8,973 research outputs found

    On the computation of Gaussian quadrature rules for Chebyshev sets of linearly independent functions

    Get PDF
    We consider the computation of quadrature rules that are exact for a Chebyshev set of linearly independent functions on an interval [a,b][a,b]. A general theory of Chebyshev sets guarantees the existence of rules with a Gaussian property, in the sense that 2l2l basis functions can be integrated exactly with just ll points and weights. Moreover, all weights are positive and the points lie inside the interval [a,b][a,b]. However, the points are not the roots of an orthogonal polynomial or any other known special function as in the case of regular Gaussian quadrature. The rules are characterized by a nonlinear system of equations, and earlier numerical methods have mostly focused on finding suitable starting values for a Newton iteration to solve this system. In this paper we describe an alternative scheme that is robust and generally applicable for so-called complete Chebyshev sets. These are ordered Chebyshev sets where the first kk elements also form a Chebyshev set for each kk. The points of the quadrature rule are computed one by one, increasing exactness of the rule in each step. Each step reduces to finding the unique root of a univariate and monotonic function. As such, the scheme of this paper is guaranteed to succeed. The quadrature rules are of interest for integrals with non-smooth integrands that are not well approximated by polynomials

    Design of quadrature rules for MĆ¼ntz and MĆ¼ntz-logarithmic polynomials using monomial transformation

    Get PDF
    A method for constructing the exact quadratures for MĆ¼ntz and MĆ¼ntz-logarithmic polynomials is presented. The algorithm does permit to anticipate the precision (machine precision) of the numerical integration of MĆ¼ntz-logarithmic polynomials in terms of the number of Gauss-Legendre (GL) quadrature samples and monomial transformation order. To investigate in depth the properties of classical GL quadrature, we present new optimal asymptotic estimates for the remainder. In boundary element integrals this quadrature rule can be applied to evaluate singular functions with end-point singularity, singular kernel as well as smooth functions. The method is numerically stable, efficient, easy to be implemented. The rule has been fully tested and several numerical examples are included. The proposed quadrature method is more efficient in run-time evaluation than the existing methods for MĆ¼ntz polynomial

    Quadrature formulas based on rational interpolation

    Full text link
    We consider quadrature formulas based on interpolation using the basis functions 1/(1+tkx)1/(1+t_kx) (k=1,2,3,ā€¦)(k=1,2,3,\ldots) on [āˆ’1,1][-1,1], where tkt_k are parameters on the interval (āˆ’1,1)(-1,1). We investigate two types of quadratures: quadrature formulas of maximum accuracy which correctly integrate as many basis functions as possible (Gaussian quadrature), and quadrature formulas whose nodes are the zeros of the orthogonal functions obtained by orthogonalizing the system of basis functions (orthogonal quadrature). We show that both approaches involve orthogonal polynomials with modified (or varying) weights which depend on the number of quadrature nodes. The asymptotic distribution of the nodes is obtained as well as various interlacing properties and monotonicity results for the nodes
    • ā€¦
    corecore