2 research outputs found

    Transient Safe Operating Area (tsoa) For Esd Applications

    Get PDF
    A methodology to obtain design guidelines for gate oxide input pin protection and high voltage output pin protection in Electrostatic Discharge (ESD) time frame is developed through measurements and Technology Computer Aided Design (TCAD). A set of parameters based on transient measurements are used to define Transient Safe Operating Area (TSOA). The parameters are then used to assess effectiveness of protection devices for output and input pins. The methodology for input pins includes establishing ESD design targets under Charged Device Model (CDM) type stress in low voltage MOS inputs. The methodology for output pins includes defining ESD design targets under Human Metal Model (HMM) type stress in high voltage Laterally Diffused MOS (LDMOS) outputs. First, the assessment of standalone LDMOS robustness is performed, followed by establishment of protection design guidelines. Secondly, standalone clamp HMM robustness is evaluated and a prediction methodology for HMM type stress is developed based on standardized testing. Finally, LDMOS and protection clamp parallel protection conditions are identifie

    Modeling and simulation of full-component integrated circuits in transient ESD events

    Get PDF
    This thesis presents a methodology to model and simulate transient electrostatic discharge (ESD) responses of integrated circuits (IC). To obtain valid simulation results, the IC component must be represented by a circuit netlist composed of device models that are valid under the ESD conditions. Models of the nonlinear devices that make up the ESD protection network of the IC must have transient I-V responses calibrated against measurements that emulate ESD events. Interconnects, power distribution networks, and the silicon substrate on the chip die as well as on the IC package must be faithfully constructed to emulate the fact that ESD current flows in a distributed manner across the entire IC component. The resultant equivalent circuit model therefore contains a huge number of nodes and devices, and the simulation runtime may be prohibitively long. Techniques must be devised to make the numerical simulation process more efficient without sacrifice of accuracy. These techniques include reasonable abstraction of the distributed full-component circuit netlist, dynamic piecewise-linear device models, and customized efficient transient circuit simulator. With the simulation streamlining techniques set up properly, comprehensive and predictive transient ESD simulation can be carried out efficiently to investigate the weakest link in the target IC, and the design can be fine-tuned to achieve optimal performance in both functionality and ESD reliability
    corecore