2 research outputs found

    Gender Classification from Facial Images

    Get PDF
    Gender classification based on facial images has received increased attention in the computer vision community. In this work, a comprehensive evaluation of state-of-the-art gender classification methods is carried out on publicly available databases and extended to reallife face images, where face detection and face normalization are essential for the success of the system. Next, the possibility of predicting gender from face images acquired in the near-infrared spectrum (NIR) is explored. In this regard, the following two questions are addressed: (a) Can gender be predicted from NIR face images; and (b) Can a gender predictor learned using visible (VIS) images operate successfully on NIR images and vice-versa? The experimental results suggest that NIR face images do have some discriminatory information pertaining to gender, although the degree of discrimination is noticeably lower than that of VIS images. Further, the use of an illumination normalization routine may be essential for facilitating cross-spectral gender prediction. By formulating the problem of gender classification in the framework of both visible and near-infrared images, the guidelines for performing gender classification in a real-world scenario is provided, along with the strengths and weaknesses of each methodology. Finally, the general problem of attribute classification is addressed, where features such as expression, age and ethnicity are derived from a face image

    Human metrology for person classification and recognition

    Get PDF
    Human metrological features generally refers to geometric measurements extracted from humans, such as height, chest circumference or foot length. Human metrology provides an important soft biometric that can be used in challenging situations, such as person classification and recognition at a distance, where hard biometric traits such as fingerprints and iris information cannot easily be acquired. In this work, we first study the question of predictability and correlation in human metrology. We show that partial or available measurements can be used to predict other missing measurements. We then investigate the use of human metrology for the prediction of other soft biometrics, viz. gender and weight. The experimental results based on our proposed copula-based model suggest that human body metrology contains enough information for reliable prediction of gender and weight. Also, the proposed copula-based technique is observed to reduce the impact of noise on prediction performance. We then study the question of whether face metrology can be exploited for reliable gender prediction. A new method based solely on metrological information from facial landmarks is developed. The performance of the proposed metrology-based method is compared with that of a state-of-the-art appearance-based method for gender classification. Results on several face databases show that the metrology-based approach resulted in comparable accuracy to that of the appearance-based method. Furthermore, we study the question of person recognition (classification and identification) via whole body metrology. Using CAESAR 1D database as baseline, we simulate intra-class variation with various noise models. The experimental results indicate that given enough number of features, our metrology-based recognition system can have promising performance that is comparable to several recent state-of-the-art recognition systems. We propose a non-parametric feature selection methodology, called adapted k-nearest neighbor estimator, which does not rely on intra-class distribution of the query set. This leads to improved results over other nearest neighbor estimators (as feature selection criteria) for moderate number of features. Finally we quantify the discrimination capability of human metrology, from both individuality and capacity perspectives. Generally, a biometric-based recognition technique relies on an assumption that the given biometric is unique to an individual. However, the validity of this assumption is not yet generally confirmed for most soft biometrics, such as human metrology. In this work, we first develop two schemes that can be used to quantify the individuality of a given soft-biometric system. Then, a Poisson channel model is proposed to analyze the recognition capacity of human metrology. Our study suggests that the performance of such a system depends more on the accuracy of the ground truth or training set
    corecore