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Abstract

Embryonic stem cells are conventionally differentiated by modulating specific growth factors in the cell culture media.
Recently the effect of cellular mechanical microenvironment in inducing phenotype specific differentiation has attracted
considerable attention. We have shown the possibility of inducing endoderm differentiation by culturing the stem cells on
fibrin substrates of specific stiffness [1]. Here, we analyze the regulatory network involved in such mechanically induced
endoderm differentiation under two different experimental configurations of 2-dimensional and 3-dimensional culture,
respectively. Mouse embryonic stem cells are differentiated on an array of substrates of varying mechanical properties and
analyzed for relevant endoderm markers. The experimental data set is further analyzed for identification of co-regulated
transcription factors across different substrate conditions using the technique of bi-clustering. Overlapped bi-clusters are
identified following an optimization formulation, which is solved using an evolutionary algorithm. While typically such
analysis is performed at the mean value of expression data across experimental repeats, the variability of stem cell systems
reduces the confidence on such analysis of mean data. Bootstrapping technique is thus integrated with the bi-clustering
algorithm to determine sets of robust bi-clusters, which is found to differ significantly from corresponding bi-clusters at the
mean data value. Analysis of robust bi-clusters reveals an overall similar network interaction as has been reported for
chemically induced endoderm or endodermal organs but with differences in patterning between 2-dimensional and 3-
dimensional culture. Such analysis sheds light on the pathway of stem cell differentiation indicating the prospect of the two
culture configurations for further maturation.
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Introduction

Lineage specific differentiation of embryonic stem cells (ESC)

can have a tremendous impact on the therapeutic treatment of

various degenerative diseases. Research over the last decade has

established the possibility of differentiating ESCs in-vitro to many

organ specific cell types [2]. Most commonly, in-vitro inductions of

differentiation are achieved through modulations of the cellular

chemical microenvironment by adding specific growth factors,

inducers or repressors. More recently, the effect of mechanical

cues such as substrate stiffness on differentiation is being

investigated. Mesenchymal stem cells, when cultured on substrates

of varying stiffness were reported to exhibit significant difference in

their lineage commitment, which could be correlated to the

physiological stiffness of the differentiated phenotype [3]. In our

experience with embryonic stem cells, we have also observed such

stiffness-specific differentiation of embryonic stem cells, where we

reported the effect of variation of fibrin gel properties on early

germ layer commitment of the ESCs [1]. Mouse embryonic stem

cells (mESC) were cultured on fibrin gels fabricated under various

fibrinogen and thrombin concentrations, which resulted in

variation of gel stiffness in the range of 4 Pa – 247 Pa. These

experiments were conducted in two different cell culture

configurations: cells seeded on top of pre-formed 2D fibrin gels

as well as cells embedded inside the 3D fibrin gels. Under both

conditions it was observed that gels with stiffness values in the

lower range (4 Pa – 14 Pa) preferentially favors stem cell

commitment towards endoderm germ layer, whereas the meso-

derm and ectoderm markers where relatively insensitive to gel

stiffness in the examined range. It is worth mentioning that no

other endoderm specific induction was used in the culture media

in order to ensure that the observed effect is solely from cell-

substrate interaction. While endodermal differentiation was

confirmed by specific gene and protein markers, it will be useful

to analyze the regulatory network involved in the process of

mechanical induction of germ layer. Until now all of the existing

protocols rely on chemical induction of endoderm primarily

through Activin (Tgfb) pathway; adaptation of an alternate mode

of differentiation will benefit from an evaluation of potential

regulatory mechanisms activated in the process.

In this paper we are investigating such network interaction

activated during endoderm specification of ESC by mechanical

induction from the substrate. Mouse ESCs were cultured on the

fibrin gels fabricated under different conditions for 4 days, at the
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end of which they are analyzed in detail for various endoderm

specific markers. Hence the data which we gather from the

experiment consists of a matrix of relative expression of endoderm

specific genes across various substrate conditions. Our objective

here is to capture the regulatory architecture of the system from

this gene-condition data set. One avenue in achieving this is

through identification of subsets of genes which are exhibiting

similar activation trends under multiple stimulatory conditions.

The underlying assumption here is that if specific genes are highly

co-expressed over a range of different conditions, their activation is

probably related through a network, and hence can be considered

to be participating in the same regulatory pathway. This class of

problem can be handled by a technique called bi-clustering, which

enables identification of subsets of genes exhibiting similar trends

in expression levels over specific experimental conditions.

Bi-clustering
Bi-clustering, which can be viewed as two-dimensional cluster-

ing, identifies subsets of genes which are similarly expressed across

specific subsets of experimental conditions. Compared to cluster-

ing which applies to a single direction, biclustering can group both

genes and conditions simultaneously. The motivation behind this

technique comes from the understanding that specific regulatory

networks, consisting of specific transcription factors, can be

activated under certain experimental conditions only. Hence of

all the genes and conditions examined only a subset of genes will

be co-expressed under subset of experimental conditions. On the

other hand the same gene can be participating in more than one

network, which can be activated under different conditions. Hence

it is entirely feasible to identify multiple biclusters from a single

gene-condition data set, with some overlapping among different

bicusters. While parallel techniques like Gene Set Enrichment

Analysis (GSEA) [4] has been widely used to determine

significantly differentially expressed genes, this method is mostly

applied when we have some information about gene functions and

gene relationships. Hence GSEA is sometimes used in conjunction

with bi-clustering, where the bi-clustered sets are further analyzed

using GSEA typically between two different states [5,6].

The technique of bi-clustering was first introduced by Hartigan

[7], under the name of ‘‘direct clustering’’, with the goal of finding

bi-clusters with minimum variance. Cheng and Church [8] further

formalized the concept in the context of gene expression data by

using residue of an element and the mean squared residue of a

sub-matrix. In biological terms the residue is a measure of the

similarity of gene expression trends between different conditions.

However this measure will also identify genes exhibiting minimal

dynamics across conditions. Such trivial bi-clusters were rejected

by means of maximizing row variance, which ensures that the

genes are exhibiting sufficient dynamics in their expression.

Alternate approaches to bi-clustering have also been proposed

by Getz et al. [9] applying hierarchical clustering separately to

each dimension, thereby creating a coupled two-way clustering.

Another approach is pattern-based clustering, that captures the

similarity of the patterns exhibited by a bi-cluster [10]. While the

bi-clustering formulation proposed by Cheng and Church [8] is

most commonly used across fields, there is great diversity in the

solution procedure adopted by different groups [11,12,13,14].

Bi-clustering has been identified as NP-hard [15] and often it is

solved via heuristics. Heuristics however, have its limitation in

often identifying sub-optimal bi-clusters and being unable to

identify arbitrarily overlapped bi-clusters [16]. In identification of

transcription factor networks it will be important to identify

overlapped bi-clusters, which allows identification of transcription

factors participating in multiple pathways. Recently, an alternate

approach has been proposed in formulating bi-clustering as an

optimization problem [16,17]. The overall objective in this

formulation remains similar to the original bi-clustering concept

[8]: identifying sub-matrices of maximum volume, having low

residue while retaining high variance. In this paper we have

adopted the solution procedure proposed by Divina [16] in

identifying subsets of genes co-regulated over specific substrate

conditions.

Handling Data Variability
The system of embryonic stem cell is known for its heterogeneity

and stochasticity. Differences among biological repeats can occur

in these cultures because of the use of different passages of ES cells

or by spontaneous differentiation, leading to substantial variation

in between cells while still retaining similar trend towards specific

differentiated phenotype [18].

Hence robust mathematical analysis of the system becomes

challenging and often unreliable because of the uncertainty in the

experimental data. It will thus be important to evaluate the

variability of bi-clustering results based on the observed dataset.

One way to estimate the variability is to evaluate a large number

of experimental replicates and perform the bi-clustering algorithm

over the entire data set. This is however an impractical option and

bootstrapping provides a mathematical analog of a similar concept

without the need for large experimental data sets.

The essence of bootstrapping lies in utilizing limited sampled

data in deriving statistically significant parameters [19,20]. A

larger pseudo dataset is generated using the sampled dataset by re-

sampling with replacement technique. The technique of boot-

strapping was originally presented systematically by Efron [21]. A

significant body of bootstrapping literature deals with estimating

parameter variances and confidence intervals. Bootstrap tech-

niques have thus far evolved into myriads of biological

applications, in the areas of ecology, genetics and environmental

science and engineering to name a few. In the current project we

apply bootstrapping technique in order to determine a robust

group of co-regulated genes identified through bi-clustering of the

experimental data. To the best of our knowledge this is the first

attempt in applying the bootstrap technique in the area of bi-

clustering.

Results

Effect of Substrate Stiffness on Endodermal Gene
Expression

The system we are presenting in this paper is the effect of

mechanical property of the substrate on germ layer induction of

embryonic stem cells. In particular, we are concentrating on the

stiffness modulus of the substrate. Fibrin was used as the substrate,

whose properties were modified by changing either the fibrinogen

concentration or the fibrinogen/thrombin cross-linking ratio. A

broad range of storage moduli was obtained ranging from

4+ 0:9 Pa to 247+ 15:5 Pa by varying the fibrinogen concen-

trations from 1, 2, 4 and 8 mg/ml, while maintaining the

fibrinogen to thrombin ratio at 0.25x, 1x and 2x for each of the

four fibrinogen concentrations. Details of the concentrations used

and the substrate stiffness values of each substrate component are

presented in Table 1. The experiments were performed under two

different culture conditions: 2-dimensional (2-D), where the

embryonic stem (ES) cells were cultured on top of pre-formed

gels and 3-dimensional (3-D) where the ES cells are embedded

inside the fibrin gel. The cells were differentiated on these

substrates for 4 days, at the end of which the samples were

collected and analyzed for relevant gene expression levels. It was
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interestingly observed that while mesoderm and ectoderm markers

were relatively insensitive to changes in substrate stiffness, the

endoderm markers elicit a strong response, having a strong

expression under lower substrate stiffness conditions in the range

of 4 Pa – 14 Pa [1] (Figure 1). Both the 2-D and 3-D culture

showed similar effect of endoderm differentiation, although the

effect in 3-D culture was much stronger than 2-D. In 2-D culture

the differentiating cells were uniformly exposed to the media,

which evidently was not the case under 3-D because of likely

differences in diffusivity linked with variations in substrate

properties. In order to test for the effect of media alone on

differentiation we performed another control experiment where

the ESCs were differentiated into embryoid bodies (EB) through

hanging drop method. These EBs when analyzed for the germ

layer markers showed only a subtle upregulation relative to the

substrate mediated induction; indicating the media to be less

dominant in differentiation induction.

Bi-clustering for Network Identification
Our objective here is to analyze the regulatory interactions

involved during mechanical induction of endoderm differentiation.

The differentiated samples under the 12 different substrate

conditions are analyzed for early germ layer markers, along with

a more rigorous analysis of the endoderm markers. Figure (2)

represents the differential gene expression levels for different

substrate stiffnesses utilizing 2-dimensional (Fig. 2a) and 3-

dimensional (Fig. 2b) cultures, respectively. If a specific network,

consisting of certain transcription factors, becomes active under

specific stimulation, it is expected that the participating transcrip-

tion factors will show a coherent expression trend under those

conditions. Hence identification of transcription factors exhibiting

similar trend in expression across specific subsets of condition will

elucidate the active network interaction. In this paper we have

used the technique of bi-clustering to identify such information

from the experimental gene-condition dataset. The bi-clustering

formulation follows the structure proposed by Cheng and Church,

where all possible gene-condition combinations are explored to

minimize the residue. The residue is formulated to be a

representative measure of the similarity of gene expression trends

between different conditions, higher coherence of expression

resulting in lower value of residue.

Effect of Model Parameters on Bi-cluster
GA parameters. The bi-clustering algorithm formulated as

an optimization problem is solved using Genetic Algorithm. The

efficiency of Genetic Algorithm (GA) depends on the appropriate

choice of the starting population along with other associated

parameters. The initial population size plays an important role in

the quality and efficiency of the algorithm and accordingly, a small

population size results in local convergence or requirement of large

generations. To avoid this, a population size of 20 was chosen, and

the algorithm evolved for 500 generations at which point the

solution remained unaltered. A crossover probability of 0.5 and

mutation probability of 0.02 was chosen to maintain diversity in

the population.

Bi-cluster parameters. Formulation of the bi-cluster

identification problem as an optimization problem introduces

multiple user defined parameters into the system. It will be

important to understand the sensitivity of these parameters and

evaluate its effect on the quality of the bi-cluster.

The formulation of fitness function involves some free variables:

d - the threshold for residue; Wv, Wr and Wc – individual weights

associated with the volume, row and column of the bi-cluster,

respectively. These user defined parameters significantly affect the

derivation of the optimal bi-cluster, the effect of which is evaluated

for both the experimental data sets corresponding to 2-D and 3-D

culture configurations (Figures 3, 4, 5). These weights allow the

user to bias the bicluster to include more genes or conditions,

based on the nature of the system under consideration. If it is

expected that a relatively small set of transcription factors are co-

regulated, but for a large number of stimulatory conditions one

can bias the bilcuster to include more conditions than genes and

vice versa.

Overall it is observed that both the culture configurations elicit

approximately similar response with respect to the parameter

values. Figure (3) represents the effect of threshold value d on the

number of genes and conditions constituting the bi-cluster.

Increasing the value of d increases the volume of bi-cluster. For

a small value of d= 0.5, the algorithm only identifies 2 genes and 2

conditions, while increasing d to 1 gives a more reasonable bi-

cluster of 6 gene and 8 condition for the 2-dimensional (2-D) case.

Further increase of d to 1.5 increases the bi-cluster to 8 genes and

10 conditions, which does not change appreciably with further

increase in d. For the 3D data set the response is more subtle for

the lower ranges of d, which had to be increased to 2 for

identification of a larger volume of the bi-cluster.

The other parameters in the fitness function are the weights

associated with the bi-cluster volume, rows and columns.

Figure (4a–b) illustrates how the volume of the identified bi-

cluster varies with the relative weights Wr and Wc. For both the 2-

D and 3-D dataset it is observed that the volume of the bi-cluster is

overall more sensitive to the row weight Wr as compared to the

column weight Wc. While changing Wr from 0.5 to 3.0 increases

the bi-cluster volume from 20 to 120, an equivalent change in Wc

only changes the volume from 80 to 100. It is worth observing that

lowering the value of Wc does not appreciably reduce the volume

of the bi-cluster. Similar effect was also observed in the 3D data set

with the bi-cluster volume being more sensitive to Wr than Wc. To

further analyze the effect of the weights, the bi-cluster volume is

split up into the number of genes and conditions in Figure (4c–d)

and (Fig. 4e–f) to compare the effect of Wr and Wc, respectively.

Consistent with Figure (4a), the effect of Wr is seen to be more

prominent than Wc for both genes and conditions. Figure 4c–d

Table 1. Fibrinogen and thrombin concentration used to
synthesize the gel and corresponding stiffnessvalues.

Thrombin Crosslinking

(a) 0.25X 1X 2X

1mg/ml 0.1 0.4 0.8

2mg/ml 0.2 0.8 1.6

4mg/ml 0.4 1.6 3.2

8mg/ml 0.8 3.2 6.4

Fibrinogen
Concentration

(b) 0.25X 1X 2X

1mg/ml 4.060.9 14.164.0 24.864.5

2mg/ml 13.060.9 35.868.7 42.067.1

4mg/ml 72.160.6 89.269.1 97.9611.9

8mg/ml 171.1620.3 193.9617.7 247.3615.5

(a)Concentration of thrombin in NIH units of activity per ml for all fibrin
hydrogel conditions (b) G’ values in Pa for various fibrinogen concentrations
and all three cross-linking ratios, at a frequency of 0.5 Hz.
doi:10.1371/journal.pone.0035700.t001
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further shows that number of genes is more sensitive to Wr than

number of conditions. Increasing row weight increases the number

of genes while reducing the number of conditions however, since

the increase in number of genes is more dominant the overall

effect is an increase in volume with Wr. An opposite trend is

observed for Wc, where increase in Wc increases the number of

Figure 1. Effect of stiffness of fibrin substrate on early differentiation patterning of mouse embryonic stem cell. Embryonic stem cells
were differentiated for 4 days on fibrin substrates of varying properties. Analysis of the differentiated cells for pluripotency and germ layer markers at
the end of differentiation reveals that pluripotency, mesoderm and ectoderm markers are relatively insensitive to changes in substrate stiffness. The
endoderm markers, specifically Sox17 and AFP responded strongly to the changes in stiffness in the chosen range. A lower value of stiffness resulted
in stronger up-regulation of endoderm marker. The above analysis is for 3D culture configuration. In order to evaluate the effect of the substrate
relative to chemical induction, a control experiment of spontaneous differentiation by embryoid body formation was performed, depicted by EB in
the above plots. Spontaneous differentiation by EB formation typically resulted in lower upregulation compared to induction by fibrin substrate.
doi:10.1371/journal.pone.0035700.g001

Figure 2. Effect of substrate stiffness on differentiation of embryonic stem cell to early germ layers. Embryonic stem cells were
differentiated on fibrin substrates of varying stiffness and subsequently analyzed for early germ layer markers. In the above figure x-axis represents
the storage modulus of the synthesized fibrin gel (Pa); the y-axis represents germ layer specific markers. Endoderm germ layer was analyzed in more
detail since the initial observation revealed the endoderm to be most responsive to changes in the substrate properties. Experiments were conducted
under 2 different culture configurations: 2-dimentional (Figure 2a) and 3-dimentional (Figure 2b). The data was normalized by mean centering and
variance scaling.
doi:10.1371/journal.pone.0035700.g002
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conditions and reduces the number of genes. However here the

reduction in the number of genes is more subtle, hence the

dominant effect is still an increase in volume, but much lower in

magnitude than Wr. For the 3-D case though both genes and

conditions increased with increasing Wr and Wc. This analysis

indicates the flexibility of including more genes in the bi-cluster by

relaxing some of the model parameters, but the system is more

rigid with respect to experimental conditions. It can be interpreted

from here that of the 12 different substrate conditions there is only

a restricted range of conditions in which a specific transcriptional

network is getting activated.

In all the above analysis the threshold value (d) for the bi-cluster

was kept fixed at 1.5. However there is no rigid constraint in the

formulation which prevents the residue from increasing. Since

increase in the residue compromises the quality of bi-cluster, it is

important to verify the range of residue attained by changing row

and column weights. Figure (5) illustrates the effect of row and

column weights on the residue of the bi-cluster for both 2- and 3-

dimensional configurations for a fixed threshold value of d at 1.5. In

2-D culture it was observed that changing either the row or column

weights did not alter the residue appreciably, even though Figure (4)

illustrates a significant increase in bi-cluster volume in response to

increased Wr and Wc. The 3-D configuration was found to be more

sensitive to Wr and Wc, where reducing the weights could

significantly lower the residue of the identified bi-cluster. This

comparison clearly indicates that the actual sensitivity is largely

dependent on the experimental data set. It is also worth mentioning

that the residue never exceeds the threshold d even in the absence of

an explicit constraint implementing the threshold. Overall this

indicates that the quality of the bi-cluster is always preserved in our

operating range of parameters. Quite encouragingly, the residue was

relatively insensitive to changes in model parameters in the optimal

range, which increases confidence on the identified interaction as

having biological significance and not a numerical artifact.

Following the analysis above, we chose the value of d= 2 in

order to capture a reasonable volume of the bi-cluster. The

weights Wv, Wr and Wc are all chosen to be on the lower end of 1

in order to not bias the algorithm in the absence of any apriori

information.

Identification of Robust Bi-cluster
The bi-clustering problem is solved first at the mean value of the

experimental data points. The present formulation for bi-

clustering allows for overlaps through the penalty function, by

sequentially penalizing the identified bi-clusters in repeated

simulations. The concept behind overlapping comes from the

understanding that the same transcription factor can be partici-

pating in multiple regulatory pathways. While a single bi-cluster

indicates the co-regulation of sets of genes in one network, partial

overlapping of two bi-cluster allows identification of transcription

factors participating in multiple network pathways. Figure 6

illustrates 2 representative bi-clusters for 2-dimensional (Fig. 6a,b)

and 3-dimensional (Fig. 6c,d) configurations, depicting the trend of

co-regulated gene expression dynamics across the identified

substrate conditions also outlined in Table 1. For the 2-D data

set Sox17 is showing up in subsequent bi-clusters indicating Sox17

to be participating in different pathways. No such overlap,

however, was observed between the 3-D bi-clusters. Analysis of

the experimental data at its mean value identified significant co-

regulation among different transcription factors, spanning across

the three germ layers along with pluripotency markers. For

example, the first bicluster of the 2D data set identified Sox17

(endoderm), Gsc (mesoderm), Nestin (ectoderm) in the same bi-

cluster. The second bi-cluster identified Oct4 (pluripotency) and

Sox17 in the same bi-cluster. Similar trend was also observed in

the 3D data set, where the first bi-cluster includes mostly

endoderm markers along with ectoderm marker Nestin. The

second bi-cluster includes many of the mesoderm and mesendo-

derm markers along with pluripotency marker Oct4.

As mentioned earlier, the above bi-clusters are obtained at the

mean value of gene expression data. Biological systems, more so

embryonic stem cell systems, are subject to significant variability

arising from system heterogeneity and stochasticity along with

experimental errors. Before exploring the biological relevance of

the bi-clusters represented in Figure 6, it will be important to

evaluate the robustness of the algorithm and the identified bi-

clusters based on the variability of the experimental dataset. Actual

experimental repeats alone being insufficient in statistical analysis

of such variability, the bootstrapping technique is adopted for the

analysis and identification of a robust bi-cluster.

By bootstrap re-sampling a larger artificial data set is generated

based on the existing limited experimental data of gene expression

levels corresponding to specific substrate conditions. Bootstrapping

is an efficient technique of determining robust solutions from

limited experimental data-points, which typically is the case in

biological systems. While it still extracts the information from the

Figure 3. The effect of residue threshold, d, on the number of genes and conditions in the optimal bi-cluster. The volume of the bi-
cluster is highly sensitive to the prescribed residue on threshold. Increasing the threshold was found to increase the bi-cluster volume for both 2-
dimensional (2-D) culture (a) and 3-dimensional (3-D) culture (b).
doi:10.1371/journal.pone.0035700.g003
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actual experimental replicates, it allows an estimation of

subsequent experimental repeats without actually performing the

experiments. Having obtained the bootstrap samples, the bi-

clustering algorithm is applied at each of the bootstrap data points,

to determine the optimum bi-clusters for each of the bootstrap

samples. This procedure results in an entire array of gene-

condition bi-cluster which will then be analyzed for the

identification of robust bi-cluster.

It was expected that a robust gene-condition bi-cluster will be

repeated significant number of times over the array of bi-clusters

generated from the bootstrap data. Surprisingly, analysis of the bi-

cluster array did not reveal any such highly repeated bi-cluster, the

highest repeat being less than 10% over the entire random trials.

Instead of the entire bi-cluster, what was found to be conserved

over a large population of the array were subsets of the gene-

condition bi-clusters. Thus instead of an entire bi-cluster being

Figure 4. Effect of model parameters on features of optimal bi-cluster. (a-b) Variation of bi-cluster volume with change in row and column
weights (Wr, Wc) for 2-D (a) and 3-D (b) experiments. In both cases changing Wr was found to change the bi-cluster volume considerably, while it was
less sensitive to changes in Wc. The bi-cluster volume was further analyzed separately as rows and columns depicting genes and conditions. (c-f)
Variation of number of genes and conditions in the optimum bi-cluster as a function of row weight (c,d) and column weight (e,f) for 2-dimensional
culture (c,e) and 3-dimensional culture (d,f). This indicates the possibility of tailoring the bi-clusters by biasing the analysis towards genes or
conditions by modifying the row and column weights.
doi:10.1371/journal.pone.0035700.g004

Networks in Mechanical Induction of hESCs
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repeated multiple times, only a portion of it was found to be

appearing in subsequent repeats. This indicates that each bi-

cluster has some noise in it which needs to be excluded in

subsequent analysis. It is reasonable to suggest that the portions of

the bi-cluster with high number of repeats constitute a robust bi-

cluster. Figure (7a) illustrates the 5-gene 3-condition bi-cluster

appearing almost 70% times in the analysis of the 2-dimensional

data array. A similar analysis in the 3-dimesional data set identifies

a 4-gene 5-condition bi-cluster appearing the highest number of

times, which is illustrated in Figure (7b). It is important to note that

Figure 5. Variation of residue as a function of row and column weight for 2-dimensional culture (a) and 3-dimensional culture (b).
For the 2D culture the residue was relatively insensitive to the row and column weights. For 3D culture it was possible to reduce the residue
significantly by lowering row and column weights, but the resulting bi-cluster was also of a small volume and not useful for subsequent analysis. The
residue however never exceeded the designated threshold, even for higher values of Wr and Wc.
doi:10.1371/journal.pone.0035700.g005

Figure 6. Optimal bi-clusters identified at mean value of experimental dataset. Solving equation (5) at mean value of the experimental
data identifies the optimal bi-clusters for 2-dimensional culture (a, b) and 3 dimensional culture (c, d). The bi-clustering algorithm was solved
sequentially by penalizing the previously identified bi-cluster in subsequent runs to avoid significant overlap. Single overlap was identified in the 2D
dataset (Sox17) while no overlap was identified in the 3D dataset.
doi:10.1371/journal.pone.0035700.g006

Networks in Mechanical Induction of hESCs

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e35700



neither of these bi-clusters alone was identified in any of the data

set, instead they always appeared as a subset of the identified bi-

cluster which constituted additional genes and conditions. Since

the rest of the bi-cluster was not being repeated in the bootstrap

analysis it is reasonable to conclude that those are spurious

connections resulting from noise in the experimental data. The bi-

clusters illustrated in Figure 6 however was not affected by the

noise and kept appearing in most of the bootstrap repeats.

Effect of Model Parameters on Robust Bi-cluster
As discussed earlier the quality of optimum bi-cluster depends

considerably on the chosen parameters involved in the formulation

of the optimization problem. In order to determine the sensitivity

of the model parameters on the robust bi-cluster obtained after

bootstrapping, the entire bootstrap and bi-cluster simulation is

repeated at different parameter values and the frequency of

occurrence of the identified robust solution is determined. Instead

of considering only the most repeated bi-cluster, multiple subsets

were considered to assess the generality of the analysis. Figure (8)

illustrates the frequency of repeat of these solutions for different

values of threshold d assigned to the residue, for both 2- and 3-

dimensional culture configurations. The details of the solution are

as follows: 2-Dimensional culture: Subset1 – Hex, Cldn6, Foxa2,

Foxa3; Subset 2 – Hex, Cldn6, Foxa2, Foxa3, Gata4 both for

stiffness values of 72 Pa, 97.9 Pa and 171 Pa; 3-Dimensional

culture: Subset 3 – Cxcr4, Hnf1b, Foxa2; Subset 4 – Cxcr4,

Hnf1b, Hex; Subset 5 - Cxcr4, Hnf1b, Foxa3, Hex all three for

stiffness values of 13 Pa, 42 Pa, 72 Pa, 97.8 Pa and 171 Pa. These

above bi-clusters indicate that sets of transcription factors which

are being consistently co-regulated over specific substrate stiffness

conditions. For both culture conditions it is confirmed that the

robust bi-cluster appears more than 50% of time for d values of 1.5

and higher. For d value of 1 and less the bi-cluster is repeated less

than 40% of time, since at such low values of the threshold the

average size of the bi-cluster is typically lower than that of the

robust bi-cluster. Similar trend was observed while varying Wr and

Wc, for values of 1 and above the robust bi-cluster appeared more

that 50% of time. Values of 0.5 and less showed less than 40%

appearance of the robust bi-cluster, resulting from the small size of

the bi-cluster at lower values of Wr and Wc. Hence it can be

concluded that the identified robust bi-cluster is robust against

experimental noise as well as model parameters. A closer look at

the identified robust bi-clusters revealed that fibrin substrates in

the mid-range stiffness values are typically acting in synergy. This

is true both for the 2-D and 3-D culture configuration, although

for 3-D, the range extends to lower stiffness values as well. Quite

interestingly bi-clusters including both low and high stiffness values

were largely absent perhaps indicating different transcriptional

networks are dominating in different substrate stiffness regimes.

Discussion

The effect of mechanical microenvironment on stem cell fate

commitment is being increasingly appreciated and researched

intensely following the report by Disher et al. [3]. While some

mechanistic study to understand the mediators of such response

has been initiated [22], the transcriptional response as a result of

such mechanical induction has not been analyzed yet. In our

previous work we reported the effect of fibrin substrate mechanical

properties on early differentiation of mouse embryonic stem cells

[1]. It was observed that substrates of lower stiffness values were

preferentially favoring endoderm differentiation. In this report we

investigate the network interaction of relevant endodermal genes

in the process of mechanically induced differentiation.

In our experimental system mouse embryonic stem cells were

differentiated for 4 days on fibrin substrates fabricated with 12

different conditions. At the end of the experiment the differenti-

ated cells were analyzed in details for expression levels of

endoderm related markers for all the 12 substrate conditions.

Towards identification of prospective networks of interactions

from this gene-condition data set, we are using the bi-clustering

algorithm to identify sets of genes having similar patterns of

response over specific substrate conditions, and hence can be

considered to be co-regulated. Following the report by Divina [16]

the bi-clustering algorithm is formulated as an optimization

problem, and solved using evolutionary strategy. The problem of

finding the minimum set of bi-cluster, either mutually exclusive or

overlapped, has been shown to be NP-hard [11]. Such class of

problems is particularly well suited for evolutionary algorithms

because of the inherent exploratory nature of the algorithm, which

enables searching the entire space and escaping local minima. Use

of evolutionary algorithm suffers from the criticism of lack of

convergence criterion; however this is not expected to be critical

for the present application. A sub-optimal bi-cluster which

adequately satisfies the threshold requirement should still identify

sets of co-regulated genes. However we are ensuring to evolve the

Figure 7. Identified robust bi-clusters. Robust bi-cluster for 2-dimensional culture (a) and 3-dimensional culture (b). Bootstrap re-sampling of the
experimental data set, followed by biclustering at the bootstrap point leads to the identification of the robust bi-cluster. These bi-clusters are
insensitive to experimental noise and appear with high frequency in the bootstrap analysis. Note that the robust bi-cluster is different from that
identified at the mean.
doi:10.1371/journal.pone.0035700.g007
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algorithm for sufficiently high generations to identify a near-

optimal solution. The GA parameters are also chosen carefully to

ensure diversity of population and avoid local convergence.

While bi-clustering allows identification of sets of genes co-

regulated under specific sets of conditions, it is difficult to

comment on its robustness in the presence of data or system

variability. In order to increase our confidence on the identified bi-

cluster, we adopted the bootstrap re-sampling technique to

generate a larger data set from the limited experimental repeats.

The bi-clustering algorithm was subsequently solved at each of the

bootstrap sample points and the data analyzed for identification of

a robust bi-cluster. While the robust bi-cluster was determined by

bootstrapping in the face of experimental noise, it will be

interesting to investigate its robustness to the chosen model

parameters as well. Hence we repeated the entire process of bi-

clustering and bootstrapping at different values of parameters and

tested the frequency of occurrence of the robust bi-cluster in those

repeats. As illustrated in Figure 8, the identified robust bi-cluster

was highly repeated under different ranges of model parameters.

Figure 9 represents the subsets of transcription factors identified

to be robustly co-regulated during mechanical induction of stem

cell differentiation in 2-dimensional (Figure 9a) and 3-dimensional

(Figure 9b) culture configuration. The fibrin gel conditions

identified in both 2-D and 3-D configurations was in the mid-

range of stiffness; 72 Pa–193.9 Pa for 2-D and 13 Pa–171 Pa for

3-D. Absence of co-occurrence of substrate conditions in the

extreme ranges perhaps indicate a significantly different transcrip-

tional network in action based on substrate stiffness range. It is

important to note that the current analysis primarily concentrates

on endoderm related transcriptional network which may be more

prominent in the mid-range of the substrate stiffness considered.

In order to understand how the identified network interaction

compares with existing knowledge of endoderm regulation we

performed a comprehensive review of literature. Quite interest-

ingly many of the current identified interaction for mechanically

induced endoderm have also been observed either in endoderm or

endoderm derived organs. Cldn6, Foxa2, and Gata4 are markers

used to identify definitive endoderm and gut tube development

[23,24]. Foxa2 (HNF3b) and Foxa3 (HNF3c) along with Foxa1

(HNF3a) were first identified as regulators of liver genes

[25,26,27]. Other than liver, Foxa2 and Foxa3 have been found

to be co-expressed in a number of endoderm derived tissues

including midgut, stomach, pancreas, adrenal tissue and hindgut

at different stages of development. Moreover Foxa2 and Foxa3 are

required for efficient expression of the gene that encodes for

pancreatic a amylase [28]. Hex expression is also present in the

definitive endoderm and is necessary for proper liver development

[29]. It also co-expressed with Foxa2 during liver development

and it has been shown that Hex is transactivated by Gata4 and

Foxa2 [30]. Other than their interactions in liver, Foxa2 and

Gata4 have been found to be expressed in other tissues, in

particular, in the jejunum [31]. Gata4 has been established to be

directly regulated by Foxa2 and therefore implicated in the

establishment of a Gata4 expressing population that directs the

development of the definitive endoderm [32]. Other non-

endodermal interactions have been also found between some of

these genes. In particular, Gata4 and Hex both participate in

cardiogenesis [33].

For the network interactions identified for 3-dimentional

culture, Hex, Foxa3 and Hnf1b are all liver markers and involved

in liver differentiation at several stages of development. Foxa3,

along with Hnf1b are spatio-temporally co-expressed in the liver

during development. In adult liver, Hnf1b and Foxa3 are found in

the hepatocytes, while not present in the bile ducts. During oval

cell differentiation, however, both factors are co-expressed at

similar levels in hepatocytes, oval cells, intestinal glands and foci

[34]. Also, expression of these 2 factors is higher in hepatocytes

that are in close proximity to portal veins in the liver [34]. With

Figure 8. Sensitivity of the identified robust bi-cluster on model parameters. Bi-cluster of the bootstrap data identifies 2 robust bi-clusters
for 2-dimensional dataset and 3 robust bi-clusters of the 3-dimensional dataset. Figures (a-c) illustrates the frequency of repeats of the robust bi-
clusters to threshold d (a), row weight Wr(b) and column weight Wc(c) for 2-dimensional culture; Figures (d-f) represents the same for 3-dimensional
culture.
doi:10.1371/journal.pone.0035700.g008
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respect to stem cell differentiation, isolation of Hex and Cxcr4

expressing cells from differentiating embryonic stem cells results in

a population expressing anterior definitive endoderm markers.

These cells have been expanded and differentiated toward liver

and pancreatic fates [35].

Correlating such information with the co-regulation informa-

tion extracted using biclustering methodology indicates somewhat

different patterning of differentiation between the 2-dimensional

and 3-dimensional culture conditions. While the regulatory

information obtained from 3-dimensional culture is more

indicative of endoderm to hepatic differentiation, analysis of the

2-dimensional culture indicates a more heterogeneous potential to

different endoderm derived tissues. Hence 3-dimensional culture

in fibrin gels may be better suited for hepatic maturation. For

other endoderm-derived tissue the 2-dimensional culture may

have stronger potential, but this may require augmentation by

growth factors for specificity in differentiation.

Materials and Methods

Fibrin Gel Synthesis
Fibrin hydrogels comprising 1, 2, 4, and 8 mg/ml of fibrinogen

were synthesized. The fibrinogen to thrombin ratios of 10, 2.5,

and 1.25 mg/U (fibrinogen/thrombin) were synthesized for each

fibrinogen concentration as previously described [35]. For

convenience these ratios are referred to as 0.25X, 1X, and 2X

respectively throughout the text. Total of 12 different substrate

conditions were used in the current study.

Mechanical Characterization of Fibrin Gels
Gel discs of 35 mm diameter, prepared as described for 2D gel

synthesis, were deposited onto glass slides which were pre-rinsed

with DI water. The samples were then allowed to gel fully at 4uC.

After complete gelation, they were fully immersed in the same

media used for differentiation studies. The glass slides were then

secured to the Peltier cell of a TA Instruments AR2000 stress-

controlled rheometer, which was kept at 37uC throughout the

measurements.

A frequency sweep was then performed, using a 25 mm stainless

steel in parallel plate geometry with sandpaper glued to the plate

to avoid slippage. The samples were subjected to an oscillatory

train described by equation (1), where c0 is the amplitude of the

oscillatory strain (5%), f is the frequency and t is the time.

Frequencies employed ranged from 0.1 to 100 rad/s.

y~y0cos(2pft) ð1Þ

The stress required to achieve the specified strain was measured

and the components of the complex modulus, the storage (G’), and

loss (G’’) moduli were accordingly determined.

Propagation of Embryonic Stem Cells
Murine ESD3 cells (ATCC) were cultured in knock-out

Dulbecco’s modified Eagle’s medium (DMEM; Life Technologies

Inc.) supplemented with 15% replacement serum, 4 mM L-

glutamine (Cambrex, Walkersville, MD, USA), 100 U/ml peni-

cillin (Life Technologies), 100 U/ml gentamicin (Life Technolo-

gies), 1000 U/ml leukemia inhibitory factor (LIF; Chemicon

International, Temecula, CA, USA) and 0.1 mM2-mercaptoeth-

anol (Life Technologies) on gelatin-coated T75 tissue culture

flasks. Cells were cultured at 37uC and in a 95% air/5% CO2

atmosphere.

Differentiation of Embryonic Stem Cells
The ESCs were induced to differentiate by culturing them in

fibrin substrates of varying mechanical properties, modified by

altering the fibrinogen concentration and cross-linking ratio. The

mESCs were differentiated in two culture configuration, 2-

dimensional – where the cells are seeded on top of preformed

gels and 3-dimensional – where the cells are embedded inside the

gel. For both cases, the cells were maintained in DMEM medium

(Invitrogen) supplemented with 10% FBS, 4 mM L-glutamine

(Cambrex) and 100 U/ml penicillin, with media being changed

every day. The differentiated cells were analyzed for their germ

layer commitment by qRT-PCR for relevant markers.

Cell culture in 2D. For differentiation of the ESCs on fibrin

substrate, the cells were tripsynized, washed and replated in

appropriate configurations. For the 2D culture 30,000 cells in

200 ul media were plated on top of the pre-formed fibrin gels

prepared on wells of 48 well plates and polymerized overnight at

4uC temperature.

Cell culture in 3D. For 3D cell culture format 100,000 cells

were re-suspended in the fibrinogen solution before adding

thrombin and plated on wells of 48 well plates. The gel with the

entrapped cells was then allowed to polymerize for one hour at

4uC temperature, after which the culture media was added and

subsequently the culture was incubated.

qRT-PCR Analysis
ESCs cultured in the two- or three-dimensional configuration

were harvested by trypsin after five days of differentiation and

RNA was extracted using NucleoSpin kit according to the

manufacturer’s protocol. The sample absorbance at 280 nm and

Figure 9. Robust subsets of co-regulated genes. Substets of co-regulated genes for 2-dimensional (a) and 3-dimensional (b) culture
configuration. The 2D data set identifies two subsets while 3D data set identifies 3 subsets of regulatory interactions.
doi:10.1371/journal.pone.0035700.g009
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260 nm was measured using a BioRad Smart Spec spectropho-

tometer to obtain RNA concentration and quality. Reverse

transcription was performed using ImProm II Promega reverse

transcription kit following the manufacturer’s recommendation.

qRT-PCR analysis was performed for pluripotency and early

germ layer markers.

The cycle number at the threshold level of log-based

fluorescence is defined as Ct number, which is the observed value

in most real-time PCR experiments, and therefore the primary

statistical metric of interest. DCt is equal to the difference in

threshold cycle for target and reference or control (DCt =

Cttarget2Ctreference). DDCt is equal to the difference between

DCtsample and DCtcontrol (DDCt =DCtsample2DCtcontrol). The fold

change of a target gene is defined by.

Fold change~2{DDCt ð2Þ

Total of 12 different substrate conditions were used for

differentiation. The ESCs differentiated at each of these 12

conditions were analyzed for 21 markers: Rex1, Oct4, Sox2

(pluripotency); Brachyury T, FGF8, GSC (mesoderm); Nestin,

FGF5, BMP4 (ectoderm); Sox17, AFP, HNF4, Cxcr4, Ttr, Hex,

Gata4, Gata6, Foxa2, Foxa3, Hnf1-b, Cldn6 (endoderm). qRT-

PCR analysis was repeated in triplicate.

Bi-clustering Formulation
In this report the bi-clustering problem is formulated as an

optimization problem, following the report by Divina [16]. The

objective of bi-clustering is to identify subsets of genes which

exhibit similar patterns of expression trend across specific

conditions. It is important, however, to eliminate the redundant

case of negligible change in expression levels across different

conditions. The objective thus is to determine largest subsets of

matrices with (i) low mean squared residue (ii) high row variance

(iii) low levels of overlapping among bi-clusters. The details of the

formulation is discussed in [16] and briefly summarized below.

Mean squared residue of the bi-cluster (I,J) is defined as.

RIJ ~

P
i[I ,j[J

r2
ij

DI D:DJ D
ð3Þ

Where rij is the residue of an entry eijof the bi-cluster (I,J) defined

byrij ~ eij { eiJ{eIjzeIJ :

eiJ is the base of gene gi given byeiJ~

P
j[J eij

DJ D
; eIjis the base of

condition cj given by eIj~

P
i[I eij

DI D
; the base of the bi-cluster is

mean of all entries of bi-cluster (I,J) given by eIJ~

P
i[I ,j[J eij

DI D:DJ D
:

The residue can be viewed as the degree of coherence between

elements in the bi-cluster, lower residue indicating stronger

coherence. The quality of the bi-cluster is thus assessed by the

mean squared residue, lower value of which indicates better

quality of the bi-cluster. The optimization problem is formulated

to obtain a bi-cluster with the mean squared residue value lower

than a predefined threshold d. The trivial bi-clusters are

eliminated by considering the row variance, defined by.

varij~

P
i[I ,j[J eij{eiJ

� �2

DI D:DJ D
ð4Þ

The overall objective thus is to determine bi-clusters of maximum

size, with the residue lower than predefined d, exhibiting high row

variance and low overlap between different bi-clusters. The fitness

function is thus formulated as [16]:

f (x) ~
residue(x)

d
z

1

row variance(x)

z Wv Wr
d

row(x)
z Wc

d

column(x)

� �
z penalty

fi,j ~
Ri,j

d
z

1

vari,j
z Wv Wr

d

row(I ,J)
z Wc

d

column(I ,J)

� �

z penalty

ð5Þ

In the above formulation the first term on the right represents the

mean squared residue which is desired to be lower than user

specified threshold d, which leads to the first term being less than

1. The second term representing the row variance ensures that the

bi-cluster is including genes with interesting dynamics, instead of

trivial solutions. The third term of the fitness function represents

the volume of the bi-cluster and allows some flexibility to bias the

optimization routine towards favoring genes or conditions in the

bi-cluster. row(I ,J) and column(I ,J) represents the number of

rows and columns respectively in the bi-cluster (I ,J).Wv,Wr and

Wc are relative weights assigned to the volume, rows and columns

of the bi-cluster respectively, as a measure of their relative

importance. The penalty term in the fitness function is designed to

reduce overlap between bi-clusters. The penalty is evaluated

as
P

i[I ,j[J

Wp eij

� �
where the weight Wp eij

� �
for each element eijof the

expression matrix is:

Wp eij

� �
~

0 if Dcov eij

� �
D~0

P
n[N,m[M

exp {
Dcov enmð ÞD

DI DDJ D

� �

exp {
Dcov eij

� �
D

DI DDJ D

� � if Dcov eij

� �
Dw0

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ

where N and M are the number of rows and columns present in

the expression matrix, and Dcov(eij)D represents the number of

identified bi-clusters containing the element eij. Use of the penalty

term biases the search against elements which already appeared in

previous bi-clusters, hence reducing overlapping.

Solution Procedure
The bi-clustering problem has been identified to be NP-hard,

which can efficiently be handled by evolutionary algorithm.

Following the report by Divina [16], we address the bi-clustering

problem by genetic algorithm (GA), which has been proven to

have an excellent performance on highly complex optimization

problems [36,37,38].

Genetic Algorithm (GA) [39] is a population-based stochastic

iterative optimization technique based on Darwinian concepts of

evolution. It represents a class of search and optimization

procedure that are patterned after the biological process of natural

selection. In GA each optimization variable is typically encoded as

string of binary bits, which are appended together to form a

chromosome. In present formulation each chromosome consists of

N binary bits for genes and M binary bits for conditions, resulting

in N+M chromosome size. Assigned value of 0 or 1 in the binary

string will dictate absence or presence of the corresponding gene
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or condition in the bi-cluster. Hence each individual of the GA

population directly represents a candidate bi-cluster. For example,

for a case of 7 genes and 5 conditions, an individual represented

by: 0100110D11001 consists of genes 2, 5, 6 and conditions 1, 2 and

5 as a prospective bi-cluster.

Each chromosome can be directly decoded to evaluate the

parameter values and objective function, also called the fitness

function. The solution procedure is initiated by randomly

assigning a population of chromosomes. This population is

continuously evolved by GA operators: reproduction, crossover

and mutation, to create new and better populations. This

procedure is repeated until a predefined termination criterion is

satisfied. For the present study the simulation was allowed to run

sufficient generations until no significant change in the objective

function was observed. It is worth noting here that such a

procedure lacks guarantee of optimality, which is a common

criticism for genetic algorithm.

Determination of Robust Solution
While biological samples are inherently of uncertain nature,

stem cell systems are notorious for their heterogeneity, making

analysis and interpretation of data particularly challenging. Hence

a bootstrap technique has been adopted to determine a robust set

of co-regulated genes constituting a network. The basic idea of

bootstrapping is to generate a large data set by re-sampling a

smaller sample of the original data set, under the assumption that

the sample is a good representation of the system. Typically the re-

sampling is done with replacement, indicating that the sampled

data is returned back to the original data set, allowing it to be

sampled again in subsequent draws. Bootstrap re-sampling

technique is most commonly applied in the area of nonlinear

regression, to determine a robust confidence interval of parameters

in a data-lean scenario.

For example, for a dynamic system with parameter vector q, if

the true model response with respect to time t is denoted by f t,qð Þ,
collecting experimental data at discrete time intervals will result in

data points fi,tið Þ, i~1, :::,m, with fi representing the collected

data at each timeti: Each data point will be associated with a

measurement error ei, given by ei~fi{f ti,qð Þ: Given that the

error is statistically independent with a common distribution [40],

the bootstrap technique can be performed in two variants. The

first one re-samples the original data set fi,tið Þ in generating the

desired bootstrap points. The second variant re-samples the

residue given by ri~fi{f ti,qreg

� �
, where qreg is the estimated

parameter obtained by regression using the original dataset.

The present application follows a similar format of re-sampling

using the first procedure of sampling the original dataset using

Monte Carlo algorithm to determine the bootstrap sample. Instead

of having samples at discrete time points, we draw our samples

under distinct experimental conditions. Given experimental data

set of Y p~ X
p
1 , X

p
2 , X

p
3 , :::, X p

m

� �
, where the superscript p

represents the experimental repeats, m represents total number

of experimental conditions. Each element X
p
i is a vector given by:

X
p
i ~ x

p1
i ,x

p2
i , x

p3
i ,:::, x

pn
i

n oT

, where n represents the number of

genes analyzed at each conditions and for each experimental

repeat. The bootstrap re-sampling is generated by randomly

drawing from the p repeats for each of the m conditions, to

generate 5000 sets of data points. When a particular X
p
i is sampled

the entire array of gene expression is drawn from the same sample

point.

In a typical regression problem after generating the bootstrap

data set a regression is performed using the bootstrap data

following which the estimated parameters are analyzed for its

variance, confidence interval etc. The structure of the current

problem however does not allow an analogous approach. In our

approach an array of alternate bi-clusters is generated by solving

the entire bi-clustering problem at each of the bootstrap data

points. These bi-clusters are subsequently analyzed to identify a

representative robust bi-cluster in the face of experimental

uncertainty.
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