525 research outputs found

    Statistical inference in compound functional models

    Get PDF
    We consider a general nonparametric regression model called the compound model. It includes, as special cases, sparse additive regression and nonparametric (or linear) regression with many covariates but possibly a small number of relevant covariates. The compound model is characterized by three main parameters: the structure parameter describing the "macroscopic" form of the compound function, the "microscopic" sparsity parameter indicating the maximal number of relevant covariates in each component and the usual smoothness parameter corresponding to the complexity of the members of the compound. We find non-asymptotic minimax rate of convergence of estimators in such a model as a function of these three parameters. We also show that this rate can be attained in an adaptive way

    Minimax testing of a composite null hypothesis defined via a quadratic functional in the model of regression

    Get PDF
    We consider the problem of testing a particular type of composite null hypothesis under a nonparametric multivariate regression model. For a given quadratic functional QQ, the null hypothesis states that the regression function ff satisfies the constraint Q[f]=0Q[f]=0, while the alternative corresponds to the functions for which Q[f]Q[f] is bounded away from zero. On the one hand, we provide minimax rates of testing and the exact separation constants, along with a sharp-optimal testing procedure, for diagonal and nonnegative quadratic functionals. We consider smoothness classes of ellipsoidal form and check that our conditions are fulfilled in the particular case of ellipsoids corresponding to anisotropic Sobolev classes. In this case, we present a closed form of the minimax rate and the separation constant. On the other hand, minimax rates for quadratic functionals which are neither positive nor negative makes appear two different regimes: "regular" and "irregular". In the "regular" case, the minimax rate is equal to n1/4n^{-1/4} while in the "irregular" case, the rate depends on the smoothness class and is slower than in the "regular" case. We apply this to the issue of testing the equality of norms of two functions observed in noisy environments

    Optimal Uniform Convergence Rates for Sieve Nonparametric Instrumental Variables Regression

    Get PDF
    We study the problem of nonparametric regression when the regressor is endogenous, which is an important nonparametric instrumental variables (NPIV) regression in econometrics and a difficult ill-posed inverse problem with unknown operator in statistics. We first establish a general upper bound on the sup-norm (uniform) convergence rate of a sieve estimator, allowing for endogenous regressors and weakly dependent data. This result leads to the optimal sup-norm convergence rates for spline and wavelet least squares regression estimators under weakly dependent data and heavy-tailed error terms. This upper bound also yields the sup-norm convergence rates for sieve NPIV estimators under i.i.d. data: the rates coincide with the known optimal L2L^2-norm rates for severely ill-posed problems, and are power of log(n)\log(n) slower than the optimal L2L^2-norm rates for mildly ill-posed problems. We then establish the minimax risk lower bound in sup-norm loss, which coincides with our upper bounds on sup-norm rates for the spline and wavelet sieve NPIV estimators. This sup-norm rate optimality provides another justification for the wide application of sieve NPIV estimators. Useful results on weakly-dependent random matrices are also provided

    Optimal Sup-norm Rates and Uniform Inference on Nonlinear Functionals of Nonparametric IV Regression

    Full text link
    This paper makes several important contributions to the literature about nonparametric instrumental variables (NPIV) estimation and inference on a structural function h0h_0 and its functionals. First, we derive sup-norm convergence rates for computationally simple sieve NPIV (series 2SLS) estimators of h0h_0 and its derivatives. Second, we derive a lower bound that describes the best possible (minimax) sup-norm rates of estimating h0h_0 and its derivatives, and show that the sieve NPIV estimator can attain the minimax rates when h0h_0 is approximated via a spline or wavelet sieve. Our optimal sup-norm rates surprisingly coincide with the optimal root-mean-squared rates for severely ill-posed problems, and are only a logarithmic factor slower than the optimal root-mean-squared rates for mildly ill-posed problems. Third, we use our sup-norm rates to establish the uniform Gaussian process strong approximations and the score bootstrap uniform confidence bands (UCBs) for collections of nonlinear functionals of h0h_0 under primitive conditions, allowing for mildly and severely ill-posed problems. Fourth, as applications, we obtain the first asymptotic pointwise and uniform inference results for plug-in sieve t-statistics of exact consumer surplus (CS) and deadweight loss (DL) welfare functionals under low-level conditions when demand is estimated via sieve NPIV. Empiricists could read our real data application of UCBs for exact CS and DL functionals of gasoline demand that reveals interesting patterns and is applicable to other markets.Comment: This paper is a major extension of Sections 2 and 3 of our Cowles Foundation Discussion Paper CFDP1923, Cemmap Working Paper CWP56/13 and arXiv preprint arXiv:1311.0412 [math.ST]. Section 3 of the previous version of this paper (dealing with data-driven choice of sieve dimension) is currently being revised as a separate pape

    Bayesian adaptation

    Full text link
    In the need for low assumption inferential methods in infinite-dimensional settings, Bayesian adaptive estimation via a prior distribution that does not depend on the regularity of the function to be estimated nor on the sample size is valuable. We elucidate relationships among the main approaches followed to design priors for minimax-optimal rate-adaptive estimation meanwhile shedding light on the underlying ideas.Comment: 20 pages, Propositions 3 and 5 adde

    Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data

    Get PDF
    We estimate the quantum state of a light beam from results of quantum homodyne measurements performed on identically prepared quantum systems. The state is represented through the Wigner function, a generalized probability density on R2\mathbb{R}^2 which may take negative values and must respect intrinsic positivity constraints imposed by quantum physics. The effect of the losses due to detection inefficiencies, which are always present in a real experiment, is the addition to the tomographic data of independent Gaussian noise. We construct a kernel estimator for the Wigner function, prove that it is minimax efficient for the pointwise risk over a class of infinitely differentiable functions, and implement it for numerical results. We construct adaptive estimators, that is, which do not depend on the smoothness parameters, and prove that in some setups they attain the minimax rates for the corresponding smoothness class.Comment: Published at http://dx.doi.org/10.1214/009053606000001488 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore