784 research outputs found

    Tracking Gaze and Visual Focus of Attention of People Involved in Social Interaction

    Get PDF
    The visual focus of attention (VFOA) has been recognized as a prominent conversational cue. We are interested in estimating and tracking the VFOAs associated with multi-party social interactions. We note that in this type of situations the participants either look at each other or at an object of interest; therefore their eyes are not always visible. Consequently both gaze and VFOA estimation cannot be based on eye detection and tracking. We propose a method that exploits the correlation between eye gaze and head movements. Both VFOA and gaze are modeled as latent variables in a Bayesian switching state-space model. The proposed formulation leads to a tractable learning procedure and to an efficient algorithm that simultaneously tracks gaze and visual focus. The method is tested and benchmarked using two publicly available datasets that contain typical multi-party human-robot and human-human interactions.Comment: 15 pages, 8 figures, 6 table

    Two-eye model-based gaze estimation from a Kinect sensor

    Get PDF

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201

    A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms

    Full text link
    In this paper a review is presented of the research on eye gaze estimation techniques and applications, that has progressed in diverse ways over the past two decades. Several generic eye gaze use-cases are identified: desktop, TV, head-mounted, automotive and handheld devices. Analysis of the literature leads to the identification of several platform specific factors that influence gaze tracking accuracy. A key outcome from this review is the realization of a need to develop standardized methodologies for performance evaluation of gaze tracking systems and achieve consistency in their specification and comparative evaluation. To address this need, the concept of a methodological framework for practical evaluation of different gaze tracking systems is proposed.Comment: 25 pages, 13 figures, Accepted for publication in IEEE Access in July 201

    Implementing a Gaze Tracking Algorithm for Improving Advanced Driver Assistance Systems

    Get PDF
    Car accidents are one of the top ten causes of death and are produced mainly by driver distractions. ADAS (Advanced Driver Assistance Systems) can warn the driver of dangerous scenarios, improving road safety, and reducing the number of traffic accidents. However, having a system that is continuously sounding alarms can be overwhelming or confusing or both, and can be counterproductive. Using the driver"s attention to build an efficient ADAS is the main contribution of this work. To obtain this 'attention value” the use of a Gaze tracking is proposed. Driver"s gaze direction is a crucial factor in understanding fatal distractions, as well as discerning when it is necessary to warn the driver about risks on the road. In this paper, a real-time gaze tracking system is proposed as part of the development of an ADAS that obtains and communicates the driver"s gaze information. The developed ADAS uses gaze information to determine if the drivers are looking to the road with their full attention. This work gives a step ahead in the ADAS based on the driver, building an ADAS that warns the driver only in case of distraction. The gaze tracking system was implemented as a model-based system using a Kinect v2.0 sensor and was adjusted on a set-up environment and tested on a suitable-features driving simulation environment. The average obtained results are promising, having hit ratios between 96.37% and 81.84%This work has been supported by the Spanish Government under projects TRA2016-78886-C3-1-R, PID2019-104793RB-C31, RTI2018-096036-B-C22, PEAVAUTO-CM-UC3M and by the Region of Madrid Excellence Program (EPUC3M17

    Deep into the Eyes: Applying Machine Learning to improve Eye-Tracking

    Get PDF
    Eye-tracking has been an active research area with applications in personal and behav- ioral studies, medical diagnosis, virtual reality, and mixed reality applications. Improving the robustness, generalizability, accuracy, and precision of eye-trackers while maintaining privacy is crucial. Unfortunately, many existing low-cost portable commercial eye trackers suffer from signal artifacts and a low signal-to-noise ratio. These trackers are highly depen- dent on low-level features such as pupil edges or diffused bright spots in order to precisely localize the pupil and corneal reflection. As a result, they are not reliable for studying eye movements that require high precision, such as microsaccades, smooth pursuit, and ver- gence. Additionally, these methods suffer from reflective artifacts, occlusion of the pupil boundary by the eyelid and often require a manual update of person-dependent parame- ters to identify the pupil region. In this dissertation, I demonstrate (I) a new method to improve precision while maintaining the accuracy of head-fixed eye trackers by combin- ing velocity information from iris textures across frames with position information, (II) a generalized semantic segmentation framework for identifying eye regions with a further extension to identify ellipse fits on the pupil and iris, (III) a data-driven rendering pipeline to generate a temporally contiguous synthetic dataset for use in many eye-tracking ap- plications, and (IV) a novel strategy to preserve privacy in eye videos captured as part of the eye-tracking process. My work also provides the foundation for future research by addressing critical questions like the suitability of using synthetic datasets to improve eye-tracking performance in real-world applications, and ways to improve the precision of future commercial eye trackers with improved camera specifications

    Towards a complete 3D morphable model of the human head

    Get PDF
    Three-dimensional Morphable Models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two methods for combining existing 3DMMs of different overlapping head parts: i. use a regressor to complete missing parts of one model using the other, ii. use the Gaussian Process framework to blend covariance matrices from multiple models. Thus we build a new combined face-and-head shape model that blends the variability and facial detail of an existing face model (the LSFM) with the full head modelling capability of an existing head model (the LYHM). Then we construct and fuse a highly-detailed ear model to extend the variation of the ear shape. Eye and eye region models are incorporated into the head model, along with basic models of the teeth, tongue and inner mouth cavity. The new model achieves state-of-the-art performance. We use our model to reconstruct full head representations from single, unconstrained images allowing us to parameterize craniofacial shape and texture, along with the ear shape, eye gaze and eye color.Comment: 18 pages, 18 figures, submitted to Transactions on Pattern Analysis and Machine Intelligence (TPAMI) on the 9th of October as an extension paper of the original oral CVPR paper : arXiv:1903.0378
    corecore