2,502 research outputs found

    Security Games with Information Leakage: Modeling and Computation

    Full text link
    Most models of Stackelberg security games assume that the attacker only knows the defender's mixed strategy, but is not able to observe (even partially) the instantiated pure strategy. Such partial observation of the deployed pure strategy -- an issue we refer to as information leakage -- is a significant concern in practical applications. While previous research on patrolling games has considered the attacker's real-time surveillance, our settings, therefore models and techniques, are fundamentally different. More specifically, after describing the information leakage model, we start with an LP formulation to compute the defender's optimal strategy in the presence of leakage. Perhaps surprisingly, we show that a key subproblem to solve this LP (more precisely, the defender oracle) is NP-hard even for the simplest of security game models. We then approach the problem from three possible directions: efficient algorithms for restricted cases, approximation algorithms, and heuristic algorithms for sampling that improves upon the status quo. Our experiments confirm the necessity of handling information leakage and the advantage of our algorithms

    Improving Performance of Feedback-Based Real-Time Networks using Model Checking and Reinforcement Learning

    Get PDF
    Traditionally, automatic control techniques arose due to need for automation in mechanical systems. These techniques rely on robust mathematical modelling of physical systems with the goal to drive their behaviour to desired set-points. Decades of research have successfully automated, optimized, and ensured safety of a wide variety of mechanical systems. Recent advancement in digital technology has made computers pervasive into every facet of life. As such, there have been many recent attempts to incorporate control techniques into digital technology. This thesis investigates the intersection and co-application of control theory and computer science to evaluate and improve performance of time-critical systems. The thesis applies two different research areas, namely, model checking and reinforcement learning to design and evaluate two unique real-time networks in conjunction with control technologies. The first is a camera surveillance system with the goal of constrained resource allocation to self-adaptive cameras. The second is a dual-delay real-time communication network with the goal of safe packet routing with minimal delays.The camera surveillance system consists of self-adaptive cameras and a centralized manager, in which the cameras capture a stream of images and transmit them to a central manager over a shared constrained communication channel. The event-based manager allocates fractions of the shared bandwidth to all cameras in the network. The thesis provides guarantees on the behaviour of the camera surveillance network through model checking. Disturbances that arise during image capture due to variations in capture scenes are modelled using probabilistic and non-deterministic Markov Decision Processes (MDPs). The different properties of the camera network such as the number of frame drops and bandwidth reallocations are evaluated through formal verification.The second part of the thesis explores packet routing for real-time networks constructed with nodes and directed edges. Each edge in the network consists of two different delays, a worst-case delay that captures high load characteristics, and a typical delay that captures the current network load. Each node in the network takes safe routing decisions by considering delays already encountered and the amount of remaining time. The thesis applies reinforcement learning to route packets through the network with minimal delays while ensuring the total path delay from source to destination does not exceed the pre-determined deadline of the packet. The reinforcement learning algorithm explores new edges to find optimal routing paths while ensuring safety through a simple pre-processing algorithm. The thesis shows that it is possible to apply powerful reinforcement learning techniques to time-critical systems with expert knowledge about the system

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Attentive monitoring of multiple video streams driven by a Bayesian foraging strategy

    Full text link
    In this paper we shall consider the problem of deploying attention to subsets of the video streams for collating the most relevant data and information of interest related to a given task. We formalize this monitoring problem as a foraging problem. We propose a probabilistic framework to model observer's attentive behavior as the behavior of a forager. The forager, moment to moment, focuses its attention on the most informative stream/camera, detects interesting objects or activities, or switches to a more profitable stream. The approach proposed here is suitable to be exploited for multi-stream video summarization. Meanwhile, it can serve as a preliminary step for more sophisticated video surveillance, e.g. activity and behavior analysis. Experimental results achieved on the UCR Videoweb Activities Dataset, a publicly available dataset, are presented to illustrate the utility of the proposed technique.Comment: Accepted to IEEE Transactions on Image Processin

    Dynamic Reconfiguration in Camera Networks: A Short Survey

    Get PDF
    There is a clear trend in camera networks towards enhanced functionality and flexibility, and a fixed static deployment is typically not sufficient to fulfill these increased requirements. Dynamic network reconfiguration helps to optimize the network performance to the currently required specific tasks while considering the available resources. Although several reconfiguration methods have been recently proposed, e.g., for maximizing the global scene coverage or maximizing the image quality of specific targets, there is a lack of a general framework highlighting the key components shared by all these systems. In this paper we propose a reference framework for network reconfiguration and present a short survey of some of the most relevant state-of-the-art works in this field, showing how they can be reformulated in our framework. Finally we discuss the main open research challenges in camera network reconfiguration
    • …
    corecore