1,449 research outputs found

    Cross-Scale Cost Aggregation for Stereo Matching

    Full text link
    Human beings process stereoscopic correspondence across multiple scales. However, this bio-inspiration is ignored by state-of-the-art cost aggregation methods for dense stereo correspondence. In this paper, a generic cross-scale cost aggregation framework is proposed to allow multi-scale interaction in cost aggregation. We firstly reformulate cost aggregation from a unified optimization perspective and show that different cost aggregation methods essentially differ in the choices of similarity kernels. Then, an inter-scale regularizer is introduced into optimization and solving this new optimization problem leads to the proposed framework. Since the regularization term is independent of the similarity kernel, various cost aggregation methods can be integrated into the proposed general framework. We show that the cross-scale framework is important as it effectively and efficiently expands state-of-the-art cost aggregation methods and leads to significant improvements, when evaluated on Middlebury, KITTI and New Tsukuba datasets.Comment: To Appear in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2014 (poster, 29.88%

    Confidence driven TGV fusion

    Full text link
    We introduce a novel model for spatially varying variational data fusion, driven by point-wise confidence values. The proposed model allows for the joint estimation of the data and the confidence values based on the spatial coherence of the data. We discuss the main properties of the introduced model as well as suitable algorithms for estimating the solution of the corresponding biconvex minimization problem and their convergence. The performance of the proposed model is evaluated considering the problem of depth image fusion by using both synthetic and real data from publicly available datasets

    Light field reconstruction from multi-view images

    Get PDF
    Kang Han studied recovering the 3D world from multi-view images. He proposed several algorithms to deal with occlusions in depth estimation and effective representations in view rendering. the proposed algorithms can be used for many innovative applications based on machine intelligence, such as autonomous driving and Metaverse

    Study of Computational Image Matching Techniques: Improving Our View of Biomedical Image Data

    Get PDF
    Image matching techniques are proven to be necessary in various fields of science and engineering, with many new methods and applications introduced over the years. In this PhD thesis, several computational image matching methods are introduced and investigated for improving the analysis of various biomedical image data. These improvements include the use of matching techniques for enhancing visualization of cross-sectional imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), denoising of retinal Optical Coherence Tomography (OCT), and high quality 3D reconstruction of surfaces from Scanning Electron Microscope (SEM) images. This work greatly improves the process of data interpretation of image data with far reaching consequences for basic sciences research. The thesis starts with a general notion of the problem of image matching followed by an overview of the topics covered in the thesis. This is followed by introduction and investigation of several applications of image matching/registration in biomdecial image processing: a) registration-based slice interpolation, b) fast mesh-based deformable image registration and c) use of simultaneous rigid registration and Robust Principal Component Analysis (RPCA) for speckle noise reduction of retinal OCT images. Moving towards a different notion of image matching/correspondence, the problem of view synthesis and 3D reconstruction, with a focus on 3D reconstruction of microscopic samples from 2D images captured by SEM, is considered next. Starting from sparse feature-based matching techniques, an extensive analysis is provided for using several well-known feature detector/descriptor techniques, namely ORB, BRIEF, SURF and SIFT, for the problem of multi-view 3D reconstruction. This chapter contains qualitative and quantitative comparisons in order to reveal the shortcomings of the sparse feature-based techniques. This is followed by introduction of a novel framework using sparse-dense matching/correspondence for high quality 3D reconstruction of SEM images. As will be shown, the proposed framework results in better reconstructions when compared with state-of-the-art sparse-feature based techniques. Even though the proposed framework produces satisfactory results, there is room for improvements. These improvements become more necessary when dealing with higher complexity microscopic samples imaged by SEM as well as in cases with large displacements between corresponding points in micrographs. Therefore, based on the proposed framework, a new approach is proposed for high quality 3D reconstruction of microscopic samples. While in case of having simpler microscopic samples the performance of the two proposed techniques are comparable, the new technique results in more truthful reconstruction of highly complex samples. The thesis is concluded with an overview of the thesis and also pointers regarding future directions of the research using both multi-view and photometric techniques for 3D reconstruction of SEM images

    Correspondence problems in computer vision : novel models, numerics, and applications

    Get PDF
    Correspondence problems like optic flow belong to the fundamental problems in computer vision. Here, one aims at finding correspondences between the pixels in two (or more) images. The correspondences are described by a displacement vector field that is often found by minimising an energy (cost) function. In this thesis, we present several contributions to the energy-based solution of correspondence problems: (i) We start by developing a robust data term with a high degree of invariance under illumination changes. Then, we design an anisotropic smoothness term that works complementary to the data term, thereby avoiding undesirable interference. Additionally, we propose a simple method for determining the optimal balance between the two terms. (ii) When discretising image derivatives that occur in our continuous models, we show that adapting one-sided upwind discretisations from the field of hyperbolic differential equations can be beneficial. To ensure a fast solution of the nonlinear system of equations that arises when minimising the energy, we use the recent fast explicit diffusion (FED) solver in an explicit gradient descent scheme. (iii) Finally, we present a novel application of modern optic flow methods where we align exposure series used in high dynamic range (HDR) imaging. Furthermore, we show how the alignment information can be used in a joint super-resolution and HDR method.Korrespondenzprobleme wie der optische Fluß, gehören zu den fundamentalen Problemen im Bereich des maschinellen Sehens (Computer Vision). Hierbei ist das Ziel, Korrespondenzen zwischen den Pixeln in zwei (oder mehreren) Bildern zu finden. Die Korrespondenzen werden durch ein Verschiebungsvektorfeld beschrieben, welches oft durch Minimierung einer Energiefunktion (Kostenfunktion) gefunden wird. In dieser Arbeit stellen wir mehrere Beiträge zur energiebasierten Lösung von Korrespondenzproblemen vor: (i) Wir beginnen mit der Entwicklung eines robusten Datenterms, der ein hohes Maß an Invarianz unter Beleuchtungsänderungen aufweißt. Danach entwickeln wir einen anisotropen Glattheitsterm, der komplementär zu dem Datenterm wirkt und deshalb keine unerwünschten Interferenzen erzeugt. Zusätzlich schlagen wir eine einfache Methode vor, die es erlaubt die optimale Balance zwischen den beiden Termen zu bestimmen. (ii) Im Zuge der Diskretisierung von Bildableitungen, die in unseren kontinuierlichen Modellen auftauchen, zeigen wir dass es hilfreich sein kann, einseitige upwind Diskretisierungen aus dem Bereich hyperbolischer Differentialgleichungen zu übernehmen. Um eine schnelle Lösung des nichtlinearen Gleichungssystems, dass bei der Minimierung der Energie auftaucht, zu gewährleisten, nutzen wir den kürzlich vorgestellten fast explicit diffusion (FED) Löser im Rahmen eines expliziten Gradientenabstiegsschemas. (iii) Schließlich stellen wir eine neue Anwendung von modernen optischen Flußmethoden vor, bei der Belichtungsreihen für high dynamic range (HDR) Bildgebung registriert werden. Außerdem zeigen wir, wie diese Registrierungsinformation in einer kombinierten super-resolution und HDR Methode genutzt werden kann

    3D Motion Analysis via Energy Minimization

    Get PDF
    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to computing the apparent image motion vector field. Furthermore this results currently in the most accurate motion estimation techniques in literature. Much as this is an engineering approach of fine-tuning precision to the last detail, it helps to get a better insight into the problem of motion estimation. This profoundly contributes to state-of-the-art research in motion analysis, in particular facilitating the use of motion estimation in a wide range of applications. In Chapter 5, scene flow is rethought. Scene flow stands for the three-dimensional motion vector field for every image pixel, computed from a stereo image sequence. Again, decoupling of the commonly coupled approach of estimating three-dimensional position and three dimensional motion yields an approach to scene ow estimation with more accurate results and a considerably lower computational load. It results in a dense scene flow field and enables additional applications based on the dense three-dimensional motion vector field, which are to be investigated in the future. One such application is the segmentation of moving objects in an image sequence. Detecting moving objects within the scene is one of the most important features to extract in image sequences from a dynamic environment. This is presented in Chapter 6. Scene flow and the segmentation of independently moving objects are only first steps towards machine visual kinesthesia. Throughout this work, I present possible future work to improve the estimation of optical flow and scene flow. Chapter 7 additionally presents an outlook on future research for driver assistance applications. But there is much more to the full understanding of the three-dimensional dynamic scene. This work is meant to inspire the reader to think outside the box and contribute to the vision of building perceiving machines.</em
    corecore