, we propose a novel patient subgroup detection method, called Supervised Biclustring (SUBIC) using convex optimization and apply our approach to detect patient subgroups and prioritize risk factors for hypertension (HTN) in a vulnerable demographic subgroup (African-American). Our approach not only finds patient subgroups with guidance of a clinically relevant target variable but also identifies and prioritizes risk factors by pursuing sparsity of the input variables and encouraging similarity among the input variables and between the input and target variable

    Analysis of regulatory network involved in mechanical induction of embryonic stem cell differentiation

    Get PDF
    Embryonic stem cells are conventionally differentiated by modulating specific growth factors in the cell culture media. Recently the effect of cellular mechanical microenvironment in inducing phenotype specific differentiation has attracted considerable attention. We have shown the possibility of inducing endoderm differentiation by culturing the stem cells on fibrin substrates of specific stiffness [1]. Here, we analyze the regulatory network involved in such mechanically induced endoderm differentiation under two different experimental configurations of 2-dimensional and 3-dimensional culture, respectively. Mouse embryonic stem cells are differentiated on an array of substrates of varying mechanical properties and analyzed for relevant endoderm markers. The experimental data set is further analyzed for identification of co-regulated transcription factors across different substrate conditions using the technique of bi-clustering. Overlapped bi-clusters are identified following an optimization formulation, which is solved using an evolutionary algorithm. While typically such analysis is performed at the mean value of expression data across experimental repeats, the variability of stem cell systems reduces the confidence on such analysis of mean data. Bootstrapping technique is thus integrated with the bi-clustering algorithm to determine sets of robust bi-clusters, which is found to differ significantly from corresponding bi-clusters at the mean data value. Analysis of robust bi-clusters reveals an overall similar network interaction as has been reported for chemically induced endoderm or endodermal organs but with differences in patterning between 2-dimensional and 3-dimensional culture. Such analysis sheds light on the pathway of stem cell differentiation indicating the prospect of the two culture configurations for further maturation. © 2012 Zhang et al

    Design Methodology for Self-organized Mobile Networks Based

    Get PDF
    The methodology proposed in this article enables a systematic design of routing algorithms based on schemes of biclustering, which allows you to respond with timely techniques, clustering heuristics proposed by a researcher, and a focused approach to routing in the choice of clusterhead nodes. This process uses heuristics aimed at improving the different costs in communication surface groups called biclusters. This methodology globally enables a variety of techniques and heuristics of clustering that have been addressed in routing algorithms, but we have not explored all possible alternatives and their different assessments. Therefore, the methodology oriented design research of routing algorithms based on biclustering schemes will allow new concepts of evolutionary routing along with the ability to adapt the topological changes that occur in self-organized data networks

    Configurable Pattern-based Evolutionary Biclustering of Gene Expression Data

    Get PDF
    BACKGROUND: Biclustering algorithms for microarray data aim at discovering functionally related gene sets under different subsets of experimental conditions. Due to the problem complexity and the characteristics of microarray datasets, heuristic searches are usually used instead of exhaustive algorithms. Also, the comparison among different techniques is still a challenge. The obtained results vary in relevant features such as the number of genes or conditions, which makes it difficult to carry out a fair comparison. Moreover, existing approaches do not allow the user to specify any preferences on these properties. RESULTS: Here, we present the first biclustering algorithm in which it is possible to particularize several biclusters features in terms of different objectives. This can be done by tuning the specified features in the algorithm or also by incorporating new objectives into the search. Furthermore, our approach bases the bicluster evaluation in the use of expression patterns, being able to recognize both shifting and scaling patterns either simultaneously or not. Evolutionary computation has been chosen as the search strategy, naming thus our proposal Evo-Bexpa (Evolutionary Biclustering based in Expression Patterns). CONCLUSIONS: We have conducted experiments on both synthetic and real datasets demonstrating Evo-Bexpa abilities to obtain meaningful biclusters. Synthetic experiments have been designed in order to compare Evo-Bexpa performance with other approaches when looking for perfect patterns. Experiments with four different real datasets also confirm the proper performing of our algorithm, whose results have been biologically validated through Gene Ontology

    GeRNet: A Gene Regulatory Network Tool

    Get PDF
    Gene regulatory networks (GRNs) are crucial in every process of life since they govern the majority of the molecular processes. Therefore, the task of assembling these networks is highly important. In particular, the so called model-free ap-proaches have an advantage modeling the complexities of dynamic molecular networks, since most of the gene networks are hard to be mapped with accuracy by any other mathematical model. A highly abstract model-free approach, called rule-based approach, offers several advantages performing data-driven analysis; such as the requirement of the least amount of data. They also have an important ability to perform inferences: its simplicity allows the inference of large size mod-els with a higher speed of analysis. However, regarding these techniques, the re-construction of the relational structure of the network is partial, hence incomplete, for an effective biological analysis. This situation motivated us to explore the possibility of hybridizing with other approaches, such as biclustering techniques. This led to incorporate a biclustering tool that finds new relations between these nodes of the GRN. In this work we present a new software, called GeRNeT that integrates the algorithms of GRNCOP2 and BiHEA along a set of tools for interactive visualization, statistical analysis and ontological enrichment of the resulting GRNs. In this regard, results associated with Alzheimer disease datasets are pre-sented that show the usefulness of integrating both bioinformatics tools.Fil: Dussaut, Julieta Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Gallo, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Cravero, Fiorella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Martínez, María Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin

    Utilizing gene co-expression networks for comparative transcriptomic analyses

    Get PDF
    The development of high-throughput technologies such as microarray and next-generation RNA sequencing (RNA-seq) has generated numerous transcriptomic data that can be used for comparative transcriptomics studies. Transcriptomes obtained from different species can reveal differentially expressed genes that underlie species-specific traits. It also has the potential to identify genes that have conserved gene expression patterns. However, differential expression alone does not provide information about how the genes relate to each other in terms of gene expression or if groups of genes are correlated in similar ways across species, tissues, etc. This makes gene expression networks, such as co-expression networks, valuable in terms of finding similarities or differences between genes based on their relationships with other genes. The desired outcome of this research was to develop methods for comparative transcriptomics, specifically for comparing gene co-expression networks (GCNs), either within or between any set of organisms. These networks represent genes as nodes in the network, and pairs of genes may be connected by an edge representing the strength of the relationship between the pairs. We begin with a review of currently utilized techniques available that can be used or adapted to compare gene co-expression networks. We also work to systematically determine the appropriate number of samples needed to construct reproducible gene co-expression networks for comparison purposes. In order to systematically compare these replicate networks, software to visualize the relationship between replicate networks was created to determine when the consistency of the networks begins to plateau and if this is affected by factors such as tissue type and sample size. Finally, we developed a tool called Juxtapose that utilizes gene embedding to functionally interpret the commonalities and differences between a given set of co-expression networks constructed using transcriptome datasets from various organisms. A set of transcriptome datasets were utilized from publicly available sources as well as from collaborators. GTEx and Gene Expression Omnibus (GEO) RNA-seq datasets were used for the evaluation of the techniques proposed in this research. Skeletal cell datasets of closely related species and more evolutionarily distant organisms were also analyzed to investigate the evolutionary relationships of several skeletal cell types. We found evidence that data characteristics such as tissue origin, as well as the method used to construct gene co-expression networks, can substantially impact the number of samples required to generate reproducible networks. In particular, if a threshold is used to construct a gene co-expression network for downstream analyses, the number of samples used to construct the networks is an important consideration as many samples may be required to generate networks that have a reproducible edge order when sorted by edge weight. We also demonstrated the capabilities of our proposed method for comparing GCNs, Juxtapose, showing that it is capable of consistently matching up genes in identical networks, and it also reflects the similarity between different networks using cosine distance as a measure of gene similarity. Finally, we applied our proposed method to skeletal cell networks and find evidence of conserved gene relationships within skeletal GCNs from the same species and identify modules of genes with similar embeddings across species that are enriched for biological processes involved in cartilage and osteoblast development. Furthermore, smaller sub-networks of genes reflect the phylogenetic relationships of the species analyzed using our gene embedding strategy to compare the GCNs. This research has produced methodologies and tools that can be used for evolutionary studies and generalizable to scenarios other than cross-species comparisons, including co-expression network comparisons across tissues or conditions within the same species
    • …
    corecore