24 research outputs found

    Experimental Tuning of AIFSN and CWmin Parameters to Prioritize Voice over Data Transmission in 802.11e WLAN Networks

    Get PDF
    In this paper we experimentally study the impact of two EDCA parameters, namely AIFSN and CWmin, on a mixed voice/data wireless transmission. In particular we investigate how the tuning of these parameters affects both the voice transmission quality and background data throughput. We predict end-to-end voice transmission quality from time varying transmission impairments using the latest Appendix to the ITU-T E-model. Our experimental results show that the tuning of the EDCA parameters can be used to successfully prioritize voice transmission over data in real 802.11e networks. We also demonstrate that the AIFSN parameter more effectively protects voice calls against background data traffic than CWmin. To the best of our knowledge, this is the first experimental investigation on tuning of MAC layer parameters in a real 802.11e WLAN network from the perspective of end-to-end voice transmission quality and end user satisfaction

    Achievable bandwidth estimation for stations in multi-rate IEEE 802.11 WLAN cells

    Get PDF
    This paper analyzes the effect of multi-rate transmissions in a CSMA wireless LAN environment. Observations in a real testbed showed that bandwidth resources (in Bytes/s) are shared fairly among all stations even though transmissions carried out at lower rates capture the medium for longer periods, which drastically reduces the overall throughput. The intrinsic concept of fairness in a CSMA scheme with multiple rates is quantified by means of a new formulation which is validated through simulations and practical measurements. The algorithm presented provides the maximum achievable bandwidth that can be offered to a given IEEE 802.11 station. Having this information has evident applications in realtime multimedia transmissions over WLANs. The algorithm was also run in commercial APs as a proof of concept, after analyzing its implementation issues

    Available Admission Capacity Estimations in IEEE 802.11 Access Points

    Get PDF
    This technical report is intended to provide extended information about the Available Admission Capacity estimation mechanism for IEEE 802.11 cells previously presented. The original formulation has been revised in this paper avoiding unnecessary approximations. Furthermore, a comprehensive evaluation of the algorithm is also provided

    Analyzing Voice And Video Call Service Performance Over A Local Area Network

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2010Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2010Bu çalışmada, VOIP teknolojisinden ve bu teknolojiyi kablolu ve kablosuz ortamda gerçeklemenin en önemli darboğazları anlatılacaktır. Ayrıca H.323, SIP (Session Initiation Protocol), Megaco ve MGCP gibi yaygın olarak kullanılan ses iletim protokolleri ve H.261, H.263 ve H.264 gibi görüntü iletim protokollerinden bahsedilmiştir. Ses kodek seçimi ve VOIP servis kalitesine etki eden faktörleri anlatılmaktadır. Bu tezde, ses, görüntü ve veri iletişimini aynı anda bünyesinde barındıran gerçek şebekeler simüle edilecektir. Kullanıcılara rastlantısal olarak ses, görüntü ve FTP gibi birtakım uygulamalar atanmıştır. Ayrıca önerilen kablolu şebekeye, kablosuz bir şebeke ilave edilerek sonuçlar incelenecektir. Optimal servis kalitesini sağlamak için seçilen uygun kuyruklama mekanizmaları ve kodek seçimlerini içeren senaryolar incelenecek ve OPNET ile elde edilmiş simülasyon sonuçları tartışılacaktır.In this study, we present a detailed description of the VoIP and also the most common challenges of implementing voice communication into wireline or wireless networks are discussed. Common voice protocols, such as H.323, Session Initiation Protocol (SIP), Megaco, MGCP and video protocols such as H.261, H.263, H.264 are described as well. CODEC selection and factors affecting VoIP Quality of Service are analyzed. We simulate a real network which includes both voice, video and data communication simultaneously. Workstations are randomly assigned to different applications, such as voice, video and FTP. We will also implement a wireless network to our proposed system. The scenarios including selecting appropriate queuing scheme and codec selection are presented and the simulation results with OPNET are drawn.Yüksek LisansM.Sc

    Virtual PCF: Improving VoIP over WLAN performance with legacy clients

    Get PDF
    Abstract Voice over IP (VoIP) is one of the fastest growing applications on the Internet. Concurrently, 802.11 Wireless LANs (WLANs) have become ubiquitous in residential, enterprise, campus and public networks. Currently the majority of traffic on WLANs is data traffic but as more people use wireless networks as their primary access medium, a greater portion of traffic will be real-time traffic such as VoIP traffic. Unfortunately 802.11 networks are designed to handle delay-insensitive, bursty traffic and perform poorly for VoIP streams. Experimental and analytical results have shown that a single 802.11b access point operating at the maximum 11 Mbps rate can support only 5 to 10 VoIP connections simultaneously. Intuitively, an 11 Mbps link should support approximately 85 bi-directional 64Kbps (G.711) streams. The reason for this under-utilization lies primarily in the Distributed Coordination Function (DCF) used by 802.11 MAC layer. The problem can be addressed by using the optional Point Coordination Function (PCF). However PCF is not widely implemented in commodity hardware nor likely to be. There is a similar problem with the proposed 802.11e standard for quality of service. To solve these problems we propose Virtual PCF, a legacy-client compatible solution to increase the number of simultaneous VoIP calls. We implement Virtual PCF, a scheme which employs a variety of techniques to improve both uplink and downlink VoIP QoS. This alleviates delays and packet loss due to DCF contention and doubles the number of supported VoIP sessions

    Wi-Fi Enabled Healthcare

    Get PDF
    Focusing on its recent proliferation in hospital systems, Wi-Fi Enabled Healthcare explains how Wi-Fi is transforming clinical work flows and infusing new life into the types of mobile devices being implemented in hospitals. Drawing on first-hand experiences from one of the largest healthcare systems in the United States, it covers the key areas associated with wireless network design, security, and support. Reporting on cutting-edge developments and emerging standards in Wi-Fi technologies, the book explores security implications for each device type. It covers real-time location services and emerging trends in cloud-based wireless architecture. It also outlines several options and design consideration for employee wireless coverage, voice over wireless (including smart phones), mobile medical devices, and wireless guest services. This book presents authoritative insight into the challenges that exist in adding Wi-Fi within a healthcare setting. It explores several solutions in each space along with design considerations and pros and cons. It also supplies an in-depth look at voice over wireless, mobile medical devices, and wireless guest services. The authors provide readers with the technical knowhow required to ensure their systems provide the reliable, end-to-end communications necessary to surmount today’s challenges and capitalize on new opportunities. The shared experience and lessons learned provide essential guidance for large and small healthcare organizations in the United States and around the world. This book is an ideal reference for network design engineers and high-level hospital executives that are thinking about adding or improving upon Wi-Fi in their hospitals or hospital systems

    Cooperation Strategies for Enhanced Connectivity at Home

    Get PDF
    WHILE AT HOME , USERS MAY EXPERIENCE A POOR I NTERNET SERVICE while being connected to their 802.11 Access Points (APs). The AP is just one component of the Internet Gateway (GW) that generally includes a backhaul connection (ADSL, fiber,etc..) and a router providing a LAN. The root cause of performance degradation may be poor/congested wireless channel between the user and the GW or congested/bandwidth limited backhaul connection. The latter is a serious issue for DSL users that are located far from the central office because the greater the distance the lesser the achievable physical datarate. Furthermore, the GW is one of the few devices in the home that is left always on, resulting in energy waste and electromagnetic pollution increase. This thesis proposes two strategies to enhance Internet connectivity at home by (i) creating a wireless resource sharing scheme through the federation and the coordination of neighboring GWs in order to achieve energy efficiency while avoiding congestion, (ii) exploiting different king of connectivities, i.e., the wired plus the cellular (3G/4G) connections, through the aggregation of the available bandwidth across multiple access technologies. In order to achieve the aforementioned strategies we study and develop: • A viable interference estimation technique for 802.11 BSSes that can be implemented on commodity hardware at the MAC layer, without requiring active measurements, changes in the 802.11 standard, cooperation from the wireless stations (WSs). We extend previous theoretical results on the saturation throughput in order to quantify the impact in term of throughput loss of any kind of interferer. We im- plement and extensively evaluate our estimation technique with a real testbed and with different kind of interferer, achieving always good accuracy. • Two available bandwidth estimation algorithms for 802.11 BSSes that rely only on passive measurements and that account for different kind of interferers on the ISM band. This algorithms can be implemented on commodity hardware, as they require only software modifications. The first algorithm applies to intra-GW while the second one applies to inter-GW available bandwidth estimation. Indeed, we use the first algorithm to compute the metric for assessing the Wi-Fi load of a GW and the second one to compute the metric to decide whether accept incoming WSs from neighboring GWs or not. Note that in the latter case it is assumed that one or more WSs with known traffic profile are requested to relocate from one GW to another one. We evaluate both algorithms with simulation as well as with a real test-bed for different traffic patterns, achieving high precision. • A fully distributed and decentralized inter-access point protocol for federated GWs that allows to dynamically manage the associations of the wireless stations (WSs) in the federated network in order to achieve energy efficiency and offloading con- gested GWs, i.e, we keep a minimum number of GWs ON while avoiding to create congestion and real-time throughput loss. We evaluate this protocol in a federated scenario, using both simulation and a real test-bed, achieving up to 65% of energy saving in the simulated setting. We compare the energy saving achieved by our protocol against a centralized optimal scheme, obtaining close to optimal results. • An application level solution that accelerates slow ADSL connections with the parallel use of cellular (3G/4G) connections. We study the feasibility and the potential performance of this scheme at scale using both extensive throughput measurement of the cellular network and trace driven analysis. We validate our solution by implementing a real test bed and evaluating it “in the wild, at several residential locations of a major European city. We test two applications: Video-on-Demand (VoD) and picture upload, obtaining remarkable throughput increase for both applications at all locations. Our implementation features a multipath scheduler which we compare to other scheduling policies as well as to transport level solution like MTCP, obtaining always better results

    The suitability of wireless technologies for implementing an ebusiness infrastructure in Kenyan Micro and Small Enterprises.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2010.This thesis interrogates the suitability of wireless technologies to implement an eBusiness infrastructure in Micro and Small Enterprises (MSEs) in developing countries, particularly in Kenya. A research model was developed based on literature and information obtained from a pilot study. The proposed model extended Task-Technology Fit with two core constructs from the Unified Theory of Acceptance and Use of Technology. A preliminary study was conducted to refine the proposed model and inclusion of any variables limiting the suitability of wireless technologies as MSEs’ eBusiness infrastructure. The proposed model was empirically tested using data collected using a survey questionnaire and five descriptive case studies on MSEs in Kenya. A proportionate stratified random sampling method within well defined geographic clusters was used to collect data from 570 MSEs. The constructs were assessed for reliability, validity and exploratory factor analysis using SPSS and validated via a confirmatory factor analysis using Structural Equation Modeling with AMOS maximum likelihood method. Most Kenyans live in rural areas of the country with no access to mainstream technologies and a considerable digital divide exists, particularly between the urban and rural areas. This necessitated an intra-country comparison of access and use of wireless technologies in rural and urban MSEs in implementing an eBusiness infrastructure. The results of the intracountry comparisons indicate that while there are indisputable similarities in usage and perception of barriers and benefits of using wireless technologies to implement eBusiness infrastructure between the rural areas and urban centers in Kenya, there are also considerable differences. The relationships among the research model constructs were different depending on whether the sample was rural or urban. However, the differences between rural and urban MSEs’ ratings of the proposed research model constructs were not statistically significant. The study finds that there are evident positive performance impacts on MSEs that use wireless technologies for their eBusiness infrastructure and that the research model fit well with the data collected. The results also indicate that Task-Technology Fit and Usage directly and significantly affect organizational performance while Performance Expectance, Social Influence and Task-Technology Fit were significant determinants of Usage. Among the three proposed barriers of Security Risks, Affordability and Performance Risks, only Performance Risks had a significant negative effect on Usage. Finally, the study’s results, theoretical, managerial and policy implications are discussed and recommendations for future research given

    Using decoys to block SPIT in the IMS

    Get PDF
    Includes bibliographical references (leaves 106-111)In recent years, studies have shown that 80-85% of e-mails sent were spam. Another form of spam that has just surfaced is VoIP (Voice over Internet Telephony) spam. Currently, VoIP has seen an increasing numbers of users due to the cheap rates. With the introduction of the IMS (IP Multimedia Subsystem), the number of VoIP users are expected to increase dramatically. This calls for a cause of concern, as the tools and methods that have been used for blocking email spam may not be suitable for real-time voice calls. In addition, VoIP phones will have URI type addresses, so the same methods that were used to generate automated e-mail spam messages can be employed for unsolicited voice calls. Spammers will always be present to take advantage of and adapt to trends in communication technology. Therefore, it is important that IMS have structures in place to alleviate the problems of spam. Recent solutions proposed to block SPIT (Spam over Internet Telephony) have the following shortcomings: restricting the users to trusted senders, causing delays in voice call set-up, reducing the efficiency of the system by increasing burden on proxies which have to do some form of bayesian or statistical filtering, and requiring dramatic changes in the protocols being used. The proposed decoying system for the IMS fits well with the existing protocol structure, and customers are oblivious of its operation
    corecore