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Abstract— In this paper, we present an effective and accurate
gaze estimation method based on two-eye model of a subject
with the tolerance of free head movement from a Kinect sensor.
To accurately and efficiently determine the point of gaze, i) we
employ two-eye model to improve the estimation accuracy; ii)
we propose an improved convolution-based means of gradients
method to localize the iris center in 3D space; iii) we present a
new personal calibration method that only needs one calibration
point. The method approximates the visual axis as a line from
the iris center to the gaze point to determine the eyeball
centers and the Kappa angles. The final point of gaze can be
calculated by using the calibrated personal eye parameters. We
experimentally evaluate the proposed gaze estimation method
on eleven subjects. Experimental results demonstrate that our
gaze estimation method has an average estimation accuracy
around 1.99◦, which outperforms many leading methods in the
state-of-the-art.

I. INTRODUCTION

Gaze estimation is to determine the point of regard of
a person, which plays an important role in understanding
human attention, feelings, and desires. It has been widely
explored in many intelligent systems for virtual reality,
human-computer interaction, human-robot interaction, hu-
man behavior analysis and so on. Some gaze estimation
researchers concentrated on using the pupil center corneal re-
flection technique. This kind of technique normally requires
one or multiple infrared lights and high-quality cameras,
which limits the system’s potential for broader applications.
Moreover, most of the existing gaze estimation systems have
low tolerance toward head movement, which hinders them
from being widely used.

Recently, Kinect-based 3D gaze estimation [1], [2], [3],
[4], [5], [6], [7], [8] has attracted increasing attention since
it is low-cost, non-intrusive, simple-setup and it allows free
head movements. Generally, Kinect-based gaze estimation
methods can be roughly classified into non-eye model-based
methods and eye model-based methods. Non-eye model-
based methods are typically appearance-based or regression-
based. For example, Mora and Odobez [1] estimated 3D gaze
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from multimodal Kinect data and achieved an estimation ac-
curacy with average error around 7.6◦−12.6◦. Furthermore,
they proposed a geometric generative 3D gaze estimation
method [2] based on an appearance generative process that
modeled head-pose rectified eye images recovered by using
of RGB-D cameras, which improved the estimation accuracy
to 6.3◦. Cazzato et al. [3] incorporated the 3D head pose to
estimate the final gaze direction according to the geomet-
ric relations among the sensor, observer and target. They
reported the estimation errors for unaware users with 6.9◦

while for informed users with 3.6◦. The main benefit of non-
eye model-based methods are specific personal calibration
free. However, the estimation accuracy of this kind of method
is low (generally above 6◦).

Different from the non-eye model-based methods that
estimate the gaze using appearance or regression technique,
3D eye model-based methods directly determine the gaze
using the geometric relationship among human eyes, sensors
and gazing points. For example, J. Li and S. Li [4] proposed
an eye-model-based 3D gaze estimation method from a
Kinect sensor. They built a head model based on the Kinect
sensor and calibrated the eyeball center by gazing at a target
in 3D space. The gaze direction was estimated after the
calibration and the reported average error of estimation was
around 6◦. Recently, they estimated the gaze from color
image based on an eye model with known head pose [5].
They first determined the 3D eyeball center in calibration
manner by gazing at the center of the color image camera,
and then estimated the 3D iris center using the information
of its contour and projection. They reported the average
estimation errors for seven subjects with 5.9◦ vertically and
4.4◦ horizontally. Sun et al. [6] estimated the gaze direction
based on a 3D geometric eye model by considering the
head movement and deviation of the visual axis from the
optical axis. They reported a high estimation accuracy of
1.4◦-2.7◦. However, the proposed method involved many
calibration procedures like screen-camera calibration and
personal calibration with multiple calibration points.

Although eye model-based gaze estimation methods can
achieve a higher accuracy (below 6◦), this kind of method
normally require specific personal calibration, which in-
volves human interactions. Moreover, the estimation ac-
curacy greatly relies on the number of calibration points.
Generally, more calibration points will lead to higher esti-
mation accuracy while at the same time require more human
interactions.

Besides the personal calibration, the 3D location of hu-
man’s iris is another key technique that affects the final gaze
estimation accuracy. Currently, a large number of iris center
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localization methods has been explored. Despite significant
progress, fast and accurate iris center localization is still
a challenging problem due to the individuality of eyes,
occlusion, dynamics and illumination. Moreover, although
high accurate iris center location can be obtained through
high quality eye tracking systems, the intrusive or expensive
devices make these methods unattractive [9], [10].

To leverage the accuracy and automation, we propose an
eye model-based gaze estimation method with one calibra-
tion point. Moreover, we present a non-intrusive and fast iris
center localization method for low resolution images from
a Kinect sensor. In our system, only one Kinect sensor is
employed and the subject’s gaze can be estimated with free
head movements. Our method can be used for various vision-
based applications and hence has significant practical impact.
The main contributions follow.

1) An effective two-eye model-based gaze estimation
method that can achieve a relative low average estimation
error (about 1.99◦) with free head movements from a Kinect
sensor is proposed. Different from the conventional single
eye model-based gaze estimation methods, the proposed
method averages the gazes of both eyes for a final gaze
estimation. The experimental results demonstrate that the
proposed method outperforms state-of-the-art Kinect-based
gaze estimation methods.

2) An improved convolution-based means of gradients
iris center localization method is presented. Compared with
the conventional means of gradients method, the improved
method either improves the accuracy or dramatically reduces
the computational cost.

3) A new personal calibration method by approximating
the visual axis as a line from the iris center to the gaze point
is proposed to estimate the eye parameters with only one
calibration point.

The paper is organized as follows. Section II introduces the
overview of proposed two-eye model-based gaze estimation
method. Section III details the 3D iris center localization
method and eyeball centers and Kappa angles estimation
method. Some experimental results are discussed in Section
IV, and followed by concluding remarks in Section V.

II. TWO-EYE MODEL-BASED GAZE ESTIMATION

Fig. 1a illustrates the proposed 3D model of two eyes of a
subject. OL

e (or OR
e ), OL

c (or OR
c ), and PL

i (or PR
i ) denote the

centers of eyeball, cornea, and iris of left eye (or right eye),
respectively. The dash lines through the centers of eyeball,
cornea and iris represent the optical axes for both eyes. VL

o
(or VR

o ) is a unit vector of optical axis of left eye (or right
eye). The red lines from the corneal center to the point of
gaze on the screen plane denote the visual axes for both
eyes. VL

g (or VR
g ) is a unit vector of visual axis of left eye

(or right eye). The angle of deviation of the visual axis from
the optical axis is known as the Kappa, which almost keeps
constant for a subject. As shown in Fig. 1b, αL (or αR) and
β L (or β R) are the horizontal and vertical components of the
Kappa angle, respectively. XWYW ZW and XHYHZH represent
for the world coordinate system and the head coordinate

(a)

(b)

Fig. 1: An illustration of proposed 3D eye model and Kappa
angle. (a) Top view of two eyes and screen plane. (b) Space
relationship between the optical axis and visual axis.

system, respectively. In our experiment, the world coordinate
system is built in the camera center of the Kinect sensor
while the head coordinate system is in the center of two inner
eye corners of a subject. When a subject looks at a point on
the screen plane, the points of gaze of left and right eyes are
represented as PL

g and PR
g , respectively. In this paper, both

eyes are modeled to effectively estimate the point of gaze.
Without explicit description, all the parameters involved are
relative to the world coordinate system and all the vectors
are column vectors.

Take left eye as an example, the point of gaze can be
calculated by

PL
g = OL

e + c ·VL
o +λ

L ·VL
g (1)

where c=
∥∥OL

e OL
c
∥∥

2 is a constant, and normally it is approx-
imately 5.3mm [11]. λ L =

∥∥OL
c PL

g
∥∥

2 can be obtained by

λ
L =− (OL

e + c ·VL
o)

T ·Vs +n
(VL

g)
T ·Vs

(2)

where (·)T is the transpose of a vector. Vs and n are
parameters of screen plane function and can be determined
from the camera-screen calibration [6]. For any point Pg on
the screen plane, we have Pg ·Vs =−n.

The eyeball center OL
e is variable for different head pose

in the world coordinate system, but it keeps constant related
to the head coordinate system. So, we can first estimate the
eyeball center OL,H

e in the head coordinate system and then
obtain the eyeball center OL

e in the world coordinate system



by rotating and translating OL,H
e with the estimated head pose

{Rt , tt}. Rt and tt are the rotation matrix and translation
matrix of head pose at time t, respectively. The details of
head pose estimation are stated in section IV. A.

OL
e = Rt · (OL,H

e )T + tt (3)

The unit vector of optical axis VL
o is calculated according

to the eyeball center OL
e and iris center PL

i .

VL
o =

PL
i −OL

e

re
(4)

where re =
∥∥PL

i OL
e
∥∥

2 is the radius of eyeball.
As shown in Fig. 1b, once the unit vector of optical axis

VL
o has been determined, its horizontal angle θ L and vertical

angle ϕL can be calculated.

VL
o =

 cos(ϕL)sin(θ L)
sin(ϕL)

−cos(ϕL)cos(θ L)

 (5)

Then, the unit vector of visual axis VL
g can be calculated

by rotating the optical axis with the Kappa angle.

VL
g =

 cos(ϕL +β L)sin(θ L +αL)
sin(ϕL +β L)

−cos(ϕL +β L)cos(θ L +αL)

 (6)

where αL and β L denote the horizontal angle and vertical
angle of the Kappa angle, respectively.

So far, we can estimate the point of gaze of left eye PL
g

according to the aforementioned equations. However, eye
model parameters, Rt , tt , PL

i , OL,H
e , αL and β L, should be

determined beforehand. We will detail the proposed methods
for estimating these parameters in section III.

Similarly, the point of gaze of right eye PR
g can be

estimated once the eye model parameters of right eye are
determined.

To further improve the estimation accuracy, we calculate
the final point of gaze Pg by averaging the estimated gazes
of left and right eyes based on the fact that both eyes are
gazing at a same point on the screen.

Pg =
1
2
(PL

g +PR
g ) (7)

In our experiment, two stages including calibration
stage and test stage are implemented. The calibration
stage aims to estimate the personal eye model parameters
(OL,H

e ,OR,H
e ,αL,β L,αR,β R) with a given calibration point,

while the test stage is to estimate the actual gaze point of
the subject based on the estimated eye model parameters.

III. EYE MODEL PARAMETERS ESTIMATION

A. Head Pose Estimation

We first detect the face region in the RGB image using
an appearance-based boosted cascade face detector [12] with
default parameters. After the face region has been identified,
we employ a fast and accurate supervised descent method
(SDM) [13] to detect and track the facial features. After the

facial features of a subject at time t have been detected, the
corresponding 3D coordinates of the features can be obtained
by the calibrated Kinect sensor. We then model the 3D face
of this subject at time t using the obtained 3D features as Xt .
Typically, the face model of each subject is person-specific.

The goal of head pose estimation is to determine the
head rotation matrix Rt in terms of yaw, pitch and roll, and
translation vector tt , at time t. To calculate the head pose, a
reference face model of the subject should be built first. We
require each subject to keep frontal to the Kinect sensor for
a certain time and calculate the average to form a reference
model Xr. Then, the head pose of a subject at time t can be
determined by minimizing the following equation.

argmin
Rt ,tt
‖RtXr +11×n⊗ tt −Xt‖ (8)

where 11×n denotes a row vector of ones of size n (n is
the number of feature points), ⊗ represents the Kronecker
produce. We can solve Eq. (8) using Singular Value Decom-
position [14] and then obtain the head pose {Rt , tt} of the
subject at time t.

B. Improved Means of Gradients Iris Center Localization

The means of gradients method [15] has attracted con-
siderable attention due to its easy implementation and high
accuracy, which has been reported to have the best average
performance for eye center (or iris center) localization. It
makes use of the relationship between a possible iris center
and the vector field of all the image gradients.

c′ = argmax
c

{ 1
N

N

∑
i=1

(dT
i ·gi)

2
}

di =
xi− c
‖xi− c‖2

∀i : ‖gi‖2 = 1
(9)

where c′ denote the located iris center position and c is the
possible iris center. The dot product will reach the biggest
if the displacement vector di and the gradient vector gi have
the same orientation which will happen if the point xi lies
on the boundary of the circle whose center point is c. The
displacement vector di and gradient vector gi are scaled to
unit length to obtain an equal weight for all pixel positions.
N is the number of pixels of the image. The algorithm cal-
culates dot products of the normalised displacement vectors
and the gradient vectors for every possible iris center. Each
pixel in the image is a potential iris center. The pixel that
has the maximum value of mean of dot products is regarded
as the final iris center.

Although the means of gradients method can locate iris
center accurately, the heavy computational cost hampers its
real time applications. The computational complexity of this
method is O(N2), where N stands for the number of pixels of
the eye area. The algorithm calculates the dot product of all
the displacement vectors di and the gradient vectors gi. Thus
for a possible iris center, all the pixels in the eye image
are used for the dot product. Although the computational
complexity can be decreased by considering only the same



orientation displacement vectors and the gradient vectors that
have a significant magnitude, the accuracy will drop dra-
matically. To remedy this, we propose a convolution-based
means of gradients method which is capable of reducing
the computational cost while at the same time improving
the accuracy. In the proposed method only the pixels on
the circular boundary of a possible iris center are used to
calculate the dot product. So the computational complexity
can be greatly reduced. Meanwhile, the negative influence
of other points such as eyelids and eye corners in the dot
product can also be eliminated. Different sizes of masks are
built to convolute the eye images. Each mask contains a circle
whose center point is at the center of the masks and the pixels
value on the boundary of the circle are normalised. Assuming
the radius of the circle is r, then both the width and height
of the built mask will be 2r+1.

We propose to apply convolution to the dot product and
the corresponding equation can be further extended to the
following.

n

∑
i=1

dT
i ·gi

=
n

∑
i=1

(xdixgi + ydiygi)

=
n

∑
i=1

(
(xi− xc)xgi +(yi− yc)ygi

)
=

n

∑
i=1

(xixgi)− xc

n

∑
i=1

xgi +
n

∑
i
(yiygi)− yc

n

∑
i

ygi

(10)

where (xdi,ydi) is the coordinate of di, which can be calcu-
lated by the difference between the circular boundary point
(xi,yi) and the possible iris center (xc,yc). (xgi,ygi) is the
coordinate of gi, which can be calculated through partial
derivatives or other methods by computing image gradients.
We build two position images Ipx and Ipy of pixels for x and
y positions (shown as Fig. 2), respectively. The size of the
position image is the same as the size of eye region image.
Similarly, two gradient images Igx and Igy of pixels for x and y
directions also can be obtained. By doing so, the ∑

n
i=1 (xixgi)

can be calculated by firstly multiplying position image Ipx
with gradient image Igx and then using the former designed
mask to convolute the result. The xc ∑

n
i=1 xgi, similarly, can

be calculated by firstly convoluting the designed mask with
the gradient image Igx and then multiplying the result with
the position image Ipy.

Since only the pixels on the boundary of the circles are
used to calculate the dot products, the other pixels of the eye
image cannot affect the result. Thus we propose to directly
use the sum of the dot products rather than the square of the
dot products. The final position of iris center is determined
by searching the maximum of the following equation.

max
(r,x0,y0)

(
1
r

n

∑
i=1

dT
i ·gi) (11)

(a) (b)

Fig. 2: Illustration of two position images. (a) The position
image Ipx for x position, x is equal to the width of the eye
image (b) The position image Ipy for y position, y is equal
to the height of the eye image

where (x0,y0) represents the coordinate of iris center. To
locate the iris center, the proposed method searches the
maximum of Eq. (11) by changing the values of radius
and center points. The FFT is employed in the realisa-
tion of convolution where only 2 cycles DFT and 1 cycle
IDFT are performed. So the computational complexity of
the convolution-based means of gradients is O(P log2(P)N),
where P satisfies P≤ X +Y +C. X ,Y is the number of rows
and columns of the center coordinate and C is a constant
number. Compared to the computational complexity O(N2)
of the conventional means of gradients method, the proposed
method significantly improves the processing speed.

So far, iris center coordinate pL
i (or pR

i ) in the image plane
can be effectively and efficiently determined according to the
proposed method. Then, its coordinate in 3D space PL

i (or
PR

i ) can be obtained by incorporating the depth information
captured by the Kinect sensor.

C. Personal Calibration for Eyeball Center and Kappa An-
gle Calculation

Conventionally, the line from the corneal center to the
point of gaze on the screen plane is defined as the visual axis
for an eye [16], [4], [5], [6], shown as dash lines OL

c Pg and
OR

c Pg in Fig. 3. To estimate the eye model parameters with
the conventional visual axis, the eyeball center is assumed
to be known [16] or many calibration points are required
[4], [5], [6]. To automatically estimate the eyeball center
as well as the Kappa angle with less calibration points, we
approximate the visual axis VL′

g (VR′
g ) as a line from the iris

center to the point of gaze on the screen plane (shown as
lines PL

i Pg and PR
i Pg in Fig. 3). It is reasonable to make

such a approximation since the difference between the new
Kappa angle and the original Kappa angle is too little to be
negligible. Take left eye for instance, the new Kappa angle
{αL′ ,β L′} and the original Kappa angle {αL,β L} have the
following relationship.

∠Kappa{αL′ ,β L′}= ∠Kappa{αL,β L}+∠OL
c PgPL

i (12)

where ∠OL
c PgPL

i is very small because the distance from
the corneal center to the iris center is far smaller than the
distance from the iris center to the gaze point.



Fig. 3: An illustration of the simplified eye model.

With this simplified model, we can simultaneously esti-
mate the eyeball center OL,H

e and Kappa angle {αL′ ,β L′}
with only one calibration point Pg. The following six steps
details the proposed method.

Step1: Asking the subject to look at a calibration point Pg
with known coordinate (xg,yg,zg). Estimating the subject’s
head pose {Rt , tt} and 3D iris center PL

i according to the
methods in Sections III.A and III.B.

Step 2: Calculating the eyeball center OL
e in the world

coordinate system based on Eq. (3) and then calculating the
unit vector of optical axis VL

o based on Eq. (4). According
to Eq. (3)-(5), we have:

PL
i −Rt · (OL,H

e )T − tt

re
=

 cos(ϕL)sin(θ L)
sin(ϕL)

−cos(ϕL)cos(θ L)

 (13)

re =
∥∥PL

i −Rt · (OL,H
e )T − tt

∥∥
2 (14)

where re is the radius of eyeball and it is approximately
12.4mm (axial) [17].

Step 3: Calculating the unit vector of visual axis VL′
g based

on Eq. (6) by rotating the optical axis with the Kappa angle
{αL′ ,β L′}. Also, the VL′

g can be obtained according to the
given calibration point Pg and estimated iris center point PL

i .
Then we have:

 cos(ϕL +β L′)sin(θ L +αL′)

sin(ϕL +β L′)

−cos(ϕL +β L′)cos(θ L +αL′)

=
Pg−PL

i∥∥PgPL
i

∥∥
2

(15)

Step 4: Estimating the eyeball center coordinate
OL,H

e (x,y,z), optical axis angles {θ L,ϕL} and Kappa angle
{αL′ ,β L′} according to Eq. (13)-(15) by gazing a calibration
point with multiple head poses.

So far, we have estimated the eyeball center coordinate,
optical axis angles and Kappa angle according to the sim-
plified eye model. Based on these estimations, we can then
further update the Kappa angle according to the actual visual
axis in the normal eye model.

Step 5: Assume that the optical axis is fixed after the sim-
plified model-based estimation, which means the estimated

Fig. 4: System setup of our gaze estimation method with a
Kinect sensor.

OL,H
e and {θ L,ϕL} are constant. We can then calculate the

corneal center as:

OL
c = OL

e + c ·VL
o = Rt · (OL,H

e )T + tt + c ·VL
o (16)

VL
o =

PL
i −Rt · (OL,H

e )T − tt∥∥PL
i OL

e
∥∥

2

(17)

Step 6: Based on the calculated corneal center OL
c and the

calibration point Pg, we can determine the final Kappa angle
{αL,β L} by solving the following equation.

 cos(ϕL +β L)sin(θ L +αL)
sin(ϕL +β L)

−cos(ϕL +β L)cos(θ L +αL)

=
Pg−OL

c∥∥PgPL
c
∥∥

2

(18)

Similarly and simultaneously, we can estimate the OR,H
e

and {αR,β R} of right eye with the same calibration point.
Note that once the OL,H

e and OR,H
e have been determined,

they remain constant no matter head moves or gaze changes
because they are fixed with respect to the head coordinate
system.

In our experiment, the stage for estimating the eyeball
center and Kappa angle is so called calibration stage. Before
gaze estimation, each subject is first required to look at a
given calibration point with multiple head poses to estimate
his/her intrinsic eye parameters (OL,H

e ,OR,H
e ,αL,β L,αR,β R).

After that, the estimated parameters will be employed to
estimate any point of gaze of the subject.

IV. EXPERIMENTAL EVALUATION

Our system only uses a Kinect sensor that is mounted
above the computer monitor, as shown in Fig. 4. Each
subject is required to sit in front of the monitor and to keep
his/her head in the field of view of the Kinect. We test the
proposed two-eye model-based gaze estimation method on
eleven subjects.

There are two stages, calibration stage and test stage, for
each subject to gaze estimation. The calibration stage is to
estimate the eye parameters of each subject. These estimated
parameters are then used in the test stage for determining
the gaze of a subject. Due to the limited measure range
(80cm-400cm in default mode) of the Kinect sensor, the



Fig. 5: An example of estimating one subject’s 3D point of
gaze.

distance between each subject and the Kinect sensor should
not exceed the limit in the experiment.

In the calibration stage, each subject is required to look
at a given calibration point with two different head poses.
First, the head poses and 3D iris centers of both eyes are
obtained according to Sections III.A and III.B, respectively.
The eyeball centers and Kappa angles are then estimated
according to Section III.C. Note that the subject can freely
gaze with any head positions and poses as long as the head
is within the field of view of the Kinect sensor.

Take one subject as an example (shown as Fig. 5). The
subject is first asked to gaze at a point (0,0,0), and then
his head pose can be estimated as roll -0.1387◦, yaw -
0.0448◦, and pitch -5.2189◦. Also, 3D iris centers of left and
right eyes can be obtained as coordinates (-49.67,36.59,778)
and (10.17,34.95,774), respectively. Finally, we can estimate
the eyeball centers ((-29.74,4.29,12.32) for left eyeball and
(30.09,1.98,12.10) for right eyeball) in the head coordinate
system and Kappa angles ((1.10◦,-2.95◦) for left eye and
(0.89◦,0.80◦) for right eye) of both eyes based on the
proposed method.

Similarly, we can estimate the eye model parameters of
other ten subjects and the results are listed in Table I.

In the test stage, the subject is required to gaze at a ground
truth point and the proposed method is tested to estimate the
actual point of gaze. Note that the subject can freely move
his head and change his gaze direction as he/she wants. The
only constraint is that his/her head should not be out of view
of the field of the Kinect sensor. Otherwise, the sensor could
fail to capture the eye images and thus result in failure of
gaze estimation.

As shown in Fig. 5, the subject is gazing at a test
point (-180,0,0) with estimated head pose (roll 1.0165◦,
yaw 0.1360◦, and pitch -7.6197◦) and iris centers ((-
54.16,25.70,759) for left iris and (4.70,24.85,759) for right
iris). By incorporating the eye model parameters obtained
in the calibration stage, the points of gaze of both eyes
((-140.57,-4.18,0) for left eye gaze and (-151.36,-28.81,0)
for right eye gaze) can be calculated. The final point of
gaze (-145.97,-16.50,0) is then determined by averaging the

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

Fig. 6: Estimated points of gaze of subject 1 on the screen
plane. The black dots and red crosses represent the ground
truth points and the estimated points of gaze, respectively.

estimated gazes of two eyes.

A. Evaluation of gazing multiple ground truth points at a
same position

To quantitatively analyze the accuracy of estimated point
of gaze, an angular degree αg [18] is calculated.

αg = arctan(Dgg/Dss) (19)

where Dgg denotes the distance between the estimated point
of gaze and the ground truth point, and Dss is the distance
between the subject and the screen plane. The smaller αg is,
the higher of estimation accuracy is.

By using the eye parameters estimated at calibration stage
(shown in Table I), the angular degree of each gaze of each
subject can be determined according to the proposed method
at test stage. In our experiments, nine evenly distributed
ground truth points on the screen (as shown in Fig. 4) are
used to evaluate the proposed gaze estimation method. When
gazing at each point, the subject is asked to rotate his/her
head step-by-step in roll, pitch, and yaw, respectively, untill
he/she cannot see the point.

Fig. 6 illustrates the distribution of estimated points of
gaze of one subject (subject 1) when gazing at nine ground
truth points with a distance of Dss=1000mm.

Table. II shows the average accuracy (angular degree) and
tolerance of head movements of gazing nine ground truth
points of each subject at a same position (Dss=1000mm).
The head movement tolerance involved in the table denotes
the maximum rotation angles for roll, pitch, and yaw, re-
spectively. The results show that our method can achieve a
good gaze estimation performance with an average accuracy
is 1.99◦ under an average head pose with roll 11.63◦, pitch
13.44◦ and yaw 9.43◦.



TABLE I: Estimated Eye Parameters of Eleven Subjects.

Subjects OL,H
e OR,H

e {αL,β L} {αR,β R}

1 [−29.74,4.29,12.32]T [30.09,1.98,12.10]T {1.10◦,−2.95◦} {0.89◦,0.80◦}
2 [−32.29,4.76,12.78]T [31.03,−2.54,12.45]T {−2.63◦,−3.27◦} {1.45◦,2.24◦}
3 [−28.18,1.46,15.93]T [32.49,−0.50,14.94]T {−0.10◦,−3.07◦} {0.23◦,−2.01◦}
4 [−33.50,2.99,13.74]T [35.58,−0.74,13.83]T {−0.41◦,0.10◦} {3.21◦,−1.60◦}
5 [−30.32,3.05,15.43]T [32.19,−0.01,15.66]T {−1.31◦,−3.64◦} {−1.79◦,−3.31◦}
6 [−30.67,0.73,12.16]T [29.25,3.09,12.04]T {−1.45◦,−1.75◦} {−2.49◦,−3.14◦}
7 [−30.94,3.28,10.36]T [29.99,0.55,10.89]T {1.95◦,1.58◦} {−1.84◦,2.49◦}
8 [−30.68,0.92,12.07]T [32.45,1.02,13.23]T {−0.28◦,0.47◦} {−0.25◦,0.93◦}
9 [−31.97,−5.64,12.40]T [32.25,2.14,13.25]T {−2.47◦,0.94◦} {−2.50◦,1.78◦}

10 [−28.58,3.87,15.37]T [29.90,−3.81,12.67]T {0.22◦,0.61◦} {−1.07◦,−0.42◦}
11 [−30.22,1.36,12.37]T [30.03,2.84,12.85]T {−0.97◦,−1.26◦} {−1.56◦,−2.19◦}

TABLE II: Average Estimated Gaze Accuracy and Tolerance
of Head Movements.

Subjects Average accuracy Head movements tolerance

1 2.12◦ 12.8◦×14.7◦×9.6◦

2 2.04◦ 11.6◦×13.9◦×9.3◦

3 1.90◦ 13.2◦×14.5◦×10.1◦

4 1.87◦ 11.7◦×13.3◦×9.4◦

5 2.07◦ 10.3◦×11.8◦×8.2◦

6 1.96◦ 9.8◦×11.2◦×8.7◦

7 1.89◦ 13.5◦×14.6◦×10.5◦

8 1.92◦ 11.4◦×12.3◦×9.1◦

9 2.01◦ 10.9◦×13.1◦×9.2◦

10 1.98◦ 10.6◦×13.5◦×9.7◦

11 2.11◦ 12.1◦×14.9◦×9.9◦

Average 1.99◦ 11.63◦×13.44◦×9.43◦

B. Evaluation of gazing a ground truth point at different
positions

To demonstrate the sensitiveness of the gaze accuracy
against the distance Dss, we devise an experiment that a
subject gazes at a ground truth point with eight different
Dss. At each distance, the subject is also asked to rotate
his/her head step-by-step in roll, pitch, and yaw, respectively,
untill he/she cannot see the point. The average accuracy of
estimated gazes is determined as the estimation accuracy for
each distance. Fig. 7 demonstrates the relationship between
the gaze estimation accuracy and the distance Dss. From
the results, we can conclude that the best gaze distance
is approximately 925mm-1135mm. Less than 925mm or
larger than 1135mm will degrade the accuracy. Normally, the
smaller the Dss is, it is easier to obtain the accurate 3D iris
center and thus more possible to obtain a higher estimation
accuracy. However, when Dss is too small to exceed the limit
measure range of the Kinect, the accuracy will be greatly
reduced (shown as Dss=630mm in Fig. 7) since the 3D
information captured by the Kinect under this distance is
unreliable.

Fig. 7: Gaze estimation accuracy with different Dss.

Fig. 8: Estimation accuracy of left eye gaze, right eye gaze,
and final gaze.

C. Evaluation of two-eye model-based gaze estimation

To show the merit of averaging gazes of both eyes as a
final gaze, we experimentally compare the accuracy of left
eye gaze estimation, right eye gaze estimation, and final eye
gaze estimation for each subject. As shown in Fig. 8, the
comparison result validates that the averaging gaze is reliable
and acceptable.



TABLE III: Comparison with the State-of-the-art Kinect-
based Gaze Estimation Methods.

Methods Reported accuracy Features

Mora and Odobez[1] 7.6◦-12.6◦ Non eye model
Jafari and Ziou[7] Above 10◦ Non eye model
Jafari and Ziou[8] 7.9◦ Non eye model

Mora and Odobez[2] 6.3◦ Eye model
Cazzato et al.[3] 6.9◦ Eye model

Li and Li[4] 6◦ Eye model
Li and Li[5] Vertical 5.9◦, horizontal 4.4◦ Eye model
Sun et al.[6] 1.4◦-2.7◦ Eye model

Ours 1.99◦ Eye model

D. Comparison with the state-of-the-art

To further demonstrate the superior performance of the
proposed method, we compare the estimation accuracy of
our method with the accuracy of the state-of-the-art Kinect-
based gaze estimation methods. Results in Table III indi-
cate that our method outperforms all the regression-based
methods as well as most of the model-based methods. In
addition, the number of test subjects in our experiments is
also comparable. Although Sun’s method [6] can achieve a
little more accurate estimation, it requires more calibration
points. The main reason for lower accuracy of our method
is the approximation of the visual axis which to some extent
enlarges the Kappa angles.

V. CONCLUSION

In this paper, an effective gaze estimation method based
on 3D eye model was presented. The proposed method was
capable of estimating human’s gaze directly from a Kinect
sensor with free head movement. A convolution-based means
of gradients iris center localization method was developed,
which significantly improved the accuracy and speed of the
conventional means of gradients method. A simplified eye
model was proposed, which approximated the visual axis as
a line from the iris center to the gaze point, to effectively
estimate the eyeball centers and Kappa angles. Different
from the conventional eye model-based methods that used
many calibration points to calculate the parameters, only one
point was utilized based on the simplified eye model. The
human’s gaze was then directly calculated according to the
estimated head pose, iris centers and eye model parameters.
The conventional methods used one single eye for gaze es-
timation, while the proposed method averaged the estimated
gazes of both eyes for a final gaze. Experiments conducted
on eleven subjects demonstrated the good performance of the
proposed gaze estimation methods. Moreover, the estimation
accuracy of the proposed method outperformed many leading
methods in the state-of-the-art.

Our method allows subject to freely move his/her head
with average roll 11.63◦, pitch 13.44◦ and yaw 9.43◦. How-
ever, when the head movement is large, the performance of
our method will degrade. Since we estimate the final gaze
using estimations of both eyes, large estimation error of
any one eye caused by the large head movement will result

in a low accuracy of the final estimated gaze. To remedy
this, multi-view gaze estimation [19] will be investigated in
our future work. Moreover, we will focus on incorporating
the human’s gaze with visual tracking methods [20] to
recognize human’s activity in human-computer or human-
human interaction.
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