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Abstract

Light field is defined as the outgoing radiance at a point in a given direction. It is the
result of the interaction between the incoming light and the surface with a specific ma-
terial. Multi-view images captured by conventional cameras from multiple viewpoints
are 2D projections of the light field. Reconstructing the underlying light field that pro-
duces the observed multi-view images is thus an inverse problem. Accurate light field
reconstruction of a scene enables 3D understanding of the scene, which is important for
many computer vision and machine intelligence problems. Thus, light field reconstruc-
tion is the core of many innovative technologies and applications, such as autonomous
driving cars and metaverse. However, several challenges limit the practical application
of light field reconstruction. Depth estimation is one of the crucial research problems in
light field reconstruction, but existing work struggles to efficiently handle occlusions
to preserve depth edges. In addition, effective light field representations capable of
achieving photo-realistic novel view synthesis are desired to improve on the render-
ing quality in existing solutions. Novel algorithms dealing with these challenges will
facilitate the applications of light field reconstruction in real-world scenarios.

This thesis addresses these challenges in light field reconstruction from geometric,
local, and global levels. At the geometric level, the aim is to reconstruct light field
geometry by depth estimation. We construct a novel cost from a new perspective that
counts the number of refocused pixels whose deviations from the central-view pixel
are less than a small threshold and utilizes that number to select the correct depth. We
show that without the use of any explicit occlusion handling methods, the proposed
method can inherently preserve edges and produces high-quality depth estimates.

Synthesizing intermediate novel views within existing views is the target of local
light field reconstruction. This thesis presents an inference-reconstruction variational
autoencoder to reconstruct a dense light field image out of four corner reference views
in a light field image. The conditional latent variable in the inference network is reg-
ularized by the latent variable in the reconstruction network to facilitate information
flow between the conditional latent variable and novel views. A viewpoint-dependent
indirect view synthesis method is also introduced to synthesize novel views more effi-
ciently by leveraging adaptive convolution.

Lastly, we reconstruct a global light field to enable photorealistic view rendering
from any point and any view direction by using a novel neural radiance feature field.
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We propose to use a multiscale tensor decomposition scheme to organize learnable fea-
tures to represent scenes from coarse to fine scales. We demonstrate many benefits of
the proposed multiscale representation, including more accurate scene shape and ap-
pearance reconstruction, and faster convergence compared with the single-scale rep-
resentation. Instead of encoding view direction to model view-dependent effects, we
further propose to encode the rendering equation in the feature space by employing an
anisotropic spherical Gaussian mixture predicted from the proposed multiscale repre-
sentation. Based on the proposed methods, we are able to reconstruct the accurate light
field of a scene and achieve novel view rendering with high-fidelity view-dependent
effects.
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Chapter 1

Introduction

1.1 Background

Light field is defined as the radiance at a point in a given direction [1]. The spatial
position of a point is determined by the 3D Cartesian coordinate system, while the di-
rection is defined by the 2D spherical coordinate system. Thus, the light field is a 5D
function L(x, y, z, θ, φ) as shown in Fig. 1.1. The radiance here includes the light inten-
sity and wavelength. The light intensity controls the brightness, while the wavelength
determines the color. From the perspective of human vision, a light field evaluation
for a 5D input yields a kind of color fused with brightness. Indeed, the light field is the
resultant outgoing radiance of complex physical interactions of light sources at surface
points with different materials. These interactions may include transmission, diffusion,
reflection, etc., depending on the surface materials. Different types of ray/surface in-
teractions produce various outgoing radiance for a considered light source in a given
direction. Thus, a spatial point may show diverse colors when viewed from different
directions.

Currently, there is no tool to directly capture the light field of a scene. The high
dimensionality of the light field makes its acquisition by dense sampling impractical.
Sampling here means recording the radiance at a point in a given direction. From this
point of view, a 2D photograph captured by a common camera can be seen as a sample
of the light field at the camera position with a bunch of radiance directions (each pixel
corresponds to one radiance direction). As shown in Fig. 1.1, two cameras capture
images of the scene from different positions and viewpoints. The resultant images are
samples of the light field. Simply performing dense sampling by cameras is impractical
for capturing the light field because the 5D space contains a large number of samples.

In lieu of dense sampling, recovering the properties of the scene from observed
multi-view images is a more tractable approach to reconstructing the light field. As
aforementioned, the light field is the resultant outgoing radiance after ray/surface in-
teractions. One can estimate the scene geometry and appearance that explain the ob-
served multi-view images, and then simulate the interactions to reproduce the light
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Light sourceCamera

y

x

z

(x, y, z)

L(x, y, z, θ, φ)

θ

φ

Figure 1.1: Light field is defined as the radiance at a point in a given direction. The light field of
a scene is the resultant outgoing radiance of complex interactions of light source and surface.
Images captured by conventional cameras are samples of the light field.

field. In this way, the task of light field reconstruction is simpler because a scene’s
geometry and appearance are much easier to reconstruct than the 5D light field. Nu-
merous efforts have been made in this direction in both computer vision and computer
graphics communities in the last few decades, as discussed in the review in [2].

Reconstructing the light field is still a challenging task even from the perspective
of estimating its underlying geometry and appearance. Light field reconstruction from
multi-view images based upon computer vision and computer graphics techniques is
an inverse problem. An image captured by a camera is a 2D projection of the 5D light
field. The projection is not invertible because points at different depths in a cast ray
from the camera will be projected to the same pixel position. Multi-view images are
used to resolve this ambiguity, but challenges including occlusions and effective repre-
sentations of geometry and appearance limit the accuracy of light field reconstruction.
Thus, effective approaches that can address these challenges are desired to facilitate
wide-ranging light field applications.

1.2 Motivation

1.2.1 Applications

Accurate light field reconstruction could significantly advance research in computer
vision and machine intelligence, powering many innovative applications. The light
field contains more comprehensive geometry and appearance information of objects,
which is very helpful for many fundamental computer vision and pattern recognition
problems such as image recognition [3], object detection [4], and object segmentation
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[5]. Also, the knowledge of objects’ size and position in the light field is critical to
understanding the 3D environment for autonomous driving. For example, estimat-
ing the depth from two or more views provides distance perception for autonomous
driving cars. More recently, in 2022, the leading autonomous driving company Tesla
introduced their latest full self-driving solution based on the occupancy network [6]
trained by 3D data produced by the neural radiance field (NeRF) [7]. Similarly, the re-
constructed light field by the NeRF has also been used to supervise robust robot vision
systems to overcome the limitation that RGB-D sensors do not work well for reflective
materials [8].

Another important application of the light field is Metaverse. Metaverse is expected
to provide an immersive viewing experience of a virtual world by using virtual real-
ity or augmented reality headsets. To be immersive, a rendered image from a user’s
position and viewing direction needs to be photo-realistic as viewing the real world
[9]. Achieving this goal requires accurate light field reconstruction of a scene. One
can render a photo-realistic view by evaluating the reconstructed light field with an
arbitrary 5D input. Besides, augmented reality also requires accurate light field re-
construction to understand the real world to mix virtual and real contents. The new
viewing and interaction methods provided by Metaverse have already enabled repre-
sentative applications in many areas including entertainment, social media, education,
and industry [10], [11].

1.2.2 Challenges

A key problem in light field reconstruction is how to represent the light field. Different
application scenarios require different representations to facilitate the following pro-
cessing, e.g., position and size perception and novel view rendering. Depending on
whether a neural component is used to represent the light field, we follow the work in
[2] that divides light field representation into conventional and neural representations.
Conventional representations include point clouds, polygonal meshes, volume den-
sity, etc. These representations have an explicit geometry structure and can be easily
integrated into the framework of computer graphics to achieve view rendering. For in-
stance, each point in point clouds represents the spatial position of a point on an object,
while meshes represent the surface of an object. Point clouds are also the output format
of 3D data acquisition devices and algorithms. For example, an estimated depth map
from multi-view images is related to point clouds. To reconstruct a real-world light
field, depth estimation is usually the first step to obtain light field geometry, which
helps reason the positions and sizes of objects for applications such as autonomous
driving and robot vision systems. Thus, light field depth estimation [12] is important
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for applications relying on accurate light field geometry reconstruction. In the field of
depth estimation, handling occlusions to preserve depth edges is one of the main chal-
lenges. Many efforts have been made to deal with occlusions in the literature [13]–[15],
but they involve complex processing steps, which are not effective and efficient.

The strong learning ability of deep learning enables light field representation by
deep neural networks. One can treat a deep neural network as a function that repre-
sents the light field, where the inputs to the network are observed multi-view images
and the goal is to predict the radiance of the light field for a given point position and
view direction. An advantage of such a neural representation is that training is con-
ducted in an end-to-end manner, meaning that the network is optimized to represent
the geometry and appearance of the light field simultaneously.

We can further divide neural representations into two categories, namely feed-
forward prediction [16]–[19] and per-scene optimization approaches [7], [20]–[23]. The
feed-forward prediction approach follows an ordinary deep learning pipeline in which
the networks are trained on a large amount of data to learn the relationship between
input multi-view images and output novel views of the light field. The trained net-
work can be generalized to other scenes. In this approach, an encoder is usually used
to encode the input to a representation, and a decoder is followed to map the represen-
tation to the target output. For example, given some multi-view images, we want to
synthesize novel views at novel viewpoints. Such view synthesis is usually conducted
locally: predict the novel view from nearby existing views, involving reconstructing
the light field in a small space. The limitation of existing solutions in this direction is
that the network does not fully utilize the ground truth images to learn to produce a
good light field representation, which is important for the subsequent light field view
rendering quality.

Instead of learning the relationship that can be generalized to new scenes, a typical
per-scene optimization approach optimizes a neural network, typically a multilayer
perceptron (MLP), to represent the light field that fits the observed images. Such op-
timization needs to be done for each scene so that the full capability of the neural
network is used to represent one scene. As a result, a global light field is reconstructed
such that we can render novel views from any point in any view direction [7]. One
can also understand this approach from the perspective of viewing the neural network
as a universal function approximator to represent the light field function. The input
to the MLP is the point position and view direction, and the MLP predicts its density
and color. Such a neural representation is very compact: only weights in the MLPs are
required. However, the computational cost of pure MLP-based representation is very
high because hundreds of MLP evaluations are normally required to render a single
pixel.
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Recent research has shown that using extra learnable features can significantly ac-
celerate the optimization and rendering processes [2]. Efficient data structures to orga-
nize these learnable features are desired to effectively represent the light field and keep
the number of learnable features as small as possible. Besides, view direction encod-
ing methods using basis functions have been widely used to facilitate the learning of
view-dependent effects. These encoding methods improve the rendering performance
but neglect the fact that the outgoing radiance is produced by complex ray/surface in-
teraction that is usually modeled by the rendering equation [24]. Thus, the MLPs need
to be large to model view-dependent effects [21], which increases the computational
complexity and memory consumption.

In summary, light field reconstruction is key to many important applications but
challenges in accurate light field reconstruction still exist. Novel solutions or algo-
rithms that address these challenges can promote industrial applications and inspire
researchers in many related fields. Thus, we are motivated to make progress in light
field reconstruction by tackling these challenges.

1.3 Research Questions

According to the above discussions, this thesis aims to study the following research
questions:

• How can we effectively deal with occlusions to preserve edges in light field depth
estimation?

• How can we obtain a good local light field representation to render intermediate
views from existing neighboring views?

• How can we compactly and effectively represent a global light field such that
view-dependent effects can be well modeled?

1.4 Contributions

We have proposed novel approaches to address the aforementioned research ques-
tions. The advancement of knowledge and related publications are summarized as
follows:

• We propose a novel occlusion-aware vote cost (OAVC) that is able to accurately
preserve edges in the estimated depth map from a light field image. Instead
of using photo-consistency as the indicator of the correct depth, we construct a
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novel cost from a new perspective that counts the number of refocused pixels
whose deviations from the central-view pixel are less than a small threshold and
utilizes that number to select the correct depth. The pixels from occluders are
thus excluded in determining the correct depth. Without use of any explicit oc-
clusion handling methods, the proposed method can inherently preserve edges
and produce high-quality depth estimates. Thanks to its simplicity, the proposed
method is of low computational complexity and runs faster than existing meth-
ods on both CPU and GPU.

Related publication: K. Han, W. Xiang, E. Wang, and T. Huang, “A novel
occlusion-aware vote cost for light field depth estimation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 8022-8035, Nov.
2022 (IF = 24.314).

• We propose an inference-reconstruction variational autoencoder (IR-VAE) that
can facilitate information flow between latent variables and novel views for lo-
cal light field reconstruction. We further propose a statistic distance measure-
ment method dubbed the mean local maximum mean discrepancy (MLMMD)
to measure the distance between two distributions with high-dimensional vari-
ables. Lastly, we propose a viewpoint-dependent indirect view synthesis method
based on adaptive convolution.

Related publication: K. Han, and W. Xiang, “Inference-reconstruction varia-
tional autoencoder for light field image reconstruction,” IEEE Transactions on
Image Processing, vol. 31, pp. 5629-5644, Aug. 2022 (IF = 11.041).

• We propose a neural radiance feature field (NRFF) to reconstruct a global light
field that is capable of photo-realistic view rendering. We first propose a multi-
scale tensor decomposition scheme to represent scenes from coarse to fine scales,
enabling better rendering quality and fast convergence using fewer parameters
than its single-scale counterpart. We then propose to encode the rendering equa-
tion using the anisotropic spherical Gaussian mixture in the feature space. Thus,
the subsequent MLP is aware of the rendering equation so as to model complex
view-dependent effects. Using the proposed NRFF, we significantly improve the
rendering quality by over 1 dB in PSNR on the two widely used datasets.

Related paper: K. Han, and W. Xiang, “Neural radiance feature field for view
rendering,” Submitted to The IEEE/CVF Conference on Computer Vision and
Pattern Recognition 2023, under review.
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Input Goal

Far to camera Near

Chapter 2: Geometric level
The input source is multi-view
images in a regular grid, and
the goal is to reconstruct the
geometry of the light field by
depth estimation.

Existing view Novel view

Chapter 3: Local level
The input source is four cor-
ner images, and the goal is to
synthesize novel views within
the four corner views to recon-
struct the light field locally.

Chapter 4: Global level
The input source is unstruc-
tured multi-view images, and
the goal is to reconstruct a
global light field to enable
view rendering from any po-
sition and view direction.

Figure 1.2: Light field reconstruction levels. At the geometric level, the input multi-view im-
ages captured in a regular grid are used to estimate the distances or depths between cameras
and objects, providing geometric information such as objects’ positions and sizes for vision
systems to understand the 3D environment. At the local level, the input is four corner images
captured in a small local area, so light field reconstruction by synthesizing novel views can be
conducted locally bounded by the input images. At the global level, the input is unstructured
multi-view images captured at many distinct positions and viewpoints that roughly cover a
scene globally. The comprehensive information in the input images enables global light field
reconstruction to render novel views at any position and view direction.

1.5 Thesis Outline

This thesis divides light field reconstruction into the geometric, local, and global levels
based on the idea in [25]. As depicted in Fig. 1.2, each level has similar input multi-
view images, while the goal changes from the light field geometry reconstruction to the
local and global light field reconstructions at various levels. Each level of reconstruc-
tion has its corresponding applications. For instance, robot vision systems concerned
more with scene geometry and immersive viewing experience requires global light
field reconstruction to rendering photo-realistic images from any position and view
direction. This thesis addresses the three-level reconstructions by elaborately designed
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fast method, feed-forward prediction, and per-scene optimization approaches, respec-
tively. Although global light field reconstruction is more accurate than its geometric or
local-level counterparts, it needs more captured views and requires time-consuming
per-scene optimization. Therefore, it is not practical for some applications at the time
being.

Chapter 2 analyzes the consistency in refocused angular patches and describes a
discovery that the consistency in unoccluded regions with correct refocusing is higher
than that with incorrect refocusing. A quantitative analysis of the consistency by use
of the pixel deviation histogram is given to show that refocused pixels with large pixel
deviations (caused by occlusion or incorrect refocusing) have a negative effect on depth
estimation. We then formulate the proposed vote cost by use of a threshold and deduce
a simple form of vote cost when adding a distinguishing cost to deal with the scenario
of an identical basic vote cost. This chapter also introduces an adaptive threshold
method to adaptively determine the vote threshold based on local contextual infor-
mation in the central spatial image. Experimental results are presented in this chapter
to show that the proposed vote cost is able to achieve state-of-the-art performance in
terms of depth estimation accuracy and computational speed.

Chapter 3 describes the novel inference-reconstruction variational autoencoder (IR-
VAE) framework to synthesize novel views for the purpose of reconstructing local
dense light field images. Starting with the standard variational autoencoder (VAE),
this chapter discusses the problem of applying VAE in the content of light field recon-
struction, and how the proposed IR-VAE solves that problem. To enable richer rep-
resentations of reference views and viewpoints by high-resolution latent variables, we
present a mean local maximum mean discrepancy (MLMMD) to measure the statistical
distance of two distributions in the high-dimensional latent variable space. Finally, a
viewpoint-dependent indirect view synthesis method capable of transforming the pre-
diction of raw novel pixels into adaptive kernels and bias is introduced. An ablation
study is conducted to show the effectiveness of the proposed modules. Experimen-
tal results are presented to demonstrate that the proposed model significantly outper-
forms existing state-of-the-art methods on both subjective and objective comparisons.

Chapter 4 presents the neural radiance feature field (NRFF) to represent scenes
in the feature space. This chapter first introduces a multiscale tensor decomposition
scheme to organize learnable features to represent scenes from coarse to fine scales. We
demonstrate many benefits of the proposed multiscale representation, including more
accurate scene shape and appearance reconstruction, and faster convergence compared
with the single-scale representation. Then, this chapter describes how to encode the
rendering equation in the feature space by employing anisotropic spherical Gaussian
mixture predicted from the proposed multiscale representation. Lastly, experimental
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results on both synthetic and real-world datasets are provided to demonstrate the effi-
cacy of the proposed NRFF.

Chapter 5 concludes this thesis and discusses possible future work in light field
reconstruction from different points of view.
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Chapter 2

Occlusion-Aware Vote Cost for Light
Field Depth Estimation

In this chapter, we reconstruct light field geometry by estimating a depth map from an
light field image. Blurry edges in depth maps caused by occlusions are the key issue
in light field depth estimation. We analyze the consistency properties in refocused
angular patches, and reveal a new perspective to handle the occlusion problem. Based
on this analysis, we propose the occlusion-aware vote cost that counts the number
of refocused pixels whose deviations from the central-view pixel are less than a small
threshold, and utilizes that number to select the correct depth. We demonstrate that the
proposed OAVC is effective in dealing with occlusion, and computationally efficient
due to its simplicity.

2.1 Introduction

Light field describes the distribution of light rays that are reflected from 3D points in
the free space. Conventional photography records the intensities of light rays from
multiple directions to a pixel by a camera with one main lens and forms a 2D image,
which inevitably loses the information of light directions. In comparison, a typical light
field imaging system captures not only the intensities of light rays in the 2D spatial
domain, but their directions in the 2D angular domain, resulting in a common 4D
representation of a light field image [26]. For a 4D light field image, fixing its angular
coordinates means observing the scene from a fixed angle, which leads to a general
2D image (also called a view). On the other hand, fixing its spatial coordinates means
gathering pixels at the same spatial positions from different angular views, which can
form an angular patch. The angular patch is usually the raw structure of light field
images that are captured by light field cameras based on a microlens array. An example
of a 4D light field image in [12] provides a good visualization of the structure of light
field images.
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The extra light direction information in light field images enables new methods
for recovering 3D geometry information from images. Light field depth estimation is
one of the key research problems[12]. Existing work on light field depth estimation
is based on a common assumption that pixels refocused from the correct depth in the
angular patch are photo-consistent [12], [26]. Correspondence and defocus are two
typical costs that are used to measure photo-consistency, and the highest consistency
indicates the selection of the optimal depth among cost volumes. In refocused angular
patches, the correspondence cost calculates standard deviation, while the defocus cost
measures the mean absolute difference between the central-view pixel and other pixels.
The correspondence and defocus costs work well in most regions and some researchers
combined them to achieve better accuracy [13], [27]–[29].

However, photo-consistency is broken where occlusion occurs, which results in er-
roneous depth estimates. The correspondence and defocus costs generate very blurry
depth estimation in occluded areas because pixels in the refocused angular patch may
come from occluders [30]. To address this problem, researchers proposed occlusion
models to exclude pixels from occluders to ensure photo-consistency [14], [30]–[32].
For example, Wang et al. [14], [30] showed that the edge separating the unoccluded
and occluded pixels in the angular patch has the same orientation as the occlusion
edge in the spatial domain. Based on this occlusion model, the authors separated the
angular patch into two regions according to the edge orientation in the spatial do-
main, and only measured photo-consistency in the unoccluded region. Zhu et al. [31]
extended Wang’s work to the context of multi-occluder occlusion. The experimental
results showed the effectiveness of integrating the occlusion models into light field
depth estimation.

However, several drawbacks of existing occlusion handling methods limit their ac-
curacy and computational performance. Explicit occlusion models [14], [30], [31] rely
on edge detection in the spatial domain, which is, however, hard to ensure that occlu-
sions are correctly detected. Also, these models tackle occlusion without consideration
of the occlusion diffusion phenomenon. As can be seen from Fig. 2.1, the occlusion map
(c) generated by occlusion-aware depth estimation (LF_OCC) [14] is far away from the
real occlusion in (g). We note that occlusion not only happens along the edge between
the foreground and background but also neighboring refocused angular patches along
the normal line of the edge. As shown in Figs. 2.1 (b) and (g), occlusion in the refocused
angular patch based on the true depth diffuses gradually along the normal line of the
depth boundary. Therefore, these methods still need complex post-refinement algo-
rithms like the Markov Random Field (MRF) to further enhance the estimated depth.
Besides, existing occlusion-aware costs including the constrained angular entropy cost
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(a) Central view (b) GT refocused (c) LF_OCC occ. (d) LF_OCC initial (e) LF_OCC final

(f) GT depth (g) GT occlusion (h) Our occlusion (i) Our initial (j) Our final

Figure 2.1: Occlusion handling and estimated depth by different methods in the StillLife scene
from the HCI Blender [33] light field dataset. The table cloth is occluded by the wooden ball.
The black pixels in (c)(g)(h) indicate there are occlusions. The occlusion map (c) generated by
the LF_OCC [14] is far away from the real occlusion in (g). The proposed method produces
better initial and final depth estimates, especially for preserving depth boundaries.

and the constrained adaptive defocus cost still need to implement a complex edge-
preserving filter and the time-consuming graph cut algorithm to optimize the energy
function [13].

As photo-consistency is only valid among unoccluded regions in the angular patch,
pixels from occluders should markedly deviate from the central-view pixel. A straight-
forward idea to eliminate the negative effect of occlusion is to exclude occluder’s pixels
whose deviation from the central-view pixel is larger than a threshold. However, the
photo-consistency after such exclusion is no longer selective for the correct depth, since
non-consistent pixels are excluded and the intensities of the retained pixels are highly
concentrated. In this chapter, we build a cost volume from a new perspective of count-
ing the number of the retained pixels after the exclusion. We found that the number
of the retained pixels whose deviation from the central-view pixel is within a thresh-
old in the refocused angular patch can be utilized to effectively select correct depth. A
disparity value achieving the largest number of retained pixels indicates the optimal
selection of the correct depth. In the proposed method, every pixel in an angular patch
votes to decide whether the current refocusing disparity is correct or not, and hence it
is dubbed the occlusion-aware vote cost (OAVC). As shown in Fig. 2.1, without any ex-
plicit occlusion handling, the proposed OAVC is able to accurately estimate the correct
depth in occlusion regions. Note that the proposed method does not directly gener-
ate Fig. 2.1 (h), which is obtained by refocusing according to the initial estimate of the
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proposed method.
The threshold is usually a very small value, e.g., 0.005 for pixel intensity between 0

and 1, to ensure all irrelevant pixels are excluded. Here, the irrelevant pixels not only
include pixels from occluders but also contain pixels refocused at incorrect depths.
Therefore, the OAVCs are high at incorrectly refocused depths and thus the probabil-
ity of erroneous depth estimates is low. The main artifact of the proposed method in
the initially estimated depth is like salt-and-pepper noise, since there may be no pixels
having small deviations from the central-view pixel and photo-consistency is not dis-
tinguishable in completely texture-less regions. This noise can be easily removed by
a fast weighted median filter [34]. Our method does not need any further refinement
like the MRF, so it also has the advantage of low computational complexity.

The rest of the chapter is organized as follows. We briefly introduce the related
work in Section 2.2. In Section 2.3, a consistency analysis in the refocused angular
patch is given to explain the theory behind the proposed OAVC. Section 2.4 presents
the details of how to build the OAVC and discuss its properties. Section 2.5 presents
and analyzes experimental results on both synthetic and real-world light field datasets
to demonstrate the superiority of the proposed method in terms of depth accuracy and
computational speed. We conclude this chapter in Section 2.6.

2.2 Related Work

Photo-consistency. Photo-consistency based on the Lambertian assumption [35] is that
refocused pixels at the correct depth in an angular patch are consistent. Based on this
assumption, two main consistency measurements are used in literature, namely corre-
spondence and defocus. The correspondence measures the variances among pixels in
an angular patch, while the defocus calculates the deviation between the central-view
pixel and the other pixels [27], [31], [36], [37]. Research in [27], [28], [36] combined cor-
respondence and defocus to obtain a more robust depth estimate. Methods based on
the epipolar plane image (EPI) also utilize pixel consistency measurement to find the
best slope [38], [39]. The methods based on photo-consistency work well in most re-
gions and can usually generate reliable depth. However, photo-consistency is not valid
where there is occlusion along the edges of the foreground and background. As a re-
sult, a variety of occlusion models and post-refinement methods have been proposed
in an effort to improve accuracy.

Occlusion handling. Wang et al. [14], [30] demonstrated that the orientation of
edges in the spatial domain can be used to separate an angular patch into unoccluded
and occluded regions, and photo-consistency is only calculated among the pixels in the
unoccluded region. The authors noted that there is an occlusion diffusion phenomenon
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and they dilated the edges to tackle this problem. This occlusion model faces two prob-
lems. Firstly, accurate edge detection is not always possible, especially when there is
complex background. Secondly, edge dilation cannot model occlusion diffusion very
well. Zhu et al.[31] extended Wang’s work to the scenario of multiple occuluders but
their methods still face similar problems as Wang’s. Chen at al. [32] detected partially
occluded boundary regions (POBR) via superpixel-based regularization and process
occlusion from the post-refinement perspective based on POBR. However, this model
relies on superpixel and needs a series of refinements to generate the final depth. Han-
dling occlusion from the perspective of data cost in [13] needs to implement the com-
plex edge-preserving filter and the time-consuming graph cut algorithm to optimize
the energy function.

Learning-based. The success of deep learning in computer vision inspires researchers
to propose learning-based methods to estimate depth from light field images. Recent
progress includes Epinet [40] which adopts an end-to-end fully convolutional neural
network (CNN) to directly predict the depth from a stack of sub-aperture images in
different directions. Heber et al. [41] extracted EPI patches as the input of a 5-layer
convolutional network to regress the depth. Alperovich et al. [42] designed an encoder
to learn a representation from horizontal and vertical EPIs. The representation can then
be used to infer the depth by a decoder. Feng et al. also adopted a two-stream CNN
that learns from horizontal and vertical EPIs [43]. Recently, Shi et al. utilized Flownet
[44] in optical flow estimation to estimate the light field depth [45]. But their network
needs to upsample images in the spatial domain to make them suitable for Flownet
when using narrow baseline light field images. Existing learning-based methods can
only estimate depth from EPI or part of sub-aperture images due to limited computa-
tion and memory resources, resulting in underuse of the full data of light field images.
The lack of training data that are captured in real-world also limits the generalization
ability of the networks for a variety of disparity ranges and camera parameters.

We note that Lee et al. [46] also utilized a voting strategy for light field depth es-
timation. However, the proposed OAVC is entirely different in three aspects of the
theoretical hypothesis, the vote purpose, and the final depth acquisition. The theoret-
ical hypothesis in [46] is that bundles of rays from the background are flipped on the
conjugate plane [35], while our vote method assumes that unoccluded pixels should be
of high consistency with the central-view pixel. The authors used disparity sign vot-
ing to separate the foreground and background in every refocused image at different
depths, while we use highly consistent pixels to vote for the optimal depth estimate.
Finally, Lee et al. [46] accumulated binary foreground and background maps to obtain
the estimated depth, while we use the winner-takes-all approach to select the optimal
depth estimate in the proposed OAVC.
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2.3 Consistency in Refocused Angular Patch

In this section, we contribute an analysis of consistency in refocused angular patches,
and find that the number of refocused pixels whose deviations from the central-view
pixel are less than a small threshold is a metric that can be employed to tackle the issue
of occlusion in light field depth estimation.

Denote by L(x, y, u, v) ∈ RX×Y×U×V a 4D light field image, where x, y are spatial
coordinates and u, v are angular coordinates [26]. X × Y is the spatial resolution and
U × V is the angular resolution. For instance, a light field image from the 4D Light
Field Benchmark [47] has a resolution of 512× 512× 9× 9. Such a light field image
can also be interpreted as a grid of pinhole views, where there are 9× 9 grid views and
each has a spatial resolution of 512× 512. The uv coordinates of the central view in any
angular patch are (0, 0). By setting v = 0 and fixing y, one can obtain a central EPI in
the xu plane. As illustrated in Fig. 2.3, the slopes of the background and foreground in
the EPI are tan α and tan β, respectively. Disparity d has a reciprocal relationship with
slope tan θ

d =
1

tan θ
. (2.1)

Refocusing to different possible disparities is the first step to build a cost volume for
light field depth estimation. According to [26], for a 4D light field image L(x, y, u, v),
the light field image L′d(x, y, u, v) refocused to a candidate disparity d can be expressed
as

L′d(x, y, u, v) = L(x + ud, y + vd, u, v). (2.2)

As shown in Fig. 2.2, for a fixed spatial position, angular patches are formed regarding
uv coordinates after refocusing to different disparities. Pixels’ color in the refocused
angular patches are only consistent with the central-view pixel when refocusing at
the correct disparity. Thus, photo-consistency can be used to determine the correct
disparity. To measure the consistency in a refocused angular patch, we define pixel
deviation Ed(x, y, u, v) as the absolute difference between the refocused and the central-
view pixel of the angular patch

Ed(x, y, u, v) = |L′d(x, y, u, v)− L(x, y, 0, 0)|. (2.3)

For color images, the pixel deviation is the average absolute difference over all the color
channels. The mean of Ed(x, y, u, v) over uv measures the consistency in an angular
patch refocused to disparity d. A small value of the mean of Ed(x, y, u, v) implies high
consistency in the corresponding refocused angular patch.
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Figure 2.2: Refocused angular patches at correct and incorrect disparities. A red point with gray
background in the 3D space is projected to different spatial xy coordinates in different views. In
a view denoted by uv, the spatial coordinate changes are udc and vdc. Refocusing at a disparity
d means that we suppose the spatial coordinate changes are ud and vd. When refocusing at an
incorrect disparity di, pixels in the refocused angular patch are from points in different depths
and are inconsistent with the central-view pixel. In comparison, when refocusing at the correct
disparity dc, pixels in the refocused angular patch are from the same red point and are thus
consistent in color.

2.3.1 Consistency Analysis

Photo-consistency in correctly refocused angular patches is a basic assumption for light
field depth estimation. According to the Lambertian assumption, a 3D point in the
space casts the same light onto microlenses or lenses in a camera array [35], resulting
in consistency in a correctly refocused angular patch, which can be seen as a collector
of multiple copies of the same light. Ideally, in the correctly refocused patch, all pixels
will have an identical intensity if there is no occlusion. In the real world, even though
consistency may not completely hold due to a weak Lambertian assumption or sub-
pixel interpolation when refocusing, this consistency works very well for unoccluded
regions in light field depth estimation.

Photo-consistency may also exist in angular patches refocused to incorrect dispar-
ities due to spatial consistency. Spatial consistency refers to the fact that neighboring
pixels are consistent in the spatial domain. When refocusing to incorrect disparities,
pixels in refocused angular patches come from neighboring pixels of correctly refo-
cused pixels, resulting in consistency in incorrectly refocused angular patches. This
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Figure 2.3: Consistency analysis. The orange part indicates the foreground which occludes the
blue background. The transparency of the orange part is for better visualization. The photo-
consistency in the unoccluded region (blue part in line EC) of a correctly refocused line (line
EC) is stronger than that derived from the spatial consistency in an incorrectly refocused line
(line KJ).

phenomenon can be clearly illustrated by the EPI shown in Fig. 2.3, where F is a
central-view pixel (i.e., u = v = 0), and occlusion exists in the angular patch refocused
to the correct disparity 1/ tan α. Pixel F shares the same disparity with its neighboring
central-view pixels so that the correctly refocused lines across F and its neighboring
central-view pixels share the same slope. The incorrectly refocused line KJ is actu-
ally formed by taking the pixels in the correctly refocused lines centered at F and its
neighboring pixels in the central view. The pixels in line KJ are consistent with the
neighboring pixels of F. For instance, pixel P in line KJ and P′ in line K′ J′ are the
recorded light cast from the same 3D point. The pixels in incorrectly refocused line KJ
are in turn consistent with F due to spatial consistency.

Consistency in correctly refocused patches is attributed to the Lambertian assump-
tion, while consistency in incorrectly refocused patches stems from spatial consistency.
The Lambertian consistency is stronger than spatial consistency, which enables precise
depth estimation from light field images in the absence of occlusions. For instance, the
consistency of the correctly refocused line cross M by angle α is higher than that of the
incorrectly refocused line by angle β in Fig. 2.3. However, the consistency due to the
Lambertian assumption in the whole angular patch fails, where occlusions are present.
As can be observed from Fig. 2.3, line KJ is of higher consistency than line EC due
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to occlusion. This is because the central-view pixel F has a consistent intensity with
its neighboring pixels, and the occlusion in EC breaks the consistency derived from
the Lambertian assumption. In such a situation, incorrect disparity estimation occurs,
generating blurry estimates along edges.

Strong Lambertian consistency still holds in the unoccluded region of a correctly re-
focused angular patch. In Fig. 2.3, the consistency in the unoccluded part in line EC is
higher than that of line KJ. Separating an angular patch into occluded and unoccluded
regions, the Lambertian consistency in the unoccluded region will be more prominent
than spatial consistency. However, as aforementioned in Section 2.1, the complex oc-
clusion diffusion phenomenon indicates that existing occlusion models are far from
being able to realistically model real occlusions.

The strong Lambertian consistency reveals a new perspective of handling the oc-
clusion problem: separating Lambertian consistency from spatial consistency to dis-
tinguish between correct and incorrect refocusing. By inspecting high-consistency
pixels in the scaled refocused lines in Fig. 2.3, it is found that the number of high-
consistency pixels in a correctly refocused line is greater than that of its incorrectly re-
focused counterpart, even in the presence of occlusions. For instance, the length of the
high-consistency (blue) segment of scaled line EC is longer than the high-consistency
segment of scaled line KJ. This means that the number of pixels highly consistent with
the central-view pixel in a refocused angular patch is effective in selecting the correct
disparity when there is occlusion. The next problem is what level consistency can be re-
garded as high consistency so as to distinguish between two types of consistencies. As
such, we intend to quantitatively analyze the consistency in refocused angular patches
by use of the pixel deviation histogram.

2.3.2 Pixel Deviation Histogram

The high consistency among correctly refocused patches without occlusion can be
demonstrated by comparing the consistency of correctly and incorrectly refocused an-
gular patches. We exclude occlusions in correctly refocused angular patches from the
comparison. We plot the pixel deviation histogram to demonstrate a threshold does ex-
ist that can well distinguish the consistency in correctly refocused angular patches from
that attributable to the spatial consistency in incorrectly refocused angular patches.

The pixel deviation histogram describes the distribution of the consistency in refo-
cused angular patches. In Fig. 2.4, correct refocusing means refocusing to the ground
truth disparity. As a comparison, we calculate the second histogram over light field
images refocused to incorrect disparities, with ∆ ∈ ±{0.1, 0.2, 0.3} indicating the devi-
ation from the correct disparity. The histogram is averaged over a range of values of
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Figure 2.4: Pixel deviation histogram comparison between correctly and incorrectly refocused
light field images. When the pixel deviation is less than 0.005, the pixel probability of correct
refocusing is higher than that of incorrect refocusing.

∆. The pixel intensity range is normalized to [0, 1]. The dataset employed is the Ad-
ditional subset from the 4D Light Field Benchmark [47]. It contains 16 scenes with the
ground truth disparity and all the scenes have the same spatial and angular resolution
of 512× 512× 9× 9. The histogram is calculated over the refocused light field images,
and shown in Fig. 2.4, where the horizontal axis indicates the deviation of a pixel from
its central-view peer in the angular patch and the vertical axis denotes the probability.

As can be observed from Fig. 2.4, an evident threshold for the pixel deviation ex-
ists, which separates the two distinct scenarios of correct and incorrect refocusing. In
Fig. 2.4, the interval of the deviation bins is 0.001. Overall, the probability decreases
with the pixel deviation for both scenarios. However, as can be seen from Fig. 2.4, the
pixel probabilities of correct refocusing are larger than those of incorrect refocusing in
deviation bins {0.001, 0.002, ..., 0.005}. In other words, this observation is valid when
the pixel deviation is less than or equal to 0.005. Most pixels under correct refocus-
ing concentrate in the low deviation bins, which means that the unoccluded regions in
correctly refocused angular patches have greater consistency than when refocusing is
incorrect as discussed in Section 2.3.1. The cumulative pixel probability of the devia-
tion in refocused angular patches is shown in Table 2.1. In this table, the cumulative
pixel probability of deviation 0.005 refers to the sum pixel probabilities of the devia-
tions ranging from 0 to 0.005. A close inspection of the table reveals that over 65% of
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Table 2.1: Comparison of the cumulative pixel probabilities of a variety of deviation values
under correct and incorrect refocusing.

Deviation 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Correct 0.150 0.358 0.491 0.584 0.653 0.705 0.747
Incorrect 0.085 0.209 0.307 0.385 0.449 0.502 0.547

Difference 0.065 0.149 0.184 0.199 0.204 0.203 0.200
Ratio 1.765 1.713 1.599 1.517 1.454 1.404 1.366

pixel deviations are less than 0.005 in the correctly refocused light field images, while
this percentage is 44.9% for the case of incorrect refocusing. This means that a small
threshold such as 0.005 is enough to retain most of the correctly refocused pixels in
angular patches.

More importantly, the distribution statistics of the pixel deviation suggest that the
refocused pixels whose deviations are larger than the threshold are the cause of in-
correct depth estimation. It is observed that correct refocusing tends to lead to more
concentrated cumulative pixel deviations than its incorrect counterpart. As can be seen
from Table 2.1, the difference in the cumulative pixel deviation under correct and incor-
rect refocusing increases with the chosen threshold until reaching the maximum value
of 0.204 at the deviation threshold of 0.005. After that, the difference will decrease. The
reason why we use the difference to determine the threshold is that a turning point
exists when using the difference, where the largest cumulative probability difference
(or largest pixel number difference) can be achieved at the turning point. The largest
cumulative probability difference means that the distance between the costs of cor-
rect and incorrect refocusing is maximized, which is beneficial for distinguishing these
two cases. The ratio between the cumulative probabilities, however, as shown in Ta-
ble 2.1, decreases monotonically and does not have such a turning point to determine
the threshold. The above analysis and observation motivate us to propose the novel
occlusion-aware vote cost in the next section.

2.4 Occlusion-Aware Vote Cost

In this section, we propose a novel occlusion-aware vote cost (OAVC) for light field
depth estimation based on the consistency analysis given in the preceding section.
Then we discuss the effect of the vote threshold and present an adaptive vote threshold
method. Finally, a fast weighted median filter is used to refine the initially estimated
depth.
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2.4.1 Vote Cost

The pixels in a refocused angular patch are either retained or discarded, depending
on their deviation relative to a preset threshold. The largest number of retained pixels
indicates the optimal selection for the correct disparity. It works as though every pixel
votes to decide whether this refocusing disparity is correct or incorrect. This is why
it is dubbed the vote cost. The basic vote cost CB(d, t, x, y) for pixel (x, y) given the
refocusing disparity d and the vote threshold t is defined as

CB(d, t, x, y) = ∑
u,v

H(Ed(x, y, u, v)− t) (2.4)

where H(s− t) is the shifted Heaviside step function with the deviation threshold t

H(s− t) =

0, if s < t

1, if s ≥ t.
(2.5)

Here we set the vote value to 0, when the pixel deviation is smaller than the threshold
t. Given a vote threshold T, the estimated disparity D(T, x, y) is obtained by selecting
the value of d that minimizes the basic vote cost CB(d, T, x, y) as follows

D(T, x, y) = arg min
d

CB(d, T, x, y). (2.6)

The basic vote cost can inherently handle the occlusion problem and preserve depth
edges very well, provided that the threshold is small. Fig. 2.5 (b) shows that the initially
estimated depth through the use of the basic vote cost is sharp and clean along the
depth boundaries. Even the depths of the small spire and flagpole on the towers are
accurately estimated. This result demonstrates that the proposed basic vote cost is a
very effective metric for estimating the depth in the presence of occlusion.

The problem of the basic vote cost is that it cannot distinguish the disparities that
receive the same vote cost. We dub this a draw error, meaning that some possible
disparities have the same number of 0 or 1 votes, as can be seen from Fig. 2.5 (b). To
reduce draw errors, we add a distinguishing cost ξ(d, t, x, y) to form the final vote cost
C(d, t, x, y)

C(d, t, x, y) = CB(d, t, x, y) + ξ(d, t, x, y). (2.7)

The distinguishing cost ξ(d, t, x, y) is the absolute difference between the central-view
pixel and the pixels that have a smaller deviation than the threshold, which is defined
as

ξ(d, t, x, y) =
1
Z ∑

u,v
Ed(x, y, u, v)(1− H(Ed(x, y, u, v)− t)) (2.8)
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(a) Central view (b) basic vote cost (c) with distinguishing cost

Figure 2.5: Effectiveness of the basic vote cost and the distinguishing cost. The basic vote cost
(b) can preserve sharp and clean edges. The addition of the distinguishing cost (c) further
removes draw errors caused by an identical basic vote cost.

where Z = UV + 1 is a factor to ensure that the distinguishing cost is less than 1, so
that it will only be used to distinguish the candidate disparities receiving the same
basic vote cost, without affecting the other disparities that have different basic vote
costs.

The final vote cost C(d, t, x, y) can be simplified by dividing Ed(x, y, u, v) into two
segments according to the threshold t. Plugging (2.4) and (2.8) into (2.7) gives rise to

C(d, t, x, y) = ∑
u,v

(
H(Ed(x, y, u, v)− t) +

1
Z

Ed(x, y, u, v)(1− H(Ed(x, y, u, v)− t))
)

= ∑
u,v

F(Ed(x, y, u, v), t).

(2.9)

When Ed(x, y, u, v) < t, the first term in F(Ed(x, y, u, v), t) equals 0 and the second term
is 1/ZEd(x, y, u, v). When Ed(x, y, u, v) ≥ t, the first term is 1 and the second term is 0.
Therefore, F(s, t) reduces to

F(s, t) =

 1
Z s, if s < t

1, if s ≥ t.
(2.10)

Fig. 2.5 (c) shows the effectiveness of the distinguishing cost on reducing draw errors.
A bilateral filter is then used to further refine the vote cost volume.

The proposed OAVC is very effective in yielding the correct depth estimate, espe-
cially along the depth boundaries. The small threshold excludes not only the pixels
from occluders but also incorrectly refocused pixels. Most retained pixels come from
the unoccluded regions in the correctly refocused angular patch. On the other hand,
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Figure 2.6: Comparison of different costs to estimate the depth of a pixel in a occlusion diffusion
region. The proposed OAVC successfully produces the accurate depth estimate, while other
costs fail the challenge due to ineffective occlusion handling.

(a) Central view (b) Defocus [27] (c) LF_OCC [14] (d) CAE [13] (e) OAVC (f) Ground truth

Figure 2.7: Initial depth estimates using different costs demonstrates the inherent occlusion-
aware of the vote cost. The defocus cost (b) generates blurry depth estimates at the edges due
to occlusion diffusion. The LF_OCC cost (c) has a lot of artifacts at the edges, while there is
obvious noise along the edges in depth generated by the CAE (d). The proposed occlusion-
aware vote cost (e) produces cleaner and sharper depth estimates. The reader is encouraged to
zoom in for details.

in the incorrectly refocused angular patch, the small threshold is able to exclude most
of the pixels, since they are neighboring pixels in the central spatial image (see Section
2.3.1). The neighboring pixels are consistent but the consistency is lower in comparison
to the consistency due to highly concentrated pixels in the correctly refocused angular
patch.

A comparison of different costs of a typical pixel in an occlusion diffusion region
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will demonstrate the superiority of the proposed OAVC. In Fig. 2.6, the pixel is in the
occlusion diffusion region near the leaf in the scene of monasRoom [33]. Both the cost
and disparity are normalized to the range between 0 to 1. As shown in Fig. 2.6, the
value of the OAVC is dominated by the basic vote cost. The distinguishing cost in
the OAVC is small and only used to reduce the draw errors. The correspondence and
defocus costs fail due to the occlusion. The cost with the occlusion model by Wang
et al. [14] also fails because of the drawback of their occlusion model. In comparison,
the proposed OAVC is able to successfully tackle the occlusion problem and produce
a more accurate depth estimate.

The inherent occlusion-aware property of the proposed OAVC can help preserve
edges in the estimated depth. We compare the initial depth estimates obtained by the
proposed OAVC, the typical defocus cost in [27], the cost based upon the occlusion
model in [14], and the occlusion-noise aware constrained angular entropy cost (CAE)
in [13] to demonstrate the edge preservation of our method. Fig. 2.7 shows the initial
depth estimates based upon these costs without any refinement. As can be observed
from the figure, the proposed OAVC produces a better initial depth estimate than the
other comparative costs. The defocus cost generates blurry edges caused by occlu-
sion diffusion. The occlusion model proposed in [14] partly preserves the edges with
obvious artifacts attributed to unreliable occlusion detection and approximation to oc-
clusion diffusion. The CAE [13] yields noisy estimates along the edges. Without any
explicit occlusion handling, the proposed OAVC produces cleaner and sharper depth
estimates.

2.4.2 Vote Threshold

The pixel deviation histogram suggests that a vote threshold exists to separate the cor-
rectly and incorrectly refocused pixels. That threshold can be calculated providing that
the ground truth depth is available. In fact, the threshold is more like a constant that
is applicable to different light field images. We found a fixed threshold is appropri-
ate for both synthetic and real-world light field images. However, adapting the vote
threshold for each pixel in different light field images may improve the accuracy of
depth estimation. Consequently, we propose an adaptive threshold method based on
the measure of the spatial consistency.

The essential idea behind the adaptive threshold is that a small threshold should
be employed to exclude incorrectly refocused pixels when they are highly consistent
with the central-view pixel. In this way, we can separate the correctly and incorrectly
refocused pixels to determine the optimal depth estimate. However, we cannot prop-
erly evaluate the consistency in incorrectly refocused angular patches since incorrect
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disparities are unknown. As discussed in Section 2.3.1, the consistency in an incor-
rectly refocused angular patch is derived from the spatial consistency. Therefore, the
spatial consistency defined as the average pixel deviation between a certain pixel and
its neighbors in the central view provides a rough measure of the consistency in the
incorrectly refocused angular patch. To exclude incorrectly refocused pixels, the pixels
with deviations larger than the average pixel deviation should vote one. Formally, the
proposed adaptive threshold ta is defined as

ta(x, y) =
1

UV − 1 ∑
u,v
|A∆ε(x, y, u, v)− L(x, y, 0, 0)| (2.11)

where A∆ε(x, y, u, v) represents the sampled neighboring pixels of the center-view pixel
L(x, y, 0, 0), which can be written as

A∆ε(x, y, u, v) = L(x + u∆ε, y + v∆ε, 0, 0). (2.12)

In (2.11), we set the number of sampled neighboring pixels for computing the spatial
consistency to be UV, which is the same as the number of pixels in an angular patch.
The sampling interval ∆ε determines the size of the local patch in the central view.
Stronger consistency between a pixel and its neighboring pixels in the central spatial
image leads to a smaller threshold. It should be noted that the computed spatial consis-
tency cannot measure the consistency in incorrectly refocused angular patches, where
occlusion is present. The occlusion along edges results in a large adaptive threshold
which will cause difficulties in depth estimation in occlusion diffusion regions. Also,
an overly small threshold may exclude most refocusing pixels including correctly re-
focused pixels and thus result in draw errors. To tackle these challenges, we apply
maximum and minimum truncation to the above adaptive threshold

tτ
a (x, y) = max(min(ta(x, y), τmax), τmin) (2.13)

where tτ
a (x, y) is the truncated adaptive threshold, and τmax and τmin are the maximum

and minimum truncation values, respectively.
The truncated adaptive threshold can slightly improve depth accuracy with a small

extra computational cost compared with a fixed threshold. Nevertheless, the pixel
deviation histogram shown in Section 2.3.2 indicates that a vote threshold (except too
small value since it will exclude most pixels) under a critical value should in general
work well to distinguish correct and incorrect disparities. Adapting the threshold to
each pixel provides more contextual information about the light field image in question
and can bring about some performance improvement. This is an advantage of the
proposed OAVC, since it does not need to carefully preset a threshold for different
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light field images. A detailed comparison of the effect of the vote threshold on depth
accuracy will be presented in Section 2.5.3.

2.4.3 Refinement

A refinement method can further smooth the estimated depth and reduce noise. The
initial depth estimates using the proposed method are clean and sharp in most regions.
This means that the proposed method does not need complex refinement methods like
the MRF or the graph cut [12]. The main noise in the initial depth estimates is usually
caused by draw errors. Most of the draw errors are removed by the distinguishing
cost in the OAVC. But the distinguishing cost would not work, when pixels are in
completely texture-less regions or when the chosen threshold excludes all refocused
pixels.

The noise in the initial depth estimates generated by the OAVC can be easily re-
moved by a weighted median filter (WMF). The WMF can run efficiently with a com-
putational complexity that is linear to the kernel size [34]. Fig. 2.8 contrasts the ini-
tial depth estimates with their refined counterparts. As can be observed from the fig-
ure, the unreliable estimates are removed by the WMF, which yields a smoother and
sharper final depth map. The draw errors in the flowerpot are completely filtered out,
and the spire becomes more distinct.

2.5 Experimental Results

We conduct extensive experiments to show the superiority of the proposed method in
terms of depth estimation accuracy and computational efficiency. Both objective and
subjective comparative results will be presented. The hardware environment is Intel i7
2.4GHz CPU with 12 GB RAM. The implementation of the proposed OAVC computes
one disparity cost of one sub-aperture image in every inner loop. This strategy can
greatly reduce memory usage compared with the method of processing the whole light
field image for every possible disparity. The datasets in our experiments include HCI
Blender [33], 4D Light Field Benchmark [47], Inria Dense and Sparse [45] and real-
world Stanford Lytro Light Field Archive [48].

We compare our method with recent proposed methods including occlusion-aware
depth estimation (LF_OCC) [14], [30], constrained angular entropy cost (CAE) [13],
spinning parallelogram operator (SPO) [49], robust pseudo random field (RPRF) [50]
and partially occluded border region (POBR) [32]. Three deep learning-based methods,
i.e., EPI network (Epinet) [40], flexible subset of dense and sparse (FSDS) [45] and light
field attention network (LFattNet) [51], are also included in the comparisons. These



28 Chapter 2. Occlusion-Aware Vote Cost for Light Field Depth Estimation

Initial Refined Ground truth

Figure 2.8: Effectiveness of the initial depth refined by the weighted median filter.

methods are chosen because they are published in reputable journals and conferences,
and their source codes are available. Although there are some high-performing meth-
ods on the 4D Light Field Benchmark website, they lack implementation details and
give no references. Besides, these methods seem to be learning-based and they may
suffer from the generalization problem to some extent. They may not be as flexible as
the proposed OAVC in dealing with large ranges of disparity values, as discussed in
Section 2.5.1.

We use the mean squared error (MSE), BadPix [47], scene-specific Backgammon Fat-
tening [47], maximum accuracy [52], and surface normal accuracy to evaluate objective
depth accuracy. The performance results of the comparison algorithms except POBR
and FSDS on the 4D Light Field Benchmark [47] are obtained from the benchmark web-
site [53], where masks are applied to evaluate their performance. Since the estimated
disparities of POBR and FSDS were not submitted to the 4D Light Field Benchmark
[47], we use the evaluation tool provided by the benchmark to evaluate the perfor-
mances of the two methods on the Stratified (Backgammon, Pyramids, and Stripes) and
Training (Boxes, Cotton, Dino, and Sideboard) scenes, where the ground truth disparities
of the Stratified and Training scenes are provided by the benchmark. The performances
of POBR and FSDS on the Test (Bedroom, Bicycle, Herbs, and Origami) scenes are not
available because the ground truth disparities are not made publicly available by the
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benchmark. For LFattNet, the results on the Stratified and Training scenes from the 4D
Light Field Benchmark [47], [53] are excluded since these scenes are used as validation
data when training the LFattNet [51]. Lastly, the learning-based methods Epinet and
LFattNet are not applicable to sparse light field images because the two methods are
designed for dense light field images.

The angular resolution of the light field images for the experiments is 9× 9, and
the numbers of possible disparities are 101 for the dense light field and 201 for the
sparse light field for methods based on disparity planes. We conduct experiments on
both dense and sparse light field images. A dense light field means that the maximum
disparity between adjacent views is usually less than 3.5 pixels, while this value is
around 10 for a sparse light field. The depth accuracy is the results of an adaptive
vote threshold, and the truncation values are τmax = 0.005, τmin = 0.002 for the dense
light field and τmax = 0.01, τmin = 0.002 for the sparse light field. The spatial sampling
interval ∆ε is set to 0.1 for both the dense and sparse light fields. ∆ε = 0.1 seems a
very small sampling interval to obtain ideal local consistency from the central view.
However, this is enough to compute good local consistency for the adaptive threshold
and we do not observe performance improvement when using larger values of ∆ε or
other consistency computing methods with larger sampling areas. This is because a
larger sampling area usually leads to greater local consistency that needs to be carefully
mapped to a value lower than 0.005. Otherwise, the consistency will be truncated to
0.005, resulting in a fixed threshold for the pixel in question. Please see Section 2.5.3
for results using a fixed threshold.

2.5.1 Objective Comparison

As shown in Tables 2.2 and 2.3, the proposed OAVC achieves state-of-the-art depth
accuracy in terms of the overall average MSE and BadPix scores on both the dense
(excluding the Dots scene) and sparse light field datasets. Our method performs con-
sistently well on different scenes except for the noisy Dots scene. The average MSE and
BadPix (0.07) of the OAVC on the 4D Light Field Benchmark are not impressive but
the two metrics excluding the Dots scene are comparably good. The limitation of the
proposed OAVC in dealing with noisy scenes is discussed in Section 2.5.5. Deep learn-
ing methods perform well when the testing data shares a similar distribution with the
training data, but suffer from generalization problems to some extent. For example,
the most recent deep learning method LFattNet generalizes well on the Inria Dense
dataset but performs badly on the HCI Blender dataset. The SPO based on the dispar-
ity planes achieves competitive results in terms of BadPix (0.07) but it runs very slow
as shown in Table 2.7.
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Table 2.2: MSE results of the comparison methods on the dense and sparse light field datasets
(e. D. means excluding Dots, red = best, and blue = second best).

Dataset Scene LF_OC. CAE SPO POBR RPRF Epinet FSDS LFatt. OAVC

Dense datasets, MSE * 100

Buddha 0.91 0.64 0.54 0.52 0.28 0.36 0.40 0.33 0.36
Buddha2 1.18 0.35 1.02 0.43 0.75 6.64 0.20 6.06 1.29

Horse 1.36 0.79 1.37 0.46 0.50 7.35 0.74 6.32 0.53
HCI Medieval 1.15 0.97 0.91 0.59 0.79 2.28 0.61 0.50 0.88

Blender MonaRoom 0.73 0.50 0.55 0.27 0.47 1.33 0.33 0.79 0.44
Papillon 1.00 0.63 0.66 0.59 0.66 6.12 0.46 4.98 0.84
StillLife 4.29 1.24 1.51 3.72 1.09 2.43 0.99 14.1 1.07
Average 1.52 0.73 0.94 0.94 0.65 3.79 0.53 4.72 0.77

Backgammon 22.8 6.07 4.59 32.2 5.58 3.71 12.9 N/A 3.84
Dots 3.19 5.08 5.24 6.65 21.2 1.48 28.4 N/A 16.6

Pyramids 0.08 0.05 0.04 0.07 0.05 0.01 0.02 N/A 0.04
Stripes 7.94 3.56 6.96 4.11 7.90 0.93 2.87 N/A 1.32

Bedroom 0.53 0.23 0.21 N/A 0.26 0.20 N/A 0.37 0.21
4D Bicycle 7.67 5.14 5.57 N/A 5.91 4.60 N/A 3.35 4.89

Light Herbs 23.0 11.7 11.2 N/A 14.1 9.49 N/A 6.61 10.4
Field Origami 2.22 1.78 2.03 N/A 1.94 1.48 N/A 1.73 1.48

Bench. Boxes 9.59 8.42 9.11 10.9 8.55 5.97 9.53 N/A 6.99
Cotton 1.07 1.51 1.31 4.06 0.81 0.20 0.67 N/A 0.60
Dino 0.94 0.38 0.31 0.79 0.49 0.16 0.47 N/A 0.27

Sideboard 2.07 0.88 1.02 1.61 1.34 0.80 1.20 N/A 1.05
Average 6.76 3.73 3.97 7.55 5.68 2.42 7.00 3.01 3.97

Average e. D. 7.08 3.61 3.85 7.68 4.27 2.50 3.95 3.01 2.82

Flying dice 44.9 23.2 17.2 60.7 6.16 22.6 10.8 5.86 5.82
Furniture 4.89 1.23 1.61 3.30 0.67 2.70 0.80 0.71 0.47

Inria Pinenuts blue 3.15 0.60 3.69 0.87 1.26 4.66 0.74 13.8 0.85
Dense Toy friends 1.31 0.77 2.72 0.70 0.61 1.02 0.56 4.25 1.53

Average 13.6 6.45 6.31 16.4 2.18 7.74 3.21 6.15 2.17

Overall average 6.34 3.34 3.45 6.98 3.54 3.80 3.85 4.65 2.68
Overall average e. D. 6.49 3.26 3.37 7.08 2.74 3.90 2.48 4.65 2.05

Sparse dataset, MSE

Electro devices 3.49 0.33 1.80 3.39 0.16 N/A 0.20 N/A 0.19
Inria Furniture 5.26 4.31 1.66 5.49 0.51 N/A 0.42 N/A 0.28

Sparse Lion 3.93 0.45 0.23 2.44 0.16 N/A 0.09 N/A 0.09
Toy bricks 5.54 0.36 1.93 5.46 0.33 N/A 0.57 N/A 0.23
Average 4.56 1.36 1.41 4.20 0.29 N/A 0.32 N/A 0.20



2.5. Experimental Results 31

Table 2.3: BadPix results of the comparison methods on the dense and sparse light field datasets
(e. D. means excluding Dots, red = best, and blue = second best).

Dataset Scene LF_OC. CAE SPO POBR RPRF Epinet FSDS LFatt. OAVC

Dense datasets, BadPix (0.07)

Buddha 5.86 3.29 1.96 4.71 2.24 1.55 2.23 2.02 1.78
Buddha2 14.4 7.08 10.2 10.0 8.67 34.8 3.17 34.2 11.7

Horse 17.7 27.9 6.38 9.13 3.93 16.4 14.5 16.2 5.45
HCI Medieval 23.7 17.1 6.20 3.79 6.60 18.8 5.12 11.7 10.9

Blender MonaRoom 8.70 6.90 6.56 4.98 6.92 10.8 5.85 10.8 6.01
Papillon 26.3 12.8 9.28 6.86 14.3 35.6 5.37 34.8 14.4
StillLife 18.6 14.8 6.61 40.1 7.81 11.4 5.56 11.7 5.97
Average 16.5 12.9 6.74 11.4 7.20 18.5 5.97 17.4 8.03

Backgammon 13.5 3.92 3.78 19.8 3.74 3.50 20.8 N/A 3.12
Dots 9.70 12.4 16.3 23.2 11.0 2.49 53.6 N/A 69.1

Pyramids 1.45 1.68 0.86 0.84 0.88 0.16 0.71 N/A 0.83
Stripes 18.3 7.87 15.0 23.0 17.2 2.46 40.3 N/A 2.90

Bedroom 18.3 5.79 4.86 N/A 8.77 2.30 N/A 2.79 4.92
4D Bicycle 19.0 11.2 10.9 N/A 12.2 9.61 N/A 9.51 12.2

Light Herbs 17.7 9.55 8.26 N/A 8.67 11.0 N/A 5.22 8.73
Field Origami 18.8 10.0 11.7 N/A 13.9 5.81 N/A 4.82 12.6

Bench. Boxes 26.0 17.9 15.9 27.0 23.8 12.3 24.3 N/A 16.1
Cotton 4.74 3.37 2.59 9.75 2.80 0.45 2.36 N/A 2.55
Dino 15.4 4.97 2.18 6.65 5.38 1.21 4.70 N/A 3.94

Sideboard 17.9 9.85 9.30 14.2 11.8 4.46 10.0 N/A 12.4
Average 15.1 8.21 8.47 15.6 10.0 4.65 19.6 5.59 12.5

Average e. D. 15.6 7.82 7.76 14.5 9.92 4.84 14.7 5.59 7.30

Flying dice 41.9 37.9 9.23 54.6 24.0 31.5 20.1 7.95 7.98
Furniture 30.3 20.8 7.07 17.6 8.29 5.05 8.61 3.70 3.53

Inria Pinenuts blue 7.23 24.6 11.7 6.27 3.50 19.0 2.81 2.02 2.13
Dense Toy friends 18.0 19.3 6.38 13.8 11.6 3.22 10.4 1.88 5.30

Average 24.4 25.7 8.59 23.1 11.9 14.7 10.5 3.89 4.73

Overall average 17.1 12.7 7.96 15.6 9.49 10.6 12.7 10.6 9.76
Overall average e. D. 17.4 12.7 7.59 15.2 9.41 11.0 10.4 10.6 7.06

Sparse dataset, BadPix (0.3)

Electro devices 32.3 11.3 8.57 42.2 5.91 N/A 13.4 N/A 4.87
Inria Furniture 46.6 22.5 10.9 66.7 3.59 N/A 14.2 N/A 3.22

Sparse Lion 10.6 11.0 4.05 37.9 0.87 N/A 2.43 N/A 1.05
Toy bricks 63.1 2.95 3.23 51.5 3.88 N/A 11.7 N/A 3.95
Average 38.2 11.9 6.69 49.6 3.56 N/A 10.4 N/A 3.27
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Table 2.4: Backgammon Fattening results of the comparison methods. (red = best, blue = second
best).

LF_OCC CAE SPO POBR RPRF Epinet FSDS OAVC

21.70 7.61 5.74 32.33 6.52 4.69 13.36 4.22

Table 2.5: Q25 results of the comparison methods (red = best and blue = second best).

Type Dataset LF_OCC CAE SPO POBR RPRF Epinet FSDS LFattNet OAVC

4D L. F. B. 1.86 0.66 0.89 1.70 1.09 0.31 0.80 0.14 0.90
Dense Inria Dense 2.43 2.33 1.23 2.62 1.10 0.57 0.56 0.16 0.90

Overall average 2.00 1.07 0.97 2.01 1.09 0.38 0.72 0.15 0.90

Sparse Inria Sparse 7.68 8.05 1.68 21.3 2.14 N/A 1.85 N/A 1.54

In the Inria Sparse dataset, adjacent sub-aperture images change significantly thanks
to the large disparity. The problem of occlusion becomes more serious compared with
the case of the dense light field, which brings about difficulty for depth estimation. As
shown in Tables 2.2 and 2.3, the MSE and BadPix (0.3) of the sparse light field is much
higher than that of the dense light field. The accuracy margin among different meth-
ods becomes greater compared with the case of the dense light field. Specifically, the
OAVC, RPRF, and FSDS perform well on the sparse light field. The RPRF focuses more
on post-refinement such that it can adapt to a variety of disparity ranges. The FSDS
is based on a convolutional neural network, which is designed for optical flow esti-
mation with large pixel motion [44]. The FSDS is naturally suited for the sparse light
field, which is why it needs to upsample input images when dealing with the dense
light field. The proposed OAVC, which focuses on data cost, is adaptive for various
disparity ranges and achieves state-of-the-art overall depth accuracy on both the dense
and sparse light field datasets.

The results of scene-specific Backgammon Fattening [47] demonstrate the superior-
ity of the proposed OAVC in handling occlusion. The Backgammon Fattening metric
measures the fraction of correctly estimated pixels in the background that are close to
the foreground, which is designed to evaluate the performance of occlusion handling.
It can be observed from Table 2.4 that the proposed OAVC performs better than the
comparison non-learning and learning methods.

The proposed OAVC also achieves good performance in terms of maximum accu-
racy. The maximum accuracy is measured by Q25 (multiplied by 100) which is defined
as the maximum absolute error of the best 25% disparity estimates of a scene [52],
[53]. Three deep learning methods, Epinet, FSDS, and LFattNet achieve better results
in terms of the overall average Q25 on the dense light field datasets as observed from
Table 2.5. The overall average Q25 performance of the proposed OAVC is the best
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among non-learning methods and comparable with learning-based methods on the
dense light field datasets. Besides, our method performs better than all comparison
methods on the sparse light field dataset.

2.5.2 Subjective Comparison

We conduct a subjective comparison of the comparative methods in an effort to demon-
strate the superiority of the proposed OAVC. Fig. 2.9 compares the estimated depth on
synthetic datasets. The CAE yields a good estimated depth map on the scene of Still-
Life, but it generates a lot of artifacts on the sparse scene of Furniture. The SPO faces a
similar problem. The POBR always produces blurry edges on these scenes, especially
on the sparse scene. The learning-based method Epinet produces the worst estimate
on the scene StillLife with unexpected artifacts appearing on the pear. This indicates
that learning-based methods are unreliable when there are not enough training data or
the distributions of the training and testing data are different. Another learning-based
method FSDS produces very smooth estimates on the sparse scene of Furniture but
some details are lost. The RPRF generates very close results to the proposed OAVC.
However, the local details of the estimated depth yielded by the proposed OAVC are
better than those of the RPRF on both dense and sparse scenes.

In Fig. 2.10, we also compare the above methods on Stanford real-world light field
images [48] captured by Lytro Illum. The RPRF generates comparably good results
on synthetic datasets but loses too many local details on real-world light field images.
The other methods face similar problems in their estimates on the synthetic datasets.
Compared with existing methods, the proposed OAVC generates sharper and cleaner
depth estimates on real-world light field images.

2.5.3 Effect of the Vote Threshold

Table 2.6: BadPix performance with varying vote thresholds on the dense (0.07) and sparse (0.3)
light field datasets (red = best, blue = second best).

Fixed thresholds Adaptive
Dataset 0.001 0.002 0.003 0.004 0.005 0.006 0.007 tτ

a

HCI Blender [33] 18.6 10.0 9.36 10.8 8.34 8.39 8.56 8.03
4D Light Field Benchmark [47] 15.2 7.86 6.70 8.06 6.41 6.74 7.28 5.99

Inria Dense [45] 15.8 5.97 4.90 5.78 5.58 6.18 6.46 4.73
Overall average 16.63 8.28 7.34 8.61 6.98 7.26 7.60 6.50

Inria Sparse [45] 6.03 4.62 4.22 4.34 3.88 3.93 4.07 3.27
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StillLife CAE [13] SPO [49] POBR [32]

GT,(-2.71, 2.56) Our OAVC Epinet [40] RPRF [50]

Furniture CAE [13] SPO [49] POBR [32]

GT,(-12.6, 13.6) Our OAVC FSDS [45] RPRF [50]

Figure 2.9: Visual comparison of estimated depth by different methods on dense and sparse
synthetic light field datasets. The numbers after GT in the sub caption are the disparity ranges.
The StillLife and Furniture are from HCI Blender [33] and Inria Sparse [45], respectively.

The proposed OAVC is insensitive to the vote threshold of small values. In this
experiment, the truncation values and the spatial sampling interval for the adaptive
threshold method are the same as introduced at the beginning of Section 2.5. Table 2.6
compares the BadPix scores of a range of fixed vote thresholds and the adaptive vote
threshold on both dense and sparse light field datasets. The results on the 4D Light
Field Benchmark do not include the Test scenes because their corresponding ground
truth disparities are not publicly available, and do not include the Dots scene because
the OAVC is not applicable to the scene with severe noise. As can be observed from
the table, the fixed thresholds can generate good results. The best fixed vote threshold
is 0.005 for both the dense and sparse light fields. The critical value of 0.005 we ob-
served from the pixel deviation histogram on the Additional scenes from 4D Light Field
Benchmark is also appropriate for other dense and sparse light field datasets. This is
convenient for real-world applications, since one does not need to carefully select the
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Central view CAE [13] SPO [49] POBR [32] RPRF [50] FSDS [45] Our OAVC

Figure 2.10: Visual comparison of estimated depth by different methods on Stanford real-world
light field images [48] captured by Lytro Illum.

vote threshold.
The proposed adaptive vote threshold can improve the depth estimation accuracy

for both the dense and sparse light fields. The BadPix scores decrease from 6.98 to
6.50 and 3.88 to 3.27 on the dense and sparse datasets, respectively. The perspectives
of adjacent sub-aperture images vary greatly in the sparse light field. The consistency
of some largely shifted pixels reduces so that the adaptive threshold with larger max-
imum truncation helps in distinguishing between the correctly and incorrectly refo-
cused angular patches. In summary, an adaptive threshold is useful in improving the
depth estimation accuracy with a negligible extra computational complexity.

2.5.4 Computation Time

The proposed method runs very fast thanks to the efficiency of the OAVC and the fast
weighted median filter [34]. We report on the average run time per light field image
to show the computational advantage of the proposed method. Since the execution
time of the cost volume construction is linearly proportional to the number of possible
disparities, we set this number to 101 for methods based on disparity planes. The
experimental datasets include the 4D Light Field Benchmark and the Inria, where the
input resolution of each light field image is 9× 9× 512× 512× 3, and there are a total
of 20 light field images. The CPU experiments are conducted using the same hardware
specified at the beginning of Section 2.5. We also implement a GPU version of the
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Table 2.7: Average run time in seconds per light field image (red = best and blue = second best).

LF_OC. CAE SPO POBR RPRF FSDS LFatt. Epin. OAVC

CPU 306 780 1504 217 116 N/A 978 72 40
GPU N/A N/A N/A N/A N/A 20 4 0.3 0.19

proposed method to compare with deep learning methods that are usually running on
GPUs. The GPU implementation utilizes specialized texture memory to fetch pixels,
leading to a significant speed improvement compared with its CPU counterpart. The
GPU we use is the Nvidia Tesla V100 with 16 GB RAM. The reported GPU run time
of our method includes the GPU run times of the initial depth estimation (0.18s) and
the weighted median filter (0.01s). The GPU run time of the weighted median filter is
based on the implementation in [54], which is around 0.01s for the same image size of
512× 512 on the Nvidia GeForce GTX Titan X.

The average run time in seconds per light field is shown in Table 2.7. The proposed
method is faster than the comparison methods on both the CPU and GPU. Since the
initial estimate of the OAVC is much better than other costs like the LF_OCC or CAE,
refining the initial estimate by a fast weighted median filter (less than 0.5s in the CPU
in our experiment) can lead to more accurate depth estimation, as opposed to time-
consuming refinement methods such as the MRF in LF_OCC and the graph cut in CAE.
Thanks to hard-wired bilinear interpolation on GPU, our method is faster than three
deep learning methods including FSDS, LFattNet, and Epinet on the GPU. LFattNet
is much slower than the proposed method on the CPU because LFattNet entails 3D
convolution. The CPU time of FSDS is not available since it relies on a GPU compiled
module. Overall, the simplicity of the proposed OAVC underpins the computational
performance on both the CPU and GPU platforms.

2.5.5 Limitations

One limitation of the proposed OAVC is that it does not perform well on scenes where
the Lambertian assumption does not hold, as correctly refocused pixels are not strongly
consistent with the central-view pixel in this situation. This may arise in scenes with
severe noise or non-Lambertian reflectance. For instance, for the noisy Dots scene in Ta-
ble 2.2, the performances of the OAVC with the adaptive threshold are 16.6 (MSE*100)
and 69.1 (BadPix(0.07)), which are not impressive as opposed to the comparison al-
gorithms. The OAVC with the fixed threshold of one degrades to the defocus cost
and achieves better results (MSE 6.10 and BadPix 22.3) than those using the adaptive
threshold.
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Table 2.8: Surface normal accuracy of the comparison methods on the 4D Light Field Bench-
mark (red = best and blue = second best).

Metric LF_OCC CAE SPO POBR RPRF Epinet FSDS LFattNet OAVC

MAE Con. Sur. 45.5 40.5 39.5 31.0 49.6 15.7 15.0 12.0 44.3
MAE Planes 33.6 34.0 30.4 19.7 40.5 18.4 5.75 8.08 37.3

The proposed OAVC is also not good at reconstructing continuous and planar sur-
faces. We report on the surface normal accuracy measured by the median angular error
(MAE) in smooth non-planar (continuous surfaces) and planar regions. The results are
directly retrieved from the 4D Light Field Benchmark website. As shown in Table 2.8,
like the other traditional methods, the proposed OAVC does not perform well in terms
of the MAE continuous surfaces and MAE planes on the 4D Light Field Benchmark,
whereas the learning-based methods show advantages in these two measures. How-
ever, the MAEs are evaluated on continuous and planar surfaces disregarding occlu-
sion boundaries, which is not the scenarios the proposed OAVC is designed for.

2.6 Conclusion

We proposed a novel occlusion-aware vote cost to accurately estimate depth from light
field images. We analyzed the consistency in refocused angular patches and found
that the consistency in unoccluded regions with correct refocusing is higher than that
with incorrect refocusing. A quantitative analysis of the consistency by use of the pixel
deviation histogram showed that refocused pixels with large pixel deviations (caused
by occlusion or incorrect refocusing) have a negative effect on depth estimation. Based
on these observations, we proposed the vote cost that separates refocused pixels by use
of a threshold and utilizes the number of the separated pixels as an indicator of correct
disparity estimation. A distinguishing cost was also proposed to deal with the scenario
of an identical basic vote cost. Besides, we introduced an adaptive threshold method to
adaptively determine the vote threshold based on local contextual information in the
central spatial image. Without any explicit occlusion handling, the proposed vote cost
can inherently preserve depth edges. Experimental results were presented to show
that the proposed vote cost is capable of achieving the state-of-the-art performance in
terms of depth estimation accuracy and computational speed.





39

Chapter 3

Inference-Reconstruction Variational
Autoencoder for Light Field Image
Reconstruction

In this chapter, we focus on local light field reconstruction aiming at synthesizing novel
views within their neighboring existing views. This task requires not only light field
geometry reconstruction, but also light field appearance reconstruction. An effective
representation to represent the local light field is important for reconstruction qual-
ity. We obtain such representation by latent variable regularization using our pro-
posed inference-reconstruction variational autoencoder. We also propose a viewpoint-
dependent indirect view synthesis method based on adaptive convolution to effec-
tively blend neighboring views to the target novel view.

3.1 Introduction

Light field (LF) imaging provides a novel approach to tackling traditional computer
vision problems, such as depth estimation [30], [37], post-capture refocusing [12], [26],
and image segmentation [12]. The wide applications of the LF have attracted a great
deal of interest in both academia and industry. Much progress has been made and
commercial products are now available in the market for a variety of real-world appli-
cations.

Current commercial LF cameras from Raytrix and Lytro are based on the micro-lens
array. However, these micro-lens array-based cameras suffer from a trade-off between
angular and spatial resolutions due to hardware limitations. Given the fixed resolution
of the sensor plane, increasing the spatial resolution by adding more micro-lens will
decrease the number of pixels that can be used to record the directions of light rays.
Thus, the angular resolution will decrease simultaneously. To mitigate this problem,
a plethora of algorithms have been proposed on super-resolution in both the spatial



40 Chapter 3. Inference-Reconstruction Variational Autoencoder

and angular domains. Methods based on depth or disparity require accurate depth or
disparity estimation, which is usually difficult to obtain in texture-less and occluded
regions [12], [27], [55]. Learning-based methods like convolutional neural networks
show better performance in spatial and angular super-resolution [55]–[59]. However,
there is still great room for improvement for these methods in terms of both perfor-
mance and flexibility.

The variational autoencoder (VAE) has shown to be able to synthesize photo-realistic
novel views but it has not been studied in LF reconstruction. VAE-based network mod-
els usually encode reference views into a low-resolution latent distribution and then
sample from the distribution to generate novel views by a decoder [60], [61]. However,
the VAE tends to generate blurry images that cannot satisfy the performance require-
ment of LF reconstruction. Besides, VAE methods typically generate novel views by
convolutional layers, which is a direct way. Research shows that indirect methods in
video interpolation [62]–[65] and novel view synthesis [66] are easier to train and can
obtain a better performance.

In this chapter, we propose an inference-reconstruction variational autoencoder (IR-
VAE) for accurate and flexible synthesis of novel views from four corner reference
views of an LF image with the goal of reconstructing a dense LF image. The flexibility
here means the proposed method can synthesize novel views at arbitrary viewpoints
within the four input corner views. As illustrated in Fig. 3.1, the proposed IR-VAE
includes an inference network and a reconstruction network. The inference network
encodes reference views and viewpoint conditions into a high-resolution latent vari-
able and then decodes it into a target novel view. The reconstruction network encodes
the reference views and the target novel view into another high-resolution latent vari-
able and then decodes it back to the target novel view. As the input to the reconstruc-
tion network contains the target novel view, it is much easier for the reconstruction
network to find the geometric information between the reference views and the target
novel view. Thus, the reconstruction network has an almost ideal latent variable and
can reconstruct an almost perfect novel view. In the training stage, the inference latent
variable is regularized to the latent variable yielded by the reconstruction network in-
stead of some prior distributions as in conventional VAEs. In this way, the reconstruc-
tion network can provide useful cues to the inference network in the training. Thus,
the proposed IR-VAE is more effective in utilizing the geometric information between
the reference views and the novel view than existing LF reconstruction networks in the
training, where the novel view only serves as a training target to compute loss.

The proposed IR-VAE is similar to the well-known knowledge distillation [67] that
has been widely used in the computer vision field. In knowledge distillation, a large
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network (teacher) can transfer its knowledge to a small network (student) so as to im-
prove the performance of the small network without changing its architecture. The
essential difference between the proposed IR-VAE and the conventional knowledge
distillation is that the reconstruction network (teacher) is much smaller than the infer-
ence network (student), because it is easy for the reconstruction network to recover the
novel view when the input contains that novel view. In this chapter, one can regard
the reconstruction network as the teacher network and the inference network as the
student network. The reconstruction network transfers its knowledge to the inference
network via latent variable regularization. The latent variable in the reconstruction
network can be regarded roughly as an ideal latent variable to synthesize the target
novel view as it contains the information of the target novel view. Thus, regularizing
the inference latent variable to the reconstruction latent variable, instead of some prior
distributions in previous work [60], can improve the quality of the inference latent
variable, and in turn improve the quality of the synthesized target novel view.

We further propose a mean local maximum mean discrepancy (MLMMD) met-
ric to measure the statistic distance between two distributions, which are with high-
resolution variables to contain rich information for precise LF reconstruction. Finally,
we propose a viewpoint-dependent indirect view synthesis method that predicts adap-
tive kernels and bias according to viewpoints and synthesizes novel views in an indi-
rect way of adaptive convolution. The IR-VAE takes concatenated reference views as
input and synthesizes arbitrary novel views between them with the condition of novel
viewpoints. The major contributions of this chapter are three-fold:

The remainder of the chapter is organized as follows. We first briefly review the
related work in Section 3.2. Then we describe the technical details of the proposed
IR-VAE and MLMMD in Section 3.3. Section 3.4 introduces the proposed viewpoint-
dependent indirect view synthesis method and network structures used to implement
the IR-VAE. Section 3.5 presents experimental results and analysis. Finally, we con-
clude this chapter in Section 3.6.

3.2 Related work

The rich information captured by LF cameras provides more approaches to super-
resolution in both the spatial and angular domains. We review the work of LF angular
super-resolution, variational autoencoder, and indirect view synthesis methods which
are related to this chapter.
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3.2.1 Light Field Angular Super-Resolution

Depth image-based view synthesis first estimates the depth of views and then warps
existing views to novel views according to the estimated depth information [12]. The
view quality of depth image-based view synthesis depends highly on estimated depth
maps. However, traditional matching or refocusing-based LF depth estimation meth-
ods require dense LF images to achieve a reliable performance [27], [30]. These meth-
ods do not work well when only sparse LF images are available for LF reconstruction
tasks. Recent research shows that deep learning-based methods usually obtain more
reliable depth maps from LF images but constructing pixel-level depth maps in real-
world LF images remains an open problem.

The first deep learning-based LF view synthesis method was proposed by Kalantari
et al. [55]. The authors extracted disparity features and they utilized a convolutional
neural network (CNN) to predict disparity maps instead of selecting disparity level by
a well-defined cost function [27], [30]. This method achieved better results compared
to traditional depth-based methods. However, the performance of this partial learning
method is implicitly limited by the extracted disparity features. It is well known that
features learned from deep neural networks are generally better than hand-designed
features [68], [69]. For example, Shi et al. utilized learning-based disparity estimation
and achieved better LF reconstruction results [70]. Besides, Gul et al. employed a
residual convolutional block attention module to refine warped images according to
the estimated disparities using a CNN [71]. Jin et al. [72] also proposed a disparity-
based method that is flexible with regards to the positions of the input views.

Mildenhall et al. proposed a local light field fusion (LLFF) method based on multi-
ple plane images (MPIs) to synthesize novel views from images captured in an irreg-
ular grid pattern [16]. LLFF utilizes a 3D convolutional network to predict an MPI for
each existing view. A target novel view can then be rendered by warping and blending
neighboring MPIs according to the poses of the target and existing views. While LLFF
achieves good view synthesis results for LF images with large disparities, it does not
perform well when processing LF images with small disparities, as reported in [70].
Wang et al. proposed a ray transformer method that predicts colors and densities for
volume rendering [17]. The method is flexible with regards to the number of input
views and poses, as well as the poses of the output views. However, it runs slowly
and requires a large amount of training data and computational resources to train the
model.

Yoon et al. designed a deep CNN for realizing the spatial and angular super-
resolution simultaneously [73]. They firstly up-sampled input images through a CNN
and then fed the output to another CNN to synthesize novel views. However, the an-
gular CNN reconstructs 9× 9 LF images from 5× 5 LF images, which means that it can
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only synthesize an intermediate view between two existing views. Thus, it requires a
nearly dense LF image for implementing the angular super-resolution. Some epipolar
plane image (EPI)-based LF reconstruction algorithms also face a similar problem since
they need enough views to form meaningful EPIs. For example, Wu et al. treated LF
angular super-resolution as an EPI reconstruction problem and proposed a deep CNN
to reconstruct a 7× 7 LF image from a 3× 3 LF image [74]. The model in [75] also needs
3× 3 views to reconstruct the LF. In this chapter, we aim at reconstructing the LF from
2× 2 sparse LF images.

Recently, 4D convolutions are popular in the area of LF image reconstruction [56],
[57], [76]. Since the structure of LF images is also four-dimensional, 4D convolutions
are naturally suited to extracting useful information from 4D LF images. The geometric
information within the spatial and angular dimensions can be captured by 4D convo-
lution simultaneously. The method from Wang et al. shows that such 4D inter-twined
information can be disentangled for efficient LF image processing [77]. However, exist-
ing methods based on 4D convolutions are not flexible in synthesizing arbitrary novel
views within existing reference views. In other words, the trained models can only
reconstruct LF images with a fixed angular resolution. In this chapter, we show that
the proposed IR-VAE based on 2D convolutions can achieve a better performance than
existing 4D convolution-based methods and is also more flexible in synthesizing arbi-
trary novel views within reference views.

3.2.2 Variational Autoencoder

The variational autoencoder (VAE) was first proposed to learn the distribution of ob-
served data and to generate novel views from the learned distribution [60]. Recent
advances on the VAE that are related to the work in this chapter include the condi-
tional VAE [78], [79] and InfoVAE with maximum mean discrepancy [80]. However,
the VAE focuses more on generating photo-realistic novel views without the corre-
sponding ground truth, while target novel views in LF reconstruction are determinis-
tic. Existing viewpoint-dependent VAE methods can only synthesize novel views in
low resolutions [61], [81], while LF reconstruction usually needs to perform in com-
parable high resolutions and more complex scenes. Generative adversarial network
(GAN) [82] is also a popular model in generating images. The motivation of the pro-
posed framework for LF image reconstruction is that properly regularizing the infer-
ence latent variable can lead to better view synthesis results. Achieving such regular-
ization by minimizing the divergence between two distributions is straightforward in
the framework of the VAE. As a comparison, implementing such regularization in the
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GAN framework is not as straightforward as in the VAE. Therefore, we chose to base
the proposed method for LF image reconstruction on the VAE in lieu of the GAN.

3.2.3 Indirect View Synthesis

Indirect view synthesis methods are popular in tackling the problems of video interpo-
lation [64], [65], [83], [84] and novel view synthesis [66]. These methods share the same
idea as LF reconstruction in the sense of synthesizing novel views from existing views.
Indirect view synthesis uses some indirect variable, e.g., the optical flow or adaptive
kernel, which contains geometric information to warp or blend existing views to novel
views. For example, Jiang et al. used the optical flow to warp existing frames into novel
frames between existing frames. Niklaus et al. utilized adaptive convolution to inter-
polate intermediate frames in a video sequence [64], [83]. This adaptive convolution
shows a good performance in video interpolation, since it combines pixel warping and
neighboring pixel sampling to generate more natural novel views. The challenge of di-
rectly using adaptive convolution to reconstruct the LF reconstruction lies in that it can
only synthesize intermediate novel views from existing reference views. Thus Gao et al.
leveraged adaptive convolution in a recursive manner to reconstruct LF [85], which is
inefficient. In this chapter, we also use adaptive convolution to synthesize novel views
indirectly, but the adaptive kernels are dependent on the novel viewpoints. Thus, ex-
isting views can be blended into arbitrary novel views to reconstruct LF images more
efficiently.

3.3 Inference-Reconstruction Variational Autoencoder

In this section, we first formulate LF reconstruction as a novel view synthesis prob-
lem. Then we describe the proposed inference-reconstruction variational autoencoder
in Section 3.3.2. To enable measurement of the statistic distance between two distribu-
tions in high-resolution latent space, we also propose a new statistic distance measure
dubbed the mean local maximum mean discrepancy, as will be detailed in Section 3.3.3.

3.3.1 Problem Formulation

LF reconstruction can be described as a problem of synthesizing novel views accord-
ing to existing reference views and viewpoints of novel views. We use the function
x(x, y, u, v) ∈ RX×Y×U×V to describe an LF image, where the coordinates x and y rep-
resent focal plane, while the coordinates u and v denote the camera plane [12]. X × Y
is the spatial resolution and U × V is the angular resolution. We refer to a viewpoint
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as a two-dimensional conditional vector as follows

c = {(cu, cv)|cu =
u

U − 1
, cv =

v
V − 1

}

u = {0, 1, ..., U − 1}, v = {0, 1, ..., V − 1}
(3.1)

where cu and cv are normalized angular coordinates. Given a reference sparse LF im-
age xr that includes existing reference views at four corners, we want to synthesize
the novel view xn for any 0 ≤ cu, cv ≤ 1. This chapter mainly studies the problem
of reconstructing a 8× 8 LF image from a 2× 2 LF image, which means that the ref-
erence views xr(x, y, ur, vr) ∈ RX×Y×2×2 are four corner views and the novel views
xn(x, y, un, vn) ∈ RX×Y×8×8 are located within the four corner views. LF reconstruc-
tion thus becomes a problem of inferring novel view xn given the observation of xr and
viewpoint c

(xr, c)→ xn. (3.2)

3.3.2 Framework

We model the conditional probability distribution of xn as a marginal distribution of a
latent variable z

pψ,θ(xn|xr, c) =
∫

pθ(xn|z)pψ(z|xr, c)dz (3.3)

where ψ and θ are parameters of the model. Optimizing this model on training datasets
through maximizing its log-likelihood is usually intractable because of the integration
of the latent variable z. Instead, we adopt the framework of the variational autoen-
coder with condition [78], [79], whose log-likelihood is

log pψ,θ(xn|xr, c) = Eqφ(z|xn,xr,c)

[
log

pψ,θ(xn, z|xr, c)
qφ(z|xn, xr, c)

]
+ Eqφ(z|xn,xr,c)

[
qφ(z|xn, xr, c)

pψ,θ(z|xn, xr, c)

]
= Lψ,θ,φ(xn, xr, c) + DKL

(
qφ(z|xn, xr, c)||pψ,θ(z|xn, xr, c)

)
(3.4)

where the second term is the Kullback-Leibler (KL) divergence between the proposal
distribution qφ(z|xn, xr, c) and the true posterior distribution pψ,θ(z|xn, xr, c). Since the
KL divergence is non-negative, the empirical lower bound (ELBO) [60] Lψ,θ,φ(xn, xr, c)
defines a lower bound of log pψ,θ(xn|xr, c)

Lψ,θ,φ(xn, xr, c) ≤ log pψ,θ(xn|xr, c). (3.5)
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xr Encoder pψ1(r|xr) r

pψ(z|xr, c)

Encoder pψ2(z|r, c)

c

Decoder pξ(xn|z, xr, c) xn,inf

Inference network

(xr, c)

DMLMMD(qφ(z|xn, xr, c)||pψ(z|xr, c))

xn,gt

Inference loss

Encoder qφ(z|xn, xr, c)(xn, xr, c) Decoder pθ(xn|z, xr, c) xn,rec

Reconstruction network

Reconstruction loss

(xr, c)

Figure 3.1: Overall framework of the proposed inference-reconstruction variational autoen-
coder (IR-VAE). The framework includes an inference and a reconstruction network, where
the inference network infers novel view xn from reference view xr and viewpoint c, while the
reconstruction network reconstructs novel view xn given (xn, xr, c). In the inference network,
the encoder pψ(z|xr, c) yields a latent variable that is then used to infer novel view xn,inf by
the decoder pξ(z, xr, c). In the reconstruction network, the latent variable is derived from the
encoder qφ(z|xn, xr, c), and the decoder pθ(xn|z, xr, c) decodes the latent variable into xn,rec. In
the training stage, the statistic distance between pψ(z|xr, c) and qφ(z|xn, xr, c) is minimized by
the proposed mean local maximum mean discrepancy (MLMMD) in an attempt to facilitate the
information flow between pψ(z|xr, c) and xn. Only the inference network is used to synthesize
novel views for reconstructing LF images in the testing stage.

It is easier to optimize the ELBOLψ,θ,φ(xn, xr, c) than the log-likelihood log pψ,θ(xn|xr, c)
by rewritting the ELBO as

Lψ,θ,φ(xn, xr, c) = Eqφ(z|xn,xr,c)[log pθ(xn|z, xr, c)]− DKL(qφ(z|xn, xr, c)||pψ(z|xr, c)).

(3.6)

Optimizing the parameters means maximizing the ELBO or minimizing the negative
ELBO [78].

One problem of this framework is that the training and testing procedures are in-
consistent. In the training stage, the ELBO objective function optimizes the recon-
struction errors between the ground truth and the generated view by the decoder
pθ(xn|z, xr, c) from latent variable z ∼ qφ(z|xn, xr, c), while the same decoder is used
to generate the novel view from latent variable z ∼ pψ(z|xr, c) in the testing stage.
Even though the statistic distance between qφ(z|xn, xr, c) and pψ(z|xr, c) is minimized
by the KL divergence, the network trained by the lower bound in (3.6) is experimen-
tally ineffective when performing inference in the testing stage. Therefore, Sohn et al.
[79] proposed a hybrid training objective function that considers inference accuracy in
the form of Epψ(z|xr,c)[log pθ(xn|z, xr, c)]. By doing this, the network is able to perform
consistent procedures in training and testing.

However, as shown in Fig. 3.2 (a), inferring and reconstructing novel views from
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(xr, c) pψ(z|xr, c) pθ(xn|z, xr, c) xn,inf

(xn, xr, c) qφ(z|xn, xr, c) pθ(xn|z, xr, c) xn,rec

KL divergence Shared decoder

(a) Process in CVAE

(xr, c) pψ(z|xr, c) pξ(xn|z, xr, c) xn,inf

(xn, xr, c) qφ(z|xn, xr, c) pθ(xn|z, xr, c) xn,rec

MLMMD divergence Independent decoder

(b) Process in IR-VAE

Figure 3.2: Process comparison between the conditional variational autoencoder (CVAE) and
the proposed IR-VAE in the context of LF reconstruction. The CVAE uses a shared decoder to
infer and reconstruct the same novel view from two different latent variables. Even though the
KL divergence between the two distributions is minimized, such a process in the CVAE causes
interference in the decoder to output high-resolution LF views. By comparison, the proposed
IR-VAE has two independent decoders that are responsible for inference and reconstruction,
respectively. Consequently, the IR-VAE does not suffer from the aforementioned interference.

different latent variables using the same decoder cause interference in training. The
procedure of inferring a novel view in the CVAE entails encoding (xr, c) to a latent
variable z ∼ pψ(z|xr, c), which is then decocded to the novel view by the decoder
pθ(xn|z, xr, c). The reconstruction follows the same procedure using the same decoder
but a different encoder qφ(z|xn, xr, c) with different input (xn, xr, c). Therefore, the
latent variables used for inferring and reconstructing are different as they are generated
by two distinct encoders with different inputs. The CVAE uses one decoder to decode
these two different latent variables to the same novel view. This will cause interference
for the network since the two latent variables are quite different. Even though the
statistic distance between distributions pψ(z|xr, c) and qφ(z|xn, xr, c) is minimized in
the training, the CVAE is shown to be ineffective for LF reconstruction in practice (see
Section 3.5.4).

To eliminate the aforementioned interference, we propose to use another inde-
pendent decoder pξ(xn|z, xr, c) to generate the novel view from z ∼ pψ(z|xr, c), as
shown in Fig. 3.2 (b), such that each decoder is only responsible for producing the
novel view from their own input latent variables. The proposed framework is dubbed
the inference-reconstruction variational autoencoder (IR-VAE), which is illustrated in
Fig. 3.1. The objective function of the proposed method can be described as

Lψ,θ,φ,ξ(xr, xn, c) =Eqφ(z|xn,xr,c)[log pθ(xn|z, xr, c)] + Epψ(z|xr,c)[log pξ(xn|z, xr, c)]

− DKL(qφ(z|xn, xr, c)||pψ(z|xr, c)).
(3.7)

The proposed framework consists of two distinct networks, each of which includes its
own encoder and decoder. Since the network composed of encoder pψ(z|xr, c) and
decoder pξ(xn|z, xr, c) aims at inferring xn from (xr, c), we refer to it as the inference
network. The network composed of encoder qφ(z|xn, xr, c) and decoder pθ(xn|z, xr, c)
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is termed the reconstruction network, which first encodes (xn, xr, c) to a latent variable
z, and then reconstructs xn from that latent variable. The two networks are both
used to train the network, while only the inference network is resorted to in the test-
ing stage. Besides, the KL divergence DKL(qφ(z|xn, xr, c)||pψ(z|xr, c)) is minimized to
make pψ(z|xr, c) get close to qφ(z|xn, xr, c) because qφ(z|xn, xr, c) contains the informa-
tion of xn which helps accurate reconstruction and inference of xn.

One intuitive approach to deriving (3.7) is to consider the KL divergence as a reg-
ularization term. Instead of regularizing the distribution pψ(z|xr, c) to approach some
prior distributions (typically Gaussian) in VAEs, the KL divergence in (3.7) regularizes
pψ(z|xr, c) to be close to qφ(z|xn, xr, c) as much as possible. Given the strong learning
ability of deep neural networks, the latent variable z ∼ qφ(z|xn, xr, c) can be regarded
as an ideal representation to generate xn. Regularizing the conditional distribution
pψ(z|xr, c) to qφ(z|xn, xr, c) is thus helpful for inferring xn from (xr, c) in the inference
network.

3.3.3 Mean Local Maximum Mean Discrepancy

It has been found that the training ELBO objective in the VAE can cause inaccurate
amortized inference distributions and the model may ignore latent variables to fit data
distributions [80]. The first problem means that the inferred distribution pψ(z|xr, c)
does not approximate the true posterior distribution pψ,θ(z|xn, xr, c) very well, and the
second problem implies that the model fails to learn meaningful latent representations.
To solve the above problems, Zhao et al. [80] proposed a variant of the VAE dubbed In-
foVAE which includes a mutual information maximization term in the objective. The
authors then convert the new objective into a more tractable form and obtain a model
called MMD-VAE using the maximum-mean discrepancy (MMD) [86], [87] as the di-
vergence to measure the statistic distance between two distributions. We thus adopt
the theory of MMD-VAE and introduce weights to each term. Our new objective is

Lθ,φ,ψ,ξ(xn, xr, c) =αEqφ(z|xn,xr,c)[log pθ(xn|z, xr, c)]

+ βEpψ(z|xr,c)[log pξ(xn|z, xr, c)]

− γDMMD(qφ(z|xn, xr, c)||pψ(z|xr, c)).

(3.8)

where α, β and γ are weights to adjust the importance of the corresponding terms.
DMMD is the MMD divergence between distributions p(z) and q(z)

DMMD(p(z)||q(z)) = Ep(z),p(z′)[k(z, z′)]− 2Ep(z),q(z′)[k(z, z′)] + Eq(z),q(z′)[k(z, z′)]

(3.9)
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where k(·, ·) is a positive definite kernel function. DMMD equals 0 if and only if p(z) =
q(z).

The computational complexity of the MMD divergence is the quadratic time of the
resolution of the latent variables. This complexity is not acceptable when the resolution
of latent variables is large. For example, we may utilize the latent variable z ∈ RH×W×C

where H, W, and C are the height, width, and channel. Maintaining a high-resolution
representation is shown to be more accurate for position-sensitive tasks in [88]. In such
a situation, the latent variables have the same H and W as those of input images. The
computational complexity of the MMD on this latent variable is O((HWC)2), which
is significant. For LF reconstruction, a predicted pixel in xn locally depends on the
corresponding part in z. So, we propose the mean local MMD (MLMMD) method
to measure the statistical distance between distributions with high-resolution latent
variables to reduce the computational complexity. The calculation of the MLMMD is
limited to local patches of latent variables

DMLMMD(p(z)||q(z)) = Ezl∈z,z′l∈z′
[
Ep(zl),p(z′l)

[k(zl, z′l)]

−2Ep(zl),q(z′l)
[k(zl, z′l)] + Eq(zl),q(z′l)

[k(zl,z′l)]
] (3.10)

where zl, z′l ∈ RD×E×C are local patches of latent variables z, z′. The values of D, E are
usually far less than those of H, W: D � H, E � W, i.e., D = E = 8. The compu-
tational complexity of the proposed MLMMD is O(H

D
W
E (DEC)2), which allows high-

resolution latent variables. More specifically, the MLMMD is computed in practice as
follows

DMLMMD(p(z)||q(z)) = DE
HW ∑

al∈a,bl∈b

[ 1
M2

M

∑
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M

∑
j=1
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l)

− 1
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M

∑
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N

∑
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l) +
1

N2

N

∑
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N

∑
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k(bi
l, bi

l)
] (3.11)

where {ai}M
i=1 ∼ p(z) and {bi}N

i=1 ∼ q(z) are two sets of samples, and al, bl are local
patches of samples a, b. The kernel function k(·, ·) is chosen to be Gaussian in this
work.

Based on the above descriptions, we provide the training loss of the proposed
method. The expectation in (3.8) can be approximated by Monte Carlo (MC) sampling,
which leads to a loss of mean square error (MSE). However, training the network by
using the MSE tends to generate over-smoothed images, i.e. blurry synthesized views.
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Instead, we replace the MSE with the mean absolute error (MAE), which is defined as

La(xn, xn,gt) =
1
M

M

∑
i=1
|xi

n − xi
n,gt| (3.12)

where M is the batch size in training and xn,gt is the ground truth view of the LF image.
The MAE measures the pixel error between the synthesized view and the ground truth.
Also, we introduce the following perceptual loss to reduce structure dissimilarity

Lp(xn, xn,gt) =
1
M

M

∑
i=1
| f (xi

n)− f (xi
n,gt)| (3.13)

where function f (·) maps the input to conv4_3 features of the ImageNet pre-trained
VGG16 model [89]. The perceptual loss tends to preserve high-quality sharp details
and encourages the network to produce visually pleasing results because features ex-
tracted from the pre-trained model contain information of real-world images [64], [90],
[91]. According to (3.8), the overall loss is a weighted combination of the inference loss,
reconstruction loss, and the MLMMD

L =α
(

La(xn,inf, xn,gt) + ηLp(xn,inf, xn,gt)
)

+ β
(

La(xn,rec, xn,gt) +
η

β
Lp(xn,rec, xn,gt)

)
+ γDMLMMD(qφ(z|xn, xr, c)||pψ(z|xr, c))

(3.14)

where η is a weight to balance between the MAE and the perceptual loss. In this chap-
ter, pixel intensities are normalized to the range of 0 and 1, La is small relative to Lp

so we set η to 0.01. Since we are mainly concerned with the performance of inferring
novel views, α = 1 and β = 0.1 are chosen to focus on optimizing the inference net-
work. η/β is used to avoid too small final weight for Lp(xn,rec, xn,gt). Finally, we use
γ = 10 to enlarge the MLMMD because it is a small value in the z space. These loss
weights are general for various problem settings as their ratios do not change. For
example, the reconstruction loss will always converge quickly to a small value as the
input of the reconstruction network contains the target novel view. The MAE and per-
ceptual losses simultaneously decrease during training. In this chapter, we use the
same loss weights for experiments with both small and large disparities.
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Figure 3.3: Schematic of the indirect view synthesis method. The decoder pξ(xn|z, xr, c) in-
cludes decoder pξ1(k|z) and decoder pξ2(e|z). The former produces the adaptive convolution
kernel k, while the latter yields the compensation bias e, respectively. k is normalized by the
softmax function. Adaptive convolution is then performed and added to compensation bias e
to form the final synthesized novel view xn.

3.4 Encoder and Decoder Structures

In this section, we first present the proposed viewpoint-dependent indirect view syn-
thesis method based on adaptive convolution. Then we describe the network struc-
tures of the encoders and decoders. The training and testing procedures are also given
for a better understanding of the proposed IR-VAE.

3.4.1 Viewpoint-dependent Indirect View Synthesis Method

Novel view synthesis based on the VAE usually outputs the target view through the
last convolutional layer [61], [81]. This way is not effective for LF reconstruction since
the geometric relationship between the reference views and target novel views is easier
to infer than photo-realistic novel views. But this relationship is not explicitly utilized
in the framework when directly outputting novel views from latent variables via con-
volutional layers. Recent research on view synthesis [66] and video interpolation [62],
[65] has shown that indirect novel view synthesis which explicitly utilizes the geo-
metric relationship (in the form of the appearance flow [66] or optical flow [62], [65])
results in faster training and better performance. Therefore, we propose a viewpoint-
dependent indirect view synthesis method cooperating with the IR-VAE framework to
explicitly utilize the geometric relationship.

The indirect method g(·) takes reference views xr and the indirect variable w con-
taining the geometric relationship as inputs, and outputs a novel view as follows

xn = g(xr, w). (3.15)

where w is obtained by a decoder pξ(w|z). The function g(·) should be differentiable
with respect to w such that gradients can be backpropagated to train the network. In
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Figure 3.4: Structure of encoder pψ1(r|xr). The structure is based on the high-resolution net-
work (HRNet) [88] which maintains high-resolution representations through the whole pro-
cess. C denote convolutional block, each of which contains several convolution + ReLU layers
and F is the fusion layer which fuses representations from differents scales. C∗1, C∗2, C∗3 and
C∗4 process their inputs at 1, 1/2, 1/4 and 1/8 scales, respectively.

other words, the following gradients should be tractably computed

∇ξ

[
pξ(xn|z, xr, c)

]
=

∂L
∂g(xr, w)

∂g(xr, w)

∂w
∇ξ

[
pξ(w|z)

]
. (3.16)

The decoder pξ(w|z) is usually implemented by a deep neural network and ξ are the
parameters of the network. Thus, the gradients ∇ξ

[
pξ(w|z)

]
can be easily computed.

The remaining issue is how to choose the indirect function g(·). One choice is to
treat w as the disparity and g(·) is such a warping function that warps xr into xn ac-
cording to disparity w. However, this warping method involves bilinear sampling that
considers only four neighboring pixels. Also, it needs extra mask maps to handle oc-
clusion to blend multiple warped views into the target novel view. Instead, we use
adaptive convolution [64] as function g(·). The adaptive convolution combines the
operations of warping pixels and sampling neighboring pixels into a single operation.
An adaptive convolution layer is different from a conventional convolutional layer.
In an adaptive convolutional layer, each element is assigned a unique kernel, while
kernels are shared for all elements in a conventional convolutional layer. Adaptive
convolution samples M × M pixels, where M is the kernel size. Therefore, adaptive
convolution can utilize more information to produce more realistic views than bilin-
ear interpolation. Besides, the proposed IR-VAE can learn to yield very small kernel
weights for occluded pixels, enabling occlusion handling when using adaptive convo-
lution.

Existing adaptive convolution methods for view synthesis take only two input
views and synthesize intermediate views. Synthesizing dense LF views by use of adap-
tive convolution methods involves running the algorithm in a recursive manner [85].
Instead, in this chapter, the adaptive convolutional kernel k is dependent on the rep-
resentation r and the novel viewpoints c as represented by pξ(k|z), z ∼ pψ(z|r, c). The
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decoder pξ(k|z) is modelled by a CNN. The network can thus learn to generate nec-
essary kernels to predict high-quality novel views according to r and c. The adaptive
kernel k is not only adaptive to different pixels, but also to different novel viewpoints.
Thus, the proposed method is dubbed the viewpoint-dependent indirect view synthe-
sis method.

The result of adaptive convolution may not be good enough due to inaccurate adap-
tive kernels and the limitation of indirect view synthesis. The limitation implies that
target novel pixels are not always reproducible from reference views due to several
factors, e.g., non-Lambertian reflection. We thus introduce a bias map to compensate
for errors in the result of adaptive convolution as the way in [92]. The indirect variable
w thus includes adaptive kernel k and bias e. Fig. 3.3 describes the schematic of the
viewpoint-dependent indirect view synthesis method. Decoders pξ1(k|z) and pξ2(e|z)
produce adaptive kernel k ∈ RX×Y×Ur×Vr×M×M and bias e ∈ RX×Y from the condi-
tional latent variable z ∼ pψ(z|r, c), where X, Y are the spatial height and width, while
Ur, Vr are the angular height and width of the reference sparse LF image xr. As in [93],
we first normalize adaptive kernel by softmax function

k̂(x, y, ur, vr, i, j) =
exp(k(x, y, ur, vr, i, j))

∑Ur
ur ∑Vr

vr ∑M
i ∑M

j exp(k(x, y, ur, vr, i, j))
. (3.17)

One example is reconstructing a 8× 8 LF image from a 2× 2 LF image. The kernel
k is of resolution RX×Y×2×2×15×15 with a kernel size of M = 15 for each view in the
viewpoints within 8× 8. The kernel size of M is chosen according to the maximum
absolute disparity dmax (as both negative and positive disparities exist) between top-
left and top-right reference views

M = 2dmax + 1. (3.18)

A synthesized novel view at viewpoint (un, vn) is obtained from the following adaptive
convolution with bias

xn = g(xr, k, e)

xn(x, y, un, vn) =
Ur

∑
ur

Vr

∑
vr

M

∑
i

M

∑
j

a(xr, k̂) + e(x, y)

a(xr, k̂) = xr(x + i− M
2

,y + j− M
2

, ur, vr)k̂(x, y, ur, vr, i, j).

(3.19)

For a color LF image, e.g., with RGB channels, an adaptive kernel for a certain
pixel is shared in all channels. But a bias has the same number of channels as its cor-
responding pixel. As can be observed from (3.19), the adaptive convolution samples
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Table 3.1: Summary of properties of the encoders and decoders.

Networks Input Output ImplementationCh. Description Ch. Description

pψ1(r|xr) 12 Concatenation of 4
corner reference im-
ages, each image with
3 channels (ch.)

64 Representation HRNet [88]

pψ2(z|r, c) 66 Concatenation of rep-
resentation (64 ch.) and
viewpoint condition (2
ch.)

64 Latent variable RDB [94]

pξ1(k|z) 64 Latent variable z ∼
pψ(z|xr, c)

15×15×4 Adaptive kernel RDB [94]

pξ2(e|z) 64 Latent variable z ∼
pψ(z|xr, c)

3 Adaptive bias RDB [94]

None 17 Concatenation of 4 cor-
ner reference images,
1 target novel image,
and viewpoint condi-
tion

64 Latent variable RDB [94]

pθ1(k|z) 64 Latent variable z ∼
qφ(z|xn, xr, c)

15×15×4 Adaptive kernel RDB [94]

pθ2(e|z) 64 Latent variable z ∼
qφ(z|xn, xr, c)

3 Adaptive bias RDB [94]

many pixels from all reference views to produce a novel pixel. The maximum weight
in an adaptive kernel indicates that its corresponding pixel is the most important pixel
for yielding the novel pixel. Also, the position of the maximum weight relative to
the adaptive convolution center implies the disparity information between the refer-
ence and novel pixels. The weights near the maximum weight are used to sample
corresponding pixels to produce a reliable novel pixel. Adaptive kernels and bias are
predicted from a CNN with the latent variable z as input, where z contains the infor-
mation of reference views and the viewpoint of the novel view. Thus, the adaptive
kernels and bias will adapt to the given viewpoint. If a reference pixel is occluded in
the novel view, the IR-VAE will produce a very small weight for that pixel to alleviate
the occlusion problem.

3.4.2 Encoder and Decoder Structures

In the proposed method, encoder pψ1(r|xr) is the key network that is responsible for
extracting a representation from reference views in LF images. This network is capa-
ble of capturing geometric information from reference views at multiple viewpoints.
Coordinates of pixels recording light rays change in both the horizontal and vertical
directions. It requires a powerful network to accurately estimate and represent the



3.4. Encoder and Decoder Structures 55

complex geometric relationship within LF images. Typical networks for this task usu-
ally encode inputs into a low-resolution representation and recover a high-resolution
representation from the low-resolution one by upsampling [65], [83], [95]. However,
as pointed out in [88], such networks tend to lose details for position-sensitive tasks.
Therefore, we utilize the high-resolution network (HRNet) [88] to capture geometric
information and represent it as a high-resolution representation.

As shown in Fig. 3.4, the HRNet performs multi-scale convolutions in parallel and
always maintains high-resolution representations throughout the full process. In this
way, the HRNet is able to capture a richer and more precise high-resolution represen-
tation for LF reconstruction, where local details are important. The high-resolution
representation r in conjunction with target novel viewpoint condition c is further en-
coded into the latent variable z by encoder pψ2(z|r, c). The latent variable is also a
high-resolution representation. In the framework of the original MMD-VAE, the high-
resolution latent variable is not applicable because of the difficulty of computing the
MMD among high-resolution latent variables. The proposed MLMMD in Section 3.3.3
solves this problem by restricting the computation of the MMD locally, which enables
the proposed IR-VAE framework to work with high-resolution latent variables and
results in precise LF reconstruction.

The other encoders and decoders in both the inference and reconstruction networks
are implemented by the residual dense block (RDB) [94], [96]. The RDB was first pro-
posed in [94] for image denoising. The RDB fuses hierarchical features from all con-
volutional layers by dense connections and local feature fusion, which makes better
use of features from all layers in the RDB. We apply a convolutional layer followed by
the ReLU activation before the RDB to map the input into a feature with an acceptable
channel. The same layer is also adopted after the RDB to map the output channel into
the target channel, which results in the following network

→ Conv + ReLU → RDB→ Conv + ReLU → . (3.20)

In this chapter, the number of input channels of the RDB is 64 and there are 6 convolu-
tional layers in the RDB. This network is used to implement all encoders and decoders
in Table 3.1 except encoder pψ1(r|xr).

To better understand the encoder and decoder structures, we summarize the prop-
erties of these encoders and decoders in Table 3.1, where 2 × 2 reference views are
assumed. The input to encoder pψ1(r|xr) is the concatenation of 2× 2 reference views,
resulting in an input channel of 12. Multiple inputs are concatenated in the channel
dimension to form one input to pψ2(z|r, c) and qφ(z|xn, xr, c). The latent variable has
the same height and width as the input images and its number of channels is set to
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a moderate value of 64. The viewpoint condition c ∈ R2 is expanded to RX×Y×2 to
match the size of r when performing concatenation. The adaptive kernel size is 15× 15
and there are 2× 2 reference views, so the number of the output channel of decoders
pξ1(k|z) and pθ1(k|z) is 15× 15× 4.

3.4.3 Network for Large Disparity

The aforementioned concatenation of reference images and the two-dimensional adap-
tive kernel are suitable for LF image reconstruction with small disparities but not large
disparities. First, the encoder faces difficulty in handling large disparity perception
by its receptive field. Second, large disparities require large adaptive kernels, which
require too much memory. To tackle these challenges, we slightly modify the pre-
processing of the input and the adaptive kernel to make our method more effective for
reconstructing LF images with large disparities. Supposing that the disparity range
between the top-left and top-right views is [−dmax, dmax], we uniformly sample D dis-
parities within the range to form a set of disparities d = {d0, d2, ..., dD−1}. The input
reference images are warped to the top-left view according to the disparity di as follows

xdi
r = xr(x + (ur − u0)di, y + (vr − v0)di, ur, vr) (3.21)

where xdi
r is the warped image, and (u0, v0) indicates the viewpoint of the top-left view.

We set D = 7 and dmax = 50 for the experiment with large disparities, corresponding
to 22 (3× 7 + 1) warped images. The input is a concatenation of the warped images
that have 66 (22× 3) channels. This pre-processing enables the encoder to effectively
deal with the large disparities in the input images.

Second, we use a one-dimensional adaptive kernel instead of a two-dimensional
one to enlarge kernel size. Similar to (3.19), the one-dimensional adaptive convolution
can be expressed as

xn(x, y, un, vn) =
Ur

∑
ur

Vr

∑
vr

M

∑
i

a(xr, k̂) + e(x, y)

a(xr, k̂) = xr(x + dx,y + dy, ur, vr)k̂(x, y, ur, vr, i)

(3.22)

where

dx = (i− M
2
)(un − ur)

dy = (i− M
2
)(vn − vr).

(3.23)
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Algorithm 1: Training procedure
Data: 100 LF images with size X×Y×U ×V from [55]
Input: Initial network parameters ψ, ξ, φ, θ, parameters α, β, η, γ, reference

view index ur, vr, training epoch E, and batch size B
Result: Trained parameters ψ, ξ, φ, θ

1 for i = 0 to E− 1 do
2 xn,gt, xr, c← Sample batch LF images with randomly selected novel

viewpoints
3 begin Inference network
4 z← Encoder pψ(z|xr, c)
5 xn,inf ← Decoder pξ(xn|z, xr, c)
6 end
7 begin Reconstruction network
8 z← Encoder qφ(z|xn, xr, c)
9 xn,rec ← Decoder pθ(xn|z, xr, c)

10 end
11 Computing loss L
12 Backpropagating and updating parameters
13 end

This one-dimensional adaptive convolution weights pixels sampled from the reference
views using M possible disparities.

3.4.4 Training and Testing Procedures

The proposed LF reconstruction network contains CNNs and adaptive convolution,
both of which are differentiable so that the network can be trained end-to-end. During
training, synthesizing all novel views for a large batch of LF images requires a great
deal of memory, which means it is only feasible for a small batch size. However, this is
not necessary since different views in LF are similar, and calculating the errors between
all synthesized views and the ground truth is not informative to train the network.
Instead of synthesizing all views, in each training iteration, we randomly choose a
viewpoint (u, v) and its corresponding ground truth views to train the network. In this
way, the network can process more LF images in each training iteration. The training
procedure of the proposed method is detailed in Algorithm 1.

We describe the testing procedure of the proposed IR-VAE in Algorithm 2. Note
that there is only one forward run for the encoder network pψ1(r|xr) to generate the
representation for a sparse LF image. Each novel view can then be synthesized by
encoder pψ2(z|r, c) and decoder pξ(xn|z, xr, c) with the inputs of the reference views xr,
the representation r and the viewpoint condition c.
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Algorithm 2: Testing procedure
Input: Sparse LF image with size X×Y×Ur ×Vr, trained parameters ψ, ξ, φ, θ
Result: Reconstructed LF image with size X×Y×U ×V

1 xr ← input sparse LF image
2 r← Encoder pψ1(r|xr)
3 for u = 0 to U − 1 do
4 for v = 0 to V − 1 do
5 c← (u/(U − 1), v/(V − 1))
6 z← Encoder pψ2(z|r, c)
7 xn,inf(∗, ∗, u, v)← Decoder pξ(xn|z, xr, c)
8 end
9 end

Table 3.2: Training and testing datasets.

Type Dataset No. of scenes

Training 100 scenes [55] 100

Testing

30 scenes [55] 30
EPFL [97] 118

Reflective [48] 32
Occlusions [48] 51

Inria [98] 36
Microscope [99] 2

3.5 Experimental Results

We evaluate the proposed network on a wide range of real-world and synthetic LF
datasets. For reconstructing LF images with small disparities, we use the 100 scenes
from [55] to train the proposed network and test its performance on multiple LF datasets
including: the 30 testing scenes [55], EPFL [97], Reflective [48], Occlusions [48], Inria
[98], and Microscope [99]. This wide range of testing datasets can comprehensively
demonstrate the performance and robustness of the LF image reconstruction methods.
The number of scenes in each dataset is shown in Table 3.2. LF images captured by
Lytro Illum cameras have an angular resolution of 14 × 14 and a spatial resolution of
376 × 541. Due to the shape of round micro-lens, edge views are usually black and
thus we extract central 8× 8 views for training and testing. The training LF images are
cropped to 64 × 64 × 8 × 8 patches with a stride of 16.

For reconstructing LF images with large disparities, we conduct evaluation on the
Inria synthetic dataset [45]. This dataset contains 53 scenes, each with a spatial reso-
lution of 512× 512 and an angular resolution of 9× 9. The disparity range for these
scenes is [-20, 20] between adjacent views. We use the central 5× 5 views to do the
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experiment of reconstructing 5× 5 views from the 2× 2 corner views. We resize the
images to the spatial resolution of 256× 256 so that the maximum absolute disparity
dmax between top-left and top-right views is 50 pixels. The scenes of Electro devices, Fur-
niture, Lion, and Toy bricks are used as the testing scenes, and the rest 49 scenes serve as
the training scenes. The training LF images are cropped to 192 × 192 × 5 × 5 patches
with a stride of 16.

We adopt the Adam [100] algorithm as our optimization method. The training
batch size is 32 and the epoch number is 100. The learning rate is 1e − 4 with a de-
cay of 0.95 each epoch. The network is implemented on the deep learning framework
Pytorch [101] and we use a GPU module of adaptive convolution based on CUDA to
accelerate the algorithm. We train the network on two Nvidia Tesla V100 GPUs and it
takes around 20 hours to train the network.

The objective quality of synthesized novel views is measured by the peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM) [102] in the RGB color space.
Only synthesized novel views are involved in the objective evaluation. The value of the
SSIM is between 0 and 1 and a higher value indicates higher perceptual quality with
respect to the ground truth. As PSNR and SSIM are pixel-level evaluation metrics,
small variations in some pixels over multiple runs of the reconstruction models lead to
negligible performance deviations. To be consistent with the compared methods that
also neglect deviations, we report the results of single run without deviations. Six latest
learning-based LF reconstruction methods are used for performance comparison, i.e.,
Wang et al. [17], Meng et al. [57], Kalantari et al. [55], Yeung et al. [76], Meng et al. [59],
and Shi et al. [70]. Since the source code of Meng et al. [59] is not available, the results
on Reflective and Occlusions are directly taken from their paper. It is noted that the
other results on 30 scenes, EPFL, and Inria are not reported in [59].

Two additional methods by Jin et al. [72] and Wang et al. [77] experimented on the
Y channel of the YCbCr color space for the task of 2× 2 → 7× 7. To make our results
comparable with those reported in [72], [77], we also conduct experiments on the Y
channel for the task of 2× 2 → 7× 7 using the same training and testing datasets as
in [72], [77]. To demonstrate that the proposed method can synthesize arbitrary novel
views within the four input corner views, we also conduct experiments for the task of
2× 2→ 4× 4 using the same models trained on the task of 2× 2→ 7× 7. The method
from Jin et al. [72] that is flexible with regards to the input views and output angular
resolution is employed for comparison for this task.
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Table 3.3: Objective quality comparison on Lytro LF image datasets for the task of 2× 2→ 8× 8.

30 scenes EPFL Reflective Occlusions Inria Average

PSNR
Wang et al. [17] 34.76 36.09 33.15 30.16 34.99 34.31
Kalantari et al. [55] 38.21 38.70 35.84 31.81 36.03 36.64
Meng et al. [57] 37.77 38.55 36.41 33.21 36.94 36.98
Yeung et al. [76] 39.22 39.57 36.47 32.68 37.22 37.54
Shi et al. [70] 39.45 39.76 36.28 33.98 37.13 37.86
Meng et al. [59] N/A N/A 37.01 33.10 N/A N/A
Ours 40.48 40.56 37.24 34.98 38.41 38.81

SSIM
Wang et al. [17] 0.9490 0.9411 0.9266 0.8845 0.9340 0.9285
Kalantari et al. [55] 0.9736 0.9574 0.9416 0.8945 0.9395 0.9430
Meng et al. [57] 0.9636 0.9520 0.9454 0.9140 0.9426 0.9441
Yeung et al. [76] 0.9773 0.9637 0.9472 0.9061 0.9524 0.9510
Shi et al. [70] 0.9820 0.9703 0.9505 0.9291 0.9563 0.9596
Meng et al. [59] N/A N/A 0.9500 0.9120 N/A N/A
Ours 0.9834 0.9701 0.9550 0.9303 0.9579 0.9607

3.5.1 Objective Results

Results on Lytro Image Datasets

For the task of 2 × 2 → 8 × 8, objective results of different methods show that the
proposed network significantly improves the quality of LF image reconstruction com-
pared with the comparative methods. Table 3.3 gives a detailed objective quality com-
parison of these methods. As can be seen from the table, our proposed method achieves
the best objective quality on all the testing datasets by large margins except the SSIM on
the EPFL dataset. The method proposed by Shi et al. [70] performs slightly better than
the proposed IR-VAE in terms of SSIM on the EPFL dataset. The PSNR improvements
on these datasets are over 1 dB or close to 1 dB compared to the existing state-of-the-
art methods. For instance, the proposed method improves the PSNR from 39.45 dB
to 40.48 dB (1.03 dB improvement) on the 30 scenes from [55] and from 37.22 dB to
38.41 dB (1.19 dB improvement) on the Inria dataset [48]. The average PSNR and SSIM
among all testing LF images largely outperform the compared methods and there is an
average PSNR improvement of 0.95 dB compared with the existing best method [70].
Moreover, the proposed method obtains the best quality on all the five testing datasets
in terms of PSNR, which demonstrates the robustness of the proposed method over a
variety of LF scenes.

We compare our method with two additional state-of-the-art (SOTA) methods [103],
[104], where some of the same benchmark datasets are employed. The method by Yang
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Table 3.4: Objective quality comparison when only reconstructing the Y channel in the YCBCr
color space.

HCI new 30 scenes Occlusions Reflective Average

PSNR, 2× 2→ 7× 7
Yeung et al. [76] 32.30 42.77 38.88 38.33 39.99
Jin et al. [72] 37.14 42.75 38.51 38.35 40.12
Wang et al. [77] 34.70 43.67 39.46 39.11 40.84
Ours 36.30 43.70 40.45 39.81 41.41

SSIM, 2× 2→ 7× 7
Yeung et al. [76] 0.900 0.986 0.980 0.960 0.978
Jin et al. [72] 0.966 0.986 0.979 0.957 0.977
Wang et al. [77] 0.974 0.995 0.991 0.978 0.990
Ours 0.979 0.995 0.992 0.982 0.991

PSNR, 2× 2→ 4× 4
Jin et al. [72] 39.54 43.60 40.50 39.84 41.57
Ours 39.85 44.76 42.42 42.61 43.27

SSIM, 2× 2→ 4× 4
Jin et al. [72] 0.973 0.988 0.985 0.961 0.981
Ours 0.987 0.996 0.995 0.991 0.994

et al. [103] employs 4D convolution and deconvolution layers to exploit the structure
and scene information in LF images. The PSNRs in the RGB space for the task of
2× 2 → 8× 8 are 38.61 dB, 32.90 dB, and 35.15 dB on the 30 scenes, Occlusions, and
Reflective datasets, respectively. These results are all worse than those of the proposed
method (PSNRs: 40.48 dB, 34.98 dB, and 37.24 dB). Wu et al. proposed a spatial-angular
attention network for LF reconstruction [104]. Its results measured by PSNR are 39.98
dB, 33.77 dB, and 37.77 dB on the same three datasets. It should be noted that all
the compared methods are different from the proposed one. We contribute to LF im-
age reconstruction from the perspectives of effective latent variable regularization and
viewpoint-dependent indirect view synthesis.

The proposed IR-VAE achieves the best average PSNR and SSIM results compared
with the SOTA methods [72], [76], [77] on the Y channel of the YCbCr color space for the
task of 2× 2→ 7× 7. As can be observed from Table 3.4, the proposed method achieves
nearly 1 dB improvement (from 39.46 dB to 40.45 dB) on the Occlusions dataset, and 0.7
dB improvement (from 39.11 dB to 39.81 dB) on the Reflective dataset compared with
the existing SOTA method [77]. On the HCI new dataset [47] with large disparities, the
proposed method is worse than the method in [72] but better than the method in [77]
in terms of PSNR. However, the proposed method achieves the best SSIM compared
with the SOTA methods [72], [76], [77] on the HCI new dataset. Overall, the proposed
method improves the existing SOTA average PSNR by 0.57 dB on the Y channel of the
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Table 3.5: Objective quality comparison on the Microscope dataset [99] for the task of 2× 2 →
8× 8.

Method Golgi20x Golgi40x Average
PSNR SSIM PSNR SSIM PSNR SSIM

Wang et al. [17] 20.33 0.7604 16.41 0.6605 18.37 0.7104
Kalantari et al. [55] 17.03 0.7005 11.53 0.5036 14.28 0.6021

Meng et al. [57] 19.22 0.8076 13.81 0.5536 16.51 0.6806
Yeung et al. [76] 20.37 0.8252 16.11 0.6679 18.24 0.7466

Shi et al. [70] 20.13 0.8124 15.84 0.6453 17.99 0.7288
Ours 21.08 0.8512 16.74 0.6800 18.91 0.7656

YCbCr color space.
The results on the Y channel of the YCBCr color space for the task of 2× 2→ 4× 4

demonstrate that the proposed method generalizes well in synthesizing arbitrary novel
views within the four input corner views. As can be observed from Table 3.4, the
proposed IR-VAE significantly outperforms the method from Jin et al. [72] in terms of
the average PSNR and SSIM for the task of 2× 2→ 4× 4.

Results on Microscope Dataset

The proposed IR-VAE and the other compared methods do not perform well enough
on the Microscope dataset [99]. As can be observed from Table 3.5, significant perfor-
mance degradation is seen for all the compared methods when processing microscopic
LF images. The most recent method published in Wang et al. [77] fails to produce
meaningful results and it thus does not appear in Table 3.5. There are two possible
reasons for the poor performances. First, the image quality of this dataset is not very
good. Second, these models are trained on natural images, but the data distributions
of natural images and microscopic images are quite different. The proposed IR-VAE
achieves the best average PSNR and SSIM compared with all the other methods, sug-
gesting a better generalization ability of the proposed method than those compared
methods.

Results on Inria Synthetic Dataset

The objective quality comparison in Table 3.6 shows that the proposed method achieves
good results when reconstructing LF images with large disparities. Only the method
from Wang et al. is used for this comparison as the other compared methods did not
report results on this task. As shown in Table 3.6, the proposed method outperforms
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Table 3.6: Objective quality comparison on Inria synthetic dataset [45] for LF image reconstruc-
tion (2× 2→ 5× 5) with large disparities.

Scene Wang et al. [17] Ours
PSNR SSIM PSNR SSIM

Electro devices 29.10 0.8942 30.07 0.9117
Furniture 29.98 0.8753 30.14 0.8629

Lion 31.63 0.8964 32.06 0.8830
Toy bricks 29.46 0.8782 31.36 0.8881

Average 30.04 0.8860 30.91 0.8864

the method by Wang et al. [17] in terms of the average PSNR and SSIM on the four test-
ing scenes. Besides, the proposed method also runs 36 times faster than the compared
method [17] on the same Nvidia Tesla V100 GPU.

3.5.2 Subjective Results

Fig. 3.5 shows a visual comparison of the error maps of synthesized novel views on
the 5 scenes from the dataset in [55]. The error maps of the synthesized novel views
shown in Fig. 3.5 demonstrate the superiority of the proposed method in synthesizing
high-quality novel views. The error maps of the proposed method have less signif-
icant erroneous pixels compared with the other methods. A subjective comparison
of the synthesized novel views on the Rock scene from the dataset in [55] is given in
Fig. 3.6. As can be observed from the figure, the compared methods fail in synthesizing
photo-realistic local details, while the proposed method successfully produces a visu-
ally appealing result. Specifically, the ghost phenomenon appears in the local detail
of Kalantari et al. [55]. The cars are distorted in the results from Meng et al. [57] and
Yeung et al. [76]. The method from Shi et al. [70] produces a comparable result, but the
details of the leaf are lost. By contrast, our result is sharper and more precise than these
competing methods. This subjective comparison illustrates that our proposed method
can well handle occlusive pixels and small objects.

3.5.3 Runtime and Memory Consumption

We provide detailed comparisons of runtime and memory consumption in Table 3.7.
All reported runtimes are measured on the same Nvidia Tesla V100 GPU when recon-
structing a full angular LF image of spatial resolution 376 × 541. As some methods
divide an LF image into patches in reconstruction, memory consumptions are mea-
sured on the same hardware when reconstructing a full angular LF image of spatial
resolution 128 × 128 without patching. As shown in Table 3.7, our method requires
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(a) (b) (c) (d) (e) (f)

Figure 3.5: Visual comparison of error maps of synthesized novel views. The shown results are
from (a) ground truth, (b) Kalantari et al. [55], (c) Meng et al. [57], (d) Yeung et al. [76], (e) Shi
et al. [70]. The novel views are central views of the corresponding LF images and are also the
most challenging ones in LF reconstruction. These scenes are named Flower1, Flower2, Cars,
Rock, and Seahorse, respectively. The error maps are based upon the square error averaged
over the RGB channels, where pixel intensities are between 0 and 1.

7.5 seconds to reconstruct 8× 8 LF views from 2× 2 views, which is slower than the
methods by Yeung et al. [76] (1.3s) and Meng et al. [57] (5.5s), but faster than the other
compared methods. When considering achieving the SOTA reconstruction quality in
Tables 3.3 and 3.4, the proposed method has the minimum runtime. For example, the
proposed method achieves a significantly better average PSNR than the existing best
method in [77], and runs much faster than it. Besides, the proposed method has the
minimum memory consumption among all the compared methods.

The computational performance of the proposed network stems from its architec-
tural advantage. In the proposed network, the encoder pψ1(r|xr) is a comparable large
network but it only needs to be run once at the resolution of X × Y (spatial resolution
of the input LF image). Each view in the LF image can then be synthesized by the
small encoder pψ2(z|r, c) and the small decoder pξ(xn|z, xr, c) independently based on
the representation from the encoder pψ1(r|xr). This architecture design greatly reduces
the inference time and memory consumption. As a comparison, for example, the net-
work by Jin et al. [72] has a smaller model size than ours, but it needs to run the whole
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(a) Ground truth (b) Kalantari et al. [55] (c) Meng et al. [57]

(d) Yeung et al. [76] (e) Shi et al. [70] (f) Ours

Figure 3.6: Subjective comparison of synthesized novel views for the Rock scene.

synthesis network for each view and refine the full angular LF image by 4D convolu-
tions at the resolution of X × Y×U ×V, resulting in significantly longer runtime and
larger memory consumption than the proposed network, as shown in Table 3.7.

3.5.4 Ablation Study

We study the impact of constituent modules of the proposed IR-VAE on LF recon-
struction quality. Different network architectures use the same encoder and decoder
structures as described in Section 3.4.2. The indirect output method means the pro-
posed viewpoint-dependent indirect view synthesis (VIVS) method, while the direct
output method means directly outputting novel pixels according to viewpoints by the
last convolutional layer. As shown in Table 3.8, the inference-only network without the
proposed VIVS does not perform well in terms of the average PSNR. As a comparison,
the inference-only network in conjunction with the VIVS achieves a significantly bet-
ter reconstruction quality (2.6 dB improvement in terms of the average PSNR) than the
one without the VIVS. This comparison shows that carefully designing the architecture
of the inference network alone cannot lead to good LF reconstruction quality. Also, the
IR-VAE with the direct output method performs poorly. These results demonstrate the
effectiveness of the proposed VIVS method.

The conditional variational autoencoder (CVAE) uses the proposed MMDVAE as
the statistic measure between two distributions as the high-resolution representation is
not applicable to standard MMD. The CVAE with VIVS performs even worse than the
network containing only the inference network. The results of the CVAE validate our
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Table 3.7: Runtime and memory consumption. All runtimes are measured on the same Nvidia
Tesla V100 GPU when reconstructing a full angular LF image of spatial resolution 376×541. As
some methods divide an LF image into patches in reconstruction, memory consumptions are
measured when reconstructing a full angular LF image of spatial resolution 128×128 without
patching.

Task Method Runtime in seconds Memory in GiB

2× 2→ 8× 8

Wang et al. [17] 130 3.51
Kalantari et al. [55] 387 1.11

Meng et al. [57] 5.5 3.21
Yeung et al. [76] 1.3 1.04

Shi et al. [70] 660 10.4
Ours 7.5 0.25

2× 2→ 7× 7
Jin et al. [72] 27 1.42

Wang et al. [77] 14 0.43
Ours 4.9 0.24

2× 2→ 4× 4 Jin et al. [72] 11 1.22
Ours 1.6 0.24

analysis in Section 3.3.2 that inferring and reconstructing novel views from different la-
tent variables by the same decoder causes interference for the network. The proposed
IR-VAE (with VIVS) avoids such interference through the newly designed inference-
reconstruction framework and achieves significantly better reconstruction results than
both the inference network alone and the CVAE. It should be noted that the proposed
IR-VAE only evokes the inference network in testing, whereas the reconstruction net-
work is only executed in training. This means the proposed IR-VAE shares the same
network structure and the forward process with the inference-only network. The fact
that the proposed IR-VAE outstrips the inference-only network demonstrates that a
good latent variable (or a hidden representation) is crucial for LF reconstruction.

3.5.5 Visualization of Viewpoint-dependent Adaptive Kernels

We visualize the predicted adaptive kernels for various novel views to reveal how
the adaptive kernels adapt to the viewpoints of novel views. As shown in Fig. 3.7,
we select a pixel in a top-right reference view and visualize the generated adaptive
kernels used to warp the reference pixel and its neighbors to different novel pixels.
The adaptive kernel at viewpoint (0, 7) is for the reference view itself so that the kernel
has large weights around the central pixel. The values of the weights decrease with
the distance between the reference and novel views, which means the contribution
of this reference view to the novel views gradually diminishes. It is also noted that
the positions of significant weights gradually move away from the central pixel when
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Table 3.8: Ablation study of the proposed method.

Network Output 30 scenes EPFL Reflective Occlusions Inria Average

PSNR
Only Inference Direct 36.35 37.43 34.83 32.83 35.68 35.88
Only Inference Indirect 40.12 40.23 36.90 34.64 38.14 38.48
CVAE Indirect 39.87 40.17 36.91 34.49 38.11 38.40
IR-VAE Direct 36.65 37.63 34.89 33.02 35.90 36.09
IR-VAE Indirect 40.48 40.56 37.24 34.98 38.41 38.81

SSIM
Only Inference Direct 0.9706 0.9569 0.9411 0.9120 0.9429 0.9461
Only Inference Indirect 0.9821 0.9683 0.9531 0.9244 0.9557 0.9581
CVAE Indirect 0.9810 0.9675 0.9521 0.9306 0.9542 0.9584
IR-VAE Direct 0.9622 0.9452 0.9286 0.9015 0.9291 0.9347
IR-VAE Indirect 0.9834 0.9701 0.9550 0.9303 0.9579 0.9607

the distance between the reference view and the novel views grows. This position
shift of the significant weights demonstrates that our model is capable of successfully
capturing the geometric information between the reference and novel views without
requiring the ground truth information.

3.5.6 Limitations

A limitation of the proposed method is that the computational complexity of the pro-
posed IR-VAE is higher than existing fast methods in [57], [76]. As can be observed
from Table 3.3, the proposed IR-VAE runs slower than those by Meng et al. [57] and
Yeung et al. [76]. but faster than other compared methods. However, the reconstruc-
tion quality of the proposed IR-VAE is better than these existing methods. Therefore,
the proposed IR-VAE is useful in the scenario where reconstruction quality is the pri-
ority concern. The proposed method that accepts the four corner views as input is not
as flexible as the method from Jin et al. [72] that can handle the input of arbitrarily
sampled LF views. Combining the method in [72] that explicitly utilizes the viewpoint
relationship between the reference and novel views with our proposed method may
circumvent this limitation, which we will investigate in our future work.
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Figure 3.7: Visualization of viewpoint-dependent adaptive kernels. The left is the process of
synthesizing the novel pixel xn(x, y, 6, 7) by employing adaptive convolution on four reference
views. Pixels at (p, q) ∈ N (x, y) are neighboring pixels of the central pixel at (x, y) which are
applied with adaptive convolution. Adaptive kernel k̂ and bias e depend on the novel view-
point. It should be noted that the reference views xr are with the resolution of X×Y× 2× 2.
So, the maximum angular coordinates for xr are (1, 1). The right shows the adaptive kernels
used to warp the reference pixels xr(p, q, 0, 1) to different novel pixels, where the adaptive ker-
nel k̂(x, y, 0, 1, ∗, ∗) at (6, 7) in the red rectangle is used to produce novel pixel xn(x, y, 6, 7). We
highlight the kernel center in red. The axes give the position of viewpoints. A light intensity
in adaptive kernels means a high adaptive weight. The weights decrease with the distance
between the reference view xr(∗, ∗, 0, 1) and the novel view, indicating that the importance of
xr(∗, ∗, 0, 1) decreases when the novel view moves away from it. The positions of significant
weights also shift according to viewpoints. This means the proposed IR-VAE is capable of
ascertaining the geometric relationship between the reference and novel views.

3.6 Conclusion

We proposed the novel inference-reconstruction variational autoencoder (IR-VAE) to
synthesize novel views for the purpose of reconstructing dense LF images. The pro-
posed IR-VAE framework utilizes the constituent inference and reconstruction net-
works to facilitate information flow between the latent variables and novel views and
eliminate the interference caused by yielding the same novel view from two different
latent variables by the same decoder. Then we proposed the mean local maximum
mean discrepancy (MLMMD) to measure the statistical distance of two distributions
in the latent variable space. This enables richer representations of reference views and
viewpoints by high-resolution latent variables. Finally, we proposed the viewpoint-
dependent indirect view synthesis method that transforms the prediction of raw novel
pixels into adaptive kernels and bias. An ablation study was conducted to show the ef-
fectiveness of our proposed modules. Experimental results were presented to demon-
strate that our model significantly outperforms existing state-of-the-art methods on
both subjective and objective comparisons.
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Chapter 4

Neural Radiance Feature Field for View
Rendering

We can apply the local light field reconstruction method presented in the previous
chapter to render novel view from any position when we have multi-view images that
globally cover the scene. But such rendering only utilizes local captured images. A
global light field reconstruction that leverages all multi-view images can lead to better
reconstruction accuracy and rendering quality. This chapter investigates global light
field reconstruction using neural rendering technique. Again, an effective scene repre-
sentation is the key for reconstruction quality. In this chapter, we present a multiscale
tensor decomposition representation and a rendering equation encoding method to
represent scenes in the feature space, resulting in significantly better view rendering
quality compared with existing state-of-the-art methods.

4.1 Introduction

View rendering aims at synthesizing unrecorded views from multiple captured views
using computer vision techniques. A great deal of effort has been made to solve this
problem in the past few decades [2]. The recently proposed neural radiance field
(NeRF) [7] made a breakthrough in this area by modeling a scene via a multilayer
perceptron (MLP). The NeRF achieves an impressive photo-realistic view synthesis
quality with 6 degrees of freedom for the first time. The NeRF also represents a scene
in a very compact form. That is, only a small number of parameters in the MLP, whose
size is even smaller than the captured images. However, this advantage in model size
comes at the expense of extensive computations. Numerous evaluations of the MLP
are required to render a single pixel, incurring a significant challenge for both training
and testing.

Representing a scene via learnable features is shown to be an effective alternative
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approach for photo-realistic view rendering [22], [23], [105], [106]. Several data struc-
tures are employed to efficiently organize learnable features to achieve compact rep-
resentations. Multiresolution hash encoding (MHE) [22] and tensor decomposition in
TensoRF [23] are two typical works in this direction. MHE organizes learnable features
in multiresolution hash tables. As each hash table corresponds to a distinct grid reso-
lution, a point is thus indexed into different positions of the hash tables to mitigate the
negative effects of hash collisions. However, this structure breaks the local coherence
in nature scenes, even though the spatial hash function in MHE preserves the coher-
ence to some extent. By comparison, TensoRF decomposes a 3D tensor into 2D plane
and 1D line tensors, where the local coherence is largely preserved. However, Ten-
soRF’s decomposition is performed only in a single scale, whereas multiscale methods
are much more desirable for wide-ranging computer vision tasks [107]–[109]. We thus
propose a multiscale tensor decomposition (MTD) method to represent scenes from
coarse to fine scales. We show that the proposed MTD method is able to reconstruct
more accurate scene shapes and appearances, and also converges faster than the single-
scale TensorRF. As a result, the proposed MTD method achieves better view rendering
quality than TensoRF, even with fewer learnable features.

View direction encoding is the key to the success of neural rendering in model-
ing complex view-dependent effects. Frequency (or position encoding) [7] and spher-
ical harmonics [21] are the two mostly used view direction encoding methods. The
encoded feature vector of a view direction is then fed to an MLP to predict a view-
dependent color. This approach models the 5D light field function (3D spatial position
with 2D view direction) [1]. In computer graphics, the light field is usually modeled by
the rendering equation [24], where the outgoing radiance is the interaction result of the
incoming light at a point with a specific material. An accurate solution to the render-
ing equation involves Monte Carlo sampling and integration, which is computation-
ally expensive, especially for the scenario of inverse rendering [110]. In this chapter,
we propose to encode the rendering equation in the feature space in lieu of the color
space using the predicted anisotropic spherical Gaussian mixture. In this way, the fol-
lowing MLP becomes aware of the rendering equation so as to better model complex
view-dependent effects. As we use both neural and learnable feature representations
as well as the rendering equation encoding in the feature space, we dub the proposed
method the neural radiance feature field (NRFF). In summary, we make the following
contributions:

• We propose a novel multiscale tensor decomposition scheme to represent scenes
from coarse to fine scales, enabling better rendering quality and faster conver-
gence with fewer learnable features;
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• In lieu of direct encoding of view directions, we propose to encode the rendering
equation in the feature space to facilitate the modeling of view-dependent effects.

4.2 Related Work

We divide view rendering methods into neural and learnable feature representations
depending on whether extra learnable parameters are used to represent a scene in ad-
dition to weights and biases in neural networks.

4.2.1 Neural Representations

Neural representations mean representing a scene by neural networks, typically MLPs
[7] or transformers [111]. Mildenhall et al. [7] first proposed this idea for view synthesis
in the NeRF and achieved photo-realistic view rendering results. The MLP in the NeRF
is optimized to predict the volume density and the view-dependent appearance of a
3D spatial point observed from a given 2D view direction. Each component in this
5D input is encoded by a set of functions, e.g., sine and cosine, with varying periods
before being fed to the MLP. Such position or frequency encoding is one of the key
factors to NeRF’s success. The input encoding has been further explored in [112] by
a neural tangent kernel and extended in mip-NeRF [20] to achieve anti-aliasing view
rendering. Neural representations have the advantage of representing a scene in a very
compact form. MLPs are also used to predict the light source visibility of a point to
enable relighting [113], [114]. However, these methods are computationally expensive
because numerous evaluations of the networks are needed to render a single pixel.

Encoding view directions is important for neural representations to achieve photo-
realistic view rendering. Except for the aforementioned position encoding, spherical
harmonics are also used to encode view directions with various frequency components
[21]. This approach composed of view direction encoding and the following MLP mod-
eling is the dominant solution in the current neural rendering approaches. Such view
direction encoding methods provide view direction information in various frequen-
cies but neglect the rich information contained in the well-known rendering equation
[24]. In this chapter, instead of encoding view directions, we propose to encode the
rendering equation to facilitate the learning of complex view-dependent effects for the
following MLP.
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4.2.2 Learnable Feature Representations

Learnable features are parameters that are also optimized by gradient descent in ad-
dition to weights and biases in neural networks. Learnable features are usually orga-
nized by the data structures of grids, sparse grids, trees, and hash tables. For a given
input, interpolation is performed to obtain the corresponding features. The interpo-
lated features can be directly interpreted as some properties, e.g., densities or colors,
or optionally fed into neural networks to predict the designed outputs. Compared
with pure neural representations, learnable feature representations are computation-
ally efficient at the expense of memory footprint. As the features are also optimized
for the considered scene, the task of inferring scene properties for the subsequent MLP
is much easier in comparison with predicting from input coordinate encoding. As a
result, with learnable feature representations, small MLPs are able to achieve a com-
petitive rendering quality similar to pure neural representations.

Efficient data structures to arrange learnable features are crucial in terms of both
computational cost and memory consumption. The 3D dense grid is a significant waste
of memory because most of the voxels are empty. Its number of parameters increases
by O(N3). Thus, the 3D dense grid is only practical at low resolution, e.g., N = 160
in [106], limiting its rendering quality. The Octree [115] and sparse 3D grid [105] are
also employed but data structures need to be updated progressively. Because scene
geometry only emerges during training. The recently proposed MHE [22] is a very
compact learnable feature representation but hash collision and the break of spatial
coherence limit its rendering quality. Concurrent tensor decomposition in TensoRF
[23] preserves spatial coherence but is only performed at a single scale. The benefits of
multiscale schemes [107]–[109] studied in the literature inspire us to propose the MTD
scheme to represent scenes at varying scales.

4.3 Method

The proposed NRFF obtains the view-dependent color of a point through two main
steps. For a point x = (x, y, z) sampled from a cast ray r(t) = o + td, where o and
d are the camera center and view direction, respectively, we first compute its feature
vector from the proposed multiscale representation. The feature vector is fed into a
spatial MLP to predict light parameters used to encode the rendering equation. Next,
we apply the proposed rendering equation encoding and then use a directional MLP
to predict the final color.
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Figure 4.1: Multiscale tensor decomposition representation. At each level, a 3D tensor rep-
resentation is decomposed to three sets of plane feature maps and line feature vectors. The
resolution of decomposed tensors increases with the level, enabling scene representation at dif-
ferent scales. The concatenated feature vectors from all levels are used to predict parameters P
by a spatial MLP.

4.3.1 Multiscale Tensor Decomposition

We propose a multiscale tensor decomposition (MTD) scheme to represent a scene from
coarse to fine scales. Similar ideas have been widely used in other computer vision
works in the literature [107]–[109]. We start with a base resolution of Nmin and pro-
gressively increase the level resolution to the maximum resolution of Nmax by a factor
b, in line with the strategy in MHE [22]:

Nl = bNminblc (4.1)

b = exp
(

ln Nmax − ln Nmin

L− 1

)
(4.2)

where Nl is the resolution at level l and L is the number of multiscale levels. Feature
vectors of point x are obtained from the proposed MTD independently at different
levels. As shown in Fig. 4.1, we use the tensor decomposition mechanism [23] that
decomposes a 3D tensor representation into three plane feature maps and three line
feature vectors. We apply linear interpolation (bilinear interpolation for 2D) to the
plane feature map Fl

xy and the feature vector Fl
z using the corresponding decomposed
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Figure 4.2: Visualization of plane feature maps of different resolutions on the ship scene from
the NeRF synthetic dataset [7]. Coarse scene information is represented at low resolutions,
while fine details are of high-resolution representations. Readers are encouraged to zoom in
for a detailed inspection.

coordinates xxy, xz to obtain the following two feature vectors:

fl
xy = Interp2D(Fl

xy, xxy)

fl
z = Interp1D(Fl

z, xz).
(4.3)

The output feature vector at level l is obtained as follows:

fl
xy,z = fl

xy � fl
z (4.4)

where � denotes the element-wise multiplication. Feature vectors from other levels
are obtained similarly. The output feature vectors

[
..., fl

xy,z, fl
xz,y, fl

yz,x, fl+1
xy,z, ...

]
from all

levels are concatenated and then fed into a spatial MLP to predict parameters P, which
will be detailed in Section 4.3.2.

The proposed multiscale scheme brings about three main benefits compared with
the single-scale tensor decomposition in TensoRF [23]. First, it enables better explo-
ration of the local smoothness of nature scenes at varying scales. Coarse-scale repre-
sentations are inherently smooth, while fine-scale representations provide rich local
details. Fig. 4.2 illustrates different levels of information represented in the multiscale
feature maps. It should be noted that the goal of the multiscale scheme here is different
from that of MHE [22]. MHE uses multiresolution mainly for mitigating the negative
effects of hash collisions as points are indexed to different positions in the hash tables at
varying resolutions. Second, the number of feature channels at each scale could be sig-
nificantly smaller than that in the single-scale representation, enabling high-resolution
representations to explore richer details. For example, a multiscale representation with
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16 levels, a maximum resolution of 512, and 4 feature channels has 8.5M parameters,
which are fewer than 13M parameters in a single-scale TensoRF with a resolution of 300
and 48 feature channels. In Section 4.4.3, we show that even with fewer parameters,
the proposed MTD method outperforms the single-scale TensoRF in terms of render-
ing quality. Third, scene geometry appears fast in coarse-scale representations, leading
to faster convergence than the single-scale representation.

4.3.2 Rendering Equation Encoding

A light field can be defined as the radiance at a point in a given direction [1]. It is thus
represented by a 5D function L(x, ωo), where x ∈ R3 is the spatial position and ωo ∈ R2

(spherical coordinate) is the outgoing radiance direction. This 5D light field is the result
of the interaction of the scene shape, material, and lighting, which is usually modeled
by the rendering equation [24] consisting of the diffuse and specular components:

L(ωo; x) = cd + s
∫

Ω
Li(ωi; x)ρs(ωi, ωo; x)(n ·ωi) dωi

= cd + s
∫

Ω
f (ωi, ωo; x, n) dωi (4.5)

where cd indicates the diffuse color and s is the weight of the specular color. Symbol
· indicates the dot product in the Cartesian coordinate system. Li(ωi; x) is the incom-
ing radiance from direction ωi, and ρs(ωi, ωo; x) represents the specular component of
the spatially-varying bidirectional reflectance distribution function (BRDF). For ease
of exposition, we define f as a function describing the outgoing radiance after the ray
interaction. The integral is solved over the hemisphere Ω defined by the normal vector
n at point x. In computer graphics, Li, ρs, n are usually known functions or parameters
that describe scene lighting, material, and shape. An accurate solution to the render-
ing equation is achieved by computationally intensive Monte Carlo estimation in the
color space, e.g., computing the discrete summation by evaluating Li, ρs at sampled
incoming radiance direction ωi for a given outgoing radiance direction ωo.

In the inverse rendering problem, Li, ρs, n are unknown functions or parameters.
The most popular method in the inverse rendering to solve the equation is to treat it as
a function of ωo, and then employ an MLP to directly predict the integral result from
the encoded ωo. However, this simplification neglects the rich information described
in the rendering equation and gives the MLP a complicated function to learn. Recent
studies have also attempted to estimate the unknown properties to achieve relightable
view rendering [114], [116]–[118]. But their rendering quality is inferior to methods
[20]–[23] that focus only on view rendering with fixed lighting conditions. We instead
propose to encode the rendering equation in the feature space and let the MLP predict
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Figure 4.3: Illustration of the proposed rendering equation encoding. The rendering equation
is encoded in the feature space by the learned ASG mixture with predefined orthonormal axes.
The axes are defined by a set of radiance directions uniformly sampled on a unit sphere. Here
only sampled ω on a plane are shown for better visualization. For a sampled ωi, an ASG func-
tion of the reparameterized view direction ωo is employed to determine the feature response
gi. Ei and Si are exponential and smooth terms, respectively, and ∗ denotes multiplication.
Each ASG function is controlled by learned bandwidths λ and µ. The encoded feature vector g
along with a bottleneck feature vector b depending only on the spatial position, are fed into a
directional MLP to predict the specular color cs.

the integrated color from the resultant encoding. By doing this, the following MLP
becomes aware of the rendering equation, making the learning task much easier for
the MLP.

While encoding the rendering equation in the color space has a clear physical mean-
ing, difficulties in three aspects limit its performance. First, the MLP yields the color
parameters in the rendering equation by its final layer. Before the final layer, the MLP
does not even know the outgoing radiance direction. This means the MLP does not
benefit from the rendering equation as its input does not include information rele-
vant to the rendering equation. Instead, the MLP only learns a spatial function of the
position of the input point. Second, using the Monte Carlo integration technique to
solve the rendering equation requires many samples to achieve a satisfactory qual-
ity in the color space, while extensive sampling is expensive in the inverse rendering
problem [110], [114]. In the feature space, a feature vector consisting of a small num-
ber of sampled features could be a comprehensive representation. We show that 128
samples in the feature space are sufficient to render high-quality views. Last, in the
color space, approximating the rendering equation by some basis functions (typically
spherical Gaussians [119], [120] or spherical harmonics [121]) leads to a closed-form
solution so that sampling over ωi can be avoided. However, for the inverse render-
ing problem, the parameters of the basis functions are unknown and predicted from
the MLP. Deriving the final color using the computation (e.g., the product of spherical
harmonic coefficients [121]) of predicted parameters does not provide much additional
useful information for the MLP.
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We thus encode the rendering equation in the feature space by viewing f as a func-
tion of ωo for a sampled ωi. In this perspective, we can apply a feature function to
each sampled ωi. We use the anisotropic spherical Gaussian (ASG) [119] as the feature
function to encode the rendering equation:

c′s(ωo; x) =
N−1

∑
i=0

Gi(ωo; x, [ωi, ωλ
i , ω

µ
i ], [λi, µi], ai) (4.6)

=
N−1

∑
i=0

aiS(ωo; ωi) exp
(
−λi(ωo ·ωλ

i )
2 − µi(ωo ·ωµ

i )
2
)

where c′s(ωo; x) is a feature representation of the specular integral in (4.5); ai is a feature
vector; [ωi, ωλ

i , ω
µ
i ] (lobe, tangent and bi-tangent) are predefined orthonormal axes sat-

isfying ωi ·ωλ
i = ωi ·ωµ

i = ωλ
i ·ω

µ
i = 0; λi, µi > 0 are the bandwidths for ωλ

i , ω
µ
i axes,

controlling the shape of the ASG function; S(ωo; ωi) = max(ωo · ωi, 0) is a smooth
term. Gi is thus viewed as a function of ωo defined at the sampled ωi.

A problem of using ωo = −d to encode the rendering equation is that the ASG
does not match the behavior of physical specular reflection. According to the law of
reflection, the most significant energy from an incoming radiance in direction ωi is
in the area centered at the reflective direction defined to have the same angle to the
surface normal as the incoming radiance, but on the opposite side [122]. However, the
energy centers of the ASG functions are in the sampled incoming radiance directions
ωi. We tackle this problem by reparameterizing the view direction to the opposite
reflective direction, and treat the reparameterized direction as the outgoing radiance
direction ωo:

ωo = 2(d · n)n− d. (4.7)

After reparameterization, the rendering equation encoding matches the physical spec-
ular reflection behavior as ωo aligns with ωi. This reparameterization has also been
shown to be able to simplify view interpolation, as studied in [21], [123].

As depicted in Fig. 4.3, we sample N = 8× 16 lobes on a unit sphere and determine
tangent and bi-tangent axes according to their orthonormal constraint. For a sampled
ωi = (θ, φ) in the spherical coordinate system, we define ωλ

i = (θ + π/2) and rotate
ωλ

i around ωi by π/2 using the quaternion operation to obtain ω
µ
i . Two ASG exam-

ples in Fig. 4.3 show that such ASGs have a strong representation ability to model the
rendering equation in the feature space. One can simply solve (4.6) by computing the
sum of encoded feature vectors. However, this sum reduction significantly reduces the
channels of the feature representation, limiting its representative ability. Instead, we
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form a comprehensive feature vector g by concatenating the encoded feature vectors:

g = [g0, g1, ..., gN−1]. (4.8)

Together with a spatial bottleneck feature vector b, we apply a directional MLP to
predict the specular color cs. The required parameters for the ASG encoding are from
P, which are predicted by the spatial MLP from the spatial feature vector obtained
using (4.4) as aforementioned in Section 4.3.1. In summary, P include the following
parameters: {cd, s, n, b, ai, λi, µi}. Finally, we apply the sigmoid activation function to
the combined color to obtain the view-dependent color:

c = Sigmoid(cd + s� cs). (4.9)

We can also interpret the proposed rendering equation encoding as a more ad-
vanced view direction encoding method. Our rendering equation encoding has two-
fold benefits compared with popular frequency encoding [7] and sphere harmonics
[21]. First, every point now has its own independent encoding functions controlled
by the predicted bandwidths in the ASGs, while the encoding functions are fixed for
all points in existing works. Second, a diverse of ASG functions can be produced to
achieve much richer encoding compared with a few fixed basis encoding functions in
existing methods [7].

4.3.3 Volume Rendering

We use the differentiable volume rendering technique [7] to render a ray according
to predicted densities and view-dependent colors. The scene density and appearance
fields are modeled separately by two MTD representations. For a point xi sampled at
depth ti, its density σi is the result of the softplus activation of the sum of the feature
vectors at all levels. The color of the considered point is obtained by the method de-
scribed in Section 4.3.2. We compute the color composition weights based on densities
as follows:

wi = exp

(
−

i−1

∑
j=0

σj∆j

)
(1− exp(−σi∆i)) (4.10)

where ∆ is the sampling interval. We follow the method in TensoRF [23] that only
computes the colors of sampled points whose weights are larger than a predefined
threshold. This strategy is effective in reducing the computational cost and makes the
appearance representation focus on meaningful points. The rendered pixel color ĉ is a
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weighted sum of the predicted colors:

ĉ =
N−1

∑
i=0

wici. (4.11)

4.3.4 Training loss

The training loss of the proposed method consists of the mean squared error of the ren-
dered pixel value, a regularization term about the predicted surface normals [21], and
a regularization term regarding the density features [23]. Mathematically, the training
loss is written as:

L = (ĉ− cgt) + α
1
N

N−1

∑
i=0

wi max(0, d · ni)
2 + β

1
M

M−1

∑
i=0
|Fi

σ| (4.12)

where cgt is the ground truth color, N represents the number of samples in the cast
ray, and M is the number of features in the density field representation. The normal
regularization term, i.e., the second term in the above equation, penalizes the densities
which decrease along the ray. In other words, it encourages concentrated modeling of
the scene surface. The third term is density regularization defined as the mean absolute
value of all features, which encourages a sparse density field. α, β are loss weights to
balance the impact of the two regularization terms, and we empirically use α = 0.3
and β = 0.0004 for all experiments as in [21], [23].

4.4 Experiments

We implement the proposed method using PyTorch [124]. There are a total of 16 levels
starting with a base resolution of 16 and growing to a maximum resolution of 512. The
number of feature channels is 4 for the appearance field and 2 for the density field.
The sizes of the bottleneck b and feature vector ai are 128 and 2, respectively. The
spatial MLP has 3 layers, while the directional one has 6 layers. All layers contain 256
hidden units and ReLU activation. We optimize the proposed model using the Adam
algorithm [100] with a learning rate of 2e-3 for the MTDs, and 1e-3 for two MLPs. The
learning rates degrade log-linearly to 0.1 times their initial values.

We compare our method with methods based on both neural representations and
learnable feature representations. The compared methods based on neural representa-
tions include NeRF [7], Mip-NeRF [20], and Ref-NeRF [21], while NSVF [115], DVGO
[106], MHE [22], and TensoRF [23] belong to learnable feature representations. We eval-
uate the rendering quality of these methods using the PSNR, SSIM [102], and LPIPS
[91]. Two synthetic datasets, namely the NeRF synthetic [7] and NSVF synthetic [115]
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Table 4.1: Objective performance comparison. # denotes the number of learnable parameters.
The LPIPS are evaluated using the VGG network, while ∗ means results from the Alex network.
Our LPIPS results with 60K training steps evaluated by the Alex network on the three datasets
are 0.016, 0.007, and 0.092, respectively.

NeRF Synthetic [7]
Steps #Features #MLP Batch size PSNR↑ SSIM↑ LPIPS↓

NeRF [7] 300K N/A 1,191K 4096 31.01 0.947 0.081
Mip-NeRF [20] 1M N/A 612K 4096 33.09 0.961 0.043
Ref-NeRF [21] 250K N/A 902K 16384 33.99 0.966 0.038

NSVF [106] 150K 0.32∼3.2M 500K 8192 31.75 0.953 0.047∗

DVGO [106] 30K 49M 22K 8192 31.95 0.957 0.053
MHE [22] 30K 12.6M 10K 4096 33.18 - -
TensoRF [23] 30K 18.6M 36K 4096 33.14 0.963 0.047

Ours 30K 12.8M 549K 4096 34.65 0.975 0.034
Ours 60K 12.8M 549K 4096 35.02 0.977 0.031

NSVF Synthetic [106] Tanks & Temples [125]
Steps PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF [7] 300K 30.81 0.952 0.043∗ 25.78 0.864 0.198∗

NSVF [106] 150K 35.18 0.979 0.015∗ 28.48 0.901 0.155∗

DVGO [106] 30K 35.08 0.975 0.033 28.41 0.911 0.155
TensoRF [23] 30K 36.52 0.982 0.026 28.56 0.920 0.140

Ours 30K 37.76 0.986 0.019 28.87 0.927 0.127
Ours 60K 38.25 0.988 0.017 29.05 0.931 0.119

datasets, and one real-world Tanks & Temples dataset [125] are used for evaluation.
Model details including the number of parameters of learnable features and MLPs,
batch size, and training steps are also presented for comparison.

4.4.1 Objective Results

The proposed method significantly outperforms existing state-of-the-art view synthe-
sis approaches as shown in Table 4.1. Over 1 dB improvement in PSNR has been ob-
served on both the NeRF and NSVF synthetic datasets. Pure MLP-based methods are
compact in representing a scene but are computationally expensive. Besides, they also
require a large number of training steps to converge. For example, Ref-NeRF [21] takes
250K steps to converge when using a large batch size of 16384. Thanks to the pro-
posed MTD and encoding the rendering equation in the feature space, we are able
to use 12.8M learnable features, which is similar to that in MHE [22] and fewer than
those in DVGO [106] and TensoRF [23], to achieve significantly better rendering quality
than those compared methods. The proposed NRFF also outperforms the compared
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Ground truth TensoRF Ours Ground truth TensoRF Ours

Figure 4.4: Subjective comparison of synthesized views. The left three columns show syn-
thesized novel views and the right three columns are their corresponding depth maps. Our
method recovers more accurate texture, specular surface, and geometry than TensoRF [23].
The scenes from top to bottom are chair, materials, and ship from the NeRF synthetic dataset [7].

methods on the Tanks & Temples dataset, demonstrating the efficacy of our method in
representing real-world scenes.

4.4.2 Subjective Results

Subjective comparisons are presented in Fig. 4.4 to show that our method is able to
recover accurate texture, specular surface, and geometry. For fair comparison, we use
the results from TensoRF with decreased features (as detailed in the ablation study in
Section 4.4.3) such that the model has a similar number of parameters in the learnable
features and the MLP as ours. The comparison on scene chair in Fig. 4.4 shows that our
method synthesizes sharper texture than TensoRF. This advantage stems from the high-
resolution representation in our method, which provides rich local details for view
rendering. The rendered balls in the scene materials demonstrate the superiority of
our rendering equation encoding method in modeling the specular surface compared
with the position encoding of view directions employed in TensoRF [23]. Finally, our
multiscale representation enables more accurate geometry reconstruction as shown in
the depth map of the scene ship, resulting in more realistic view synthesis of the water
surface. Besides, it is observed from Fig. 4.5 that our model yields a diverse of ASG
functions to encode the rendering equation and reconstructs accurate light fields of
scenes.
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Figure 4.5: Visualization of the learned ASG functions in the feature space and reconstructed
light fields in the color space on scenes lego and materials. The first and second rows show the
learned ASG functions used to encode the rendering equation at two points. The two points
are on the rays cast from the pixels’ position indicated by the red arrows in the rightmost im-
age patches in the first two rows. The two points have their independent and diverse ASG
functions. Our model seems to produce more complex ASG functions on the specular surface
(second row) to model the complex reflections. The reconstructed light fields and rendered
images at different view directions imply successful modeling of complex view-dependent ef-
fects.

4.4.3 Ablation Study

We investigate the effectiveness of the proposed modules in Table 4.2. We start with
the single-scale TensoRF [23] trained by 30K steps. Other reported results in this table
are from models trained by 60K steps. Simply increasing the MLP’s size in TensoRF
to 10 layers greatly improves the rendering quality. This phenomenon highlights that
both the learnable features and MLP are important for improving the rendering qual-
ity. When we decrease the number of learnable features in TensoRF to the same level
as in our model, there is a small performance degradation (around 0.1 dB). As our
encoding method produces a comparable larger encoding vector, for fair comparison,
our models use MLPs with 9 layers to make the MLPs’ parameters roughly consistent
or fewer than that in TensorRF using 10 layers. Our multiscale representation using
the position encoding (PE) to encode view directions achieves better rendering quality
than the single-scale TensoRF, even with fewer learnable features and a smaller MLP.

Further quality improvement is observed when using our multiscale representation
in conjunction with the proposed rendering equation encoding method (i.e., ours, full).
As can be observed from Table 4.2 that our full model improves the PSNR from 34.58
dB (ours, multiscale, PE) to 35.02 dB, yielding the state-of-the-art rendering quality. We
also experiment on the integrated directional encoding (IDE) [21] using our multiscale
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Table 4.2: Ablation study on the NeRF synthetic dataset [7]. Layers indicate the number of MLP
layers.

#Features #MLP Layers PSNR↑ SSIM↑ LPIPS↓
TensoRF [23] 18.6M 36K 4 33.14 0.963 0.047
TensoRF, large MLP 18.6M 568K 10 34.10 0.970 0.038
TensoRF, decrease features 13.4M 557K 10 33.99 0.969 0.039

Ours, multiscale, PE 12.8M 515K 9 34.58 0.975 0.034
Ours, multiscale, IDE 12.8M 532K 9 34.61 0.974 0.034
Ours, multiscale, color 12.8M 545K 9 33.53 0.965 0.043
Ours, full 12.8M 549K 9 35.02 0.977 0.031

representation as the input coordinate encoding instead of integrated positional en-
coding in mip-NeRF [20]. We do not observe a significant performance improvement
when using the IDE method. The model (ours, multiscale, color) using the same form
of the rendering equation encoding but in the color space performs poorly. This veri-
fies the drawbacks of encoding the rendering equation in the color space, as discussed
in Section 4.3.2.

A detailed performance evaluation over training steps for varying the number of
scale levels in Fig. 4.6 demonstrates the benefits of the proposed MTD scheme. For
each setup, we adjust the number of feature channels and the maximum resolution to
keep roughly the same number of parameters (12.8M) in the learnable features. As
shown in Fig. 4.6, the model with two levels trained by 30K steps already surpasses
that with one level trained by 60K steps, suggesting faster convergence speed of the
multiscale representation than its single-scale counterpart. 1 dB improvement of the
final PSNR is observed (from 31.3 dB with L = 1 to 32.3 dB with L = 2) when we have
the two-level representation. Nearly 1 dB additional performance gain (from 32.3 dB
with L = 2 to 33.2 dB with L = 16) becomes observable when increasing the number
of levels to 16.

4.4.4 Limitations

Our method use a comparable large MLP than popular methods [22], [23] with learn-
able features. Representations with more scale levels introduce extra computations for
interpolation weights compared with single-scale representation. On the NeRF syn-
thetic dataset, training takes 3∼4 hours for each scene on one Nvidia Tesla V100 with
32 GB memory, and rendering an image of resolution 800×800 requires 3∼4 seconds.
The speed of the proposed method is slower than fast methods [22], [106], but faster
than pure MLP methods [7], [20], [21]. We believe thorough optimization could over-
come this limitation to some extent, considering that the hash encoding in [22] is fast



84 Chapter 4. Neural Radiance Feature Field for View Rendering

25k 30k 35k 40k 45k 50k 55k 60k
Training steps

30.0

30.5

31.0

31.5

32.0

32.5

33.0

33.5

Te
sti

ng
 P

SN
R 

(d
B)

L=1, 31.3

L=2, 32.3

L=16, 33.2

31.4

32.4

L=1
L=2
L=4
L=8
L=16

Figure 4.6: Performance comparison over training steps for varying the number of scale levels
on scene ship from [7]. L indicates the number of levels. All models with different levels have
roughly the same number of learnable features. Models with more levels not only converge
faster but yield better final PSNSs.

thanks to the highly efficient implementation even with trilinear interpolation. Be-
sides, in the testing stage, the plane feature maps could also be loaded to GPU texture
memory to leverage hardware accelerated bilinear interpolation to fetch features more
efficiently.

In addition to implementation engineering, reducing the number of samples per
ray is a straightforward approach to improve the training and rendering speeds. This
reduction can be achieved by importance sampling with the aid of a rough density dis-
tribution along the ray inferred by a fast guided network. Ideally, one sample per ray is
possible during rendering using extracted geometry, e.g., depths or pointclouds, when
we have accurate surface reconstruction. Currently, most neural rendering methods
render each pixel independently. Exploring the spatial redundancy in rendered im-
ages to reduce the number of pixels needed to be rendered, for example, by spatial
super-resolution with the help of the information provided in neural rendering, would
also be a promising direction towards real-time rendering.
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4.5 Conclusion

We proposed the novel neural radiance feature field (NRFF) to achieve photo-realistic
view synthesis. The proposed multiscale tensor decomposition scheme represents
scenes from coarse to fine scales, leading to faster convergence and a better rendering
quality than the single-scale tensor decomposition. Our proposed rendering equation
encoding in the feature space provides more knowledge about the outgoing radiance
to the MLP and overcomes the limitations of encoding the rendering equation in the
color space. Extensive experimental results were presented to demonstrate the efficacy
of the proposed NRFF on both the synthetic and real-world datasets.
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Chapter 5

Conclusion

This thesis presented elaborately designed and learning-based algorithms to address
light field reconstructions at different levels. For a computer vision problem such as
the studied light field depth estimation, one may choose to use deep learning without
more consideration. We showed that the simple yet effective vote cost based on careful
analysis of the light field image is able to achieve better or comparable performance
compared with learning-based methods. Most computer vision problems, however,
cannot be solved by a deduced non-learning method. But it is no doubt that priors and
knowledge in the studied areas are the design guideline for learning-based algorithms.
The proposed learning-based algorithms including both feed-forward prediction and
per-scene optimization approaches followed this rule. The idea that the information
between the input existing views and the target novel views could be better utilized
led to the proposed IR-VAE, as presented in Chapter 3. In Chapter 4, we saw the
success of encoding the rendering equation in the feature space, where the rendering
equation is the widely used knowledge to rendering photo-realistic image [24]. Signif-
icant progress has been made in neural rendering from different angles by leveraging
the priors and knowledge in computer graphics [20], [21], [110], [114], [116], [118],
[126]. I believe this trend will continue and more innovative algorithms that merge
the knowledge in computer graphics and neural rendering will appear to reconstruct
real-world light fields.

The multiscale scheme was demonstrated to be effective in light field reconstruc-
tion. In the IR-VAE in Chapter 3, the multiscale encoder enables large context and
depth perception in the stacked input views, which are important to produce a good
underlying representation for the studied position-aware (in terms of pixels) recon-
struction problem. Compared with single-scale representation, many benefits of mul-
tiscale representations have also been observed in the proposed neural radiance fea-
ture field in Chapter 4, including faster convergence, more accurate scene geometry,
and texture reconstructions, even with fewer parameters. More broadly, the multiscale
scheme has also shown to be effective in many computer vision problems [88], [95],
[107], [109]. This thesis indicates that the multiscale scheme is an important backbone
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architecture when dealing with light field reconstruction.
Scene representation is the core consideration for global light field reconstruction

using per-scene optimization. Pure MLP-based representation is compact but requires
large computational resources [7], [20], [21]. Representations using only learnable fea-
tures are able to achieve similar rendering quality compared with pure MLP-based
ones but run significantly faster [105]. Many works combine learnable features and
small MLPs to achieve better rendering quality than representations containing only
learnable features and keep the speed advantage simultaneously [22], [23], [106]. The
proposed neural radiance feature field in Chapter 4 employs learnable features and
comparable large MLPs to achieve significantly better rendering quality than existing
solutions, highlighting the importance of both learnable features and MLPs. In fu-
ture research, novel representations or data structures to organize learnable features
are desired to tackle challenges in unbounded and dynamic scenes. Besides, explicit
representations, e.g., meshes, that are compatible with the rendering pipeline in com-
puter graphics to enable editing and relighting will boost practical applications. At the
current stage, directly integrating mesh representation into the optimization pipeline
faces challenges as complex topology optimization is not efficient. Extracting meshes
from the optimized representation, e.g., density field, shows a performance degrada-
tion in rendering quality. Novel representations dealing with this problem will connect
the domain knowledge in neural rendering and computer graphics to facilitate the cre-
ation of immersive content of real-world scenes.

Future works following this thesis lay emphasis on further improvements of light
field reconstruction quality and speed, and extensions to other related fields. Integrat-
ing the proposed vote cost into a deep learning framework could utilize advantages of
both approaches to obtain better depth estimates. It will be interesting to extend the
idea of the vote cost to other similar problems. For example, we can vote to determine
the best surface normal estimates with the input of many varying distant illuminations
in photometric stereo [127]. We can extend the proposed IR-VAE using more geomet-
ric knowledge, e.g., volume rendering technique, and a global representation to enable
global view renderings. For the studied NRFF, reducing the number of samples per
ray, ideally one sample each ray, will improve both training and rendering speeds.
This could be accomplished by importance sampling with the aid of a guided den-
sity field or back-projecting extracted geometric proxies, e.g., depths and pointclouds.
The proposed rendering equation encoding models outgoing radiance. This approach
could be further decomposed to model lighting and materials independently such that
more complex effects like global illuminations can be better modeled. Lastly, when
dealing with light field video reconstruction, developing a global flow field to warp
the current frame representation to the next frame representation will accelerate video
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reconstruction speed and facilitate the following video compression.
Although we still face many challenges in creating immersive viewing experience

from real-world light fields, I am excited to see that considerable progress has been
made in the recent two years. I believe extraordinary applications will appear when
the tool of reconstructing light fields becomes more mature and accessible.
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