397,862 research outputs found

    Directional gear ratio transmissions

    Get PDF
    Epicyclic gear transmissions which transmit output at a gear ratio dependent only upon the input's direction are considered. A transmission housing envelops two epicyclic gear assemblies, and has shafts extending from it. One shaft is attached to a sun gear within the first epicyclic gear assembly. Planet gears are held symmetrically about the sun gear by a planet gear carrier and are in mesh with both the sun gear and a ring gear. Two unidirectional clutches restrict rotation of the first planet gear carrier and ring gear to one direction. A connecting shaft drives a second sun gear at the same speed and direction as the first planet gear carrier while a connecting portion drives a second planet gear carrier at the same speed and direction as the first ring gear. The transmission's output is then transmitted by the second ring gear to the second shaft. Input is transmitted at a higher gear ratio and lower speed for all inputs in the first direction than in the opposite direction

    The Gap-Tooth Method in Particle Simulations

    Full text link
    We explore the gap-tooth method for multiscale modeling of systems represented by microscopic physics-based simulators, when coarse-grained evolution equations are not available in closed form. A biased random walk particle simulation, motivated by the viscous Burgers equation, serves as an example. We construct macro-to-micro (lifting) and micro-to-macro (restriction) operators, and drive the coarse time-evolution by particle simulations in appropriately coupled microdomains (teeth) separated by large spatial gaps. A macroscopically interpolative mechanism for communication between the teeth at the particle level is introduced. The results demonstrate the feasibility of a closure-on-demand approach to solving hydrodynamics problems

    Numerical integration of ordinary differential equations of various orders

    Get PDF
    Report describes techniques for the numerical integration of differential equations of various orders. Modified multistep predictor-corrector methods for general initial-value problems are discussed and new methods are introduced

    BS-ISO helical gear fatigue life estimation and wear quantitative features analysis

    Get PDF
    Original article can be found at: http://www3.interscience.wiley.com/ Copyright Blackwell Publishing. DOI: 10.1111/j.1475-1305.2008.00457.xLack of representative theoretical models for gear wear causes difficulties in their useful lifetime prediction. Critical operating parameters, such as loading and lubrication, affect the wear process in a very complex manner and lead the theoretical modelling to an imperfect zone of assumptions. Complexities in gear wear mathematical modelling allow the researchers to use approximations for useful lifetime calculations. On the basis of modelling approximations and assumptions, organizations, such as American Gear Manufacturers' Association (AGMA) and British Standards (BS), provide gear useful lifetime formulations. In these formulations, the useful lifetime values are estimated by means of experimentation that is controlled with known gear operating conditions and physical dimensions. However, for useful lifetime estimation and validation, these standards have not considered any experimental approach that represents the actual gear wear. In this paper, an effort is made to validate the competency of standard's gear useful lifetime formulation. For this purpose, an approach that is able to provide an idea about actual gear wear is used. During the effort, BS-ISO 6336-2 standard formulation is used for helical gear useful lifetime estimation under linear pitting fatigue conditions. The used formulation is validated by using wear quantitative feature analysis that is able to provide actual gear wear quantitative trends. The obtained wear quantitative trends fairly validate the lifetime estimation of BS-ISO 6336-2 standard.Peer reviewe

    Wabble gear drive mechanism

    Get PDF
    The wabble gear principle was applied in the design of a driving mechanism for controlling spacecraft solar panels. The moving elements, other than the output gear, are contained within a hermetically sealed package to prevent escape of lubricants and ingestion of contaminant particles. The driving gear contains one more tooth than the output gear on a concave, conical pitch surface of slightly larger apex angle. The two gears mesh face to face such that engagement takes place at one point along the circumference. The driving gear is not permitted to rotate by virtue of its attachment through the bellows which permits flexure in the pitch and yaw position, but not in roll. As the bearing carrier rotates, the inclined mounting of the bearing causes the driving gear to perform a wabbling, irrotational motion. This wabbling motion causes the contact point between the output gear and the driving gear to traverse around the circumference of the gears once per revolution of the bearing carrier

    Unique gear design provides self-lubrication

    Get PDF
    Composite gear configuration provides a reliable automatic means for replenishing gear mechanism lubricants that dissipate in the harsh environment of space. The center or hub section of the gear consists of a porous, oil impregnated material, and the outer or toothed section has radially drilled passages to cause the oil to gradually flow to the gear teeth surface

    Sequencing device utilizing planetary gear set

    Get PDF
    A planetary (epicyclic) gear set is provided with a reversible rotating input shaft and individual outputs shafts actuated, respectively, by the ring gear and planet gear carrier. Latch means is positioned to selectively and automatically stop the ring gear or carrier member while releasing the other to provide the desired sequential output operation. The output shafts are reversed in sequence and direction of rotation by reversing rotational direction of the input shaft
    • …
    corecore