
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Improving Performance of Feedback-Based Real-Time Networks using Model Checking
and Reinforcement Learning

Nayak Seetanadi, Gautham

2021

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Nayak Seetanadi, G. (2021). Improving Performance of Feedback-Based Real-Time Networks using Model
Checking and Reinforcement Learning. Department of Automatic Control, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/9fc0ba1a-ba01-4d00-b417-c790e911e4b1

Improving Performance
of Feedback-Based Real-Time Networks using
Model Checking and Reinforcement Learning

Gautham Nayak Seetanadi

Department of Automatic Control

PhD Thesis TFRT-1129
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2021 by Gautham Nayak Seetanadi. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2021

To my parents

Abstract

Traditionally, automatic control techniques arose due to need for automation in
mechanical systems. These techniques rely on robust mathematical modelling
of physical systems with the goal to drive their behaviour to desired set-points.
Decades of research have successfully automated, optimized, and ensured safety
of a wide variety of mechanical systems.

Recent advancement in digital technology has made computers pervasive
into every facet of life. As such, there have been many recent attempts to incor-
porate control techniques into digital technology. This thesis investigates the in-
tersection and co-application of control theory and computer science to evaluate
and improve performance of time-critical systems. The thesis applies two differ-
ent research areas, namely, model checking and reinforcement learning to design
and evaluate two unique real-time networks in conjunction with control tech-
nologies. The first is a camera surveillance system with the goal of constrained re-
source allocation to self-adaptive cameras. The second is a dual-delay real-time
communication network with the goal of safe packet routing with minimal de-
lays.

The camera surveillance system consists of self-adaptive cameras and a cen-
tralized manager, in which the cameras capture a stream of images and transmit
them to a central manager over a shared constrained communication channel.
The event-based manager allocates fractions of the shared bandwidth to all cam-
eras in the network. The thesis provides guarantees on the behaviour of the cam-
era surveillance network through model checking. Disturbances that arise dur-
ing image capture due to variations in capture scenes are modelled using proba-
bilistic and non-deterministic Markov Decision Processes (MDPs). The different
properties of the camera network such as the number of frame drops and band-
width reallocations are evaluated through formal verification.

The second part of the thesis explores packet routing for real-time networks
constructed with nodes and directed edges. Each edge in the network consists of
two different delays, a worst-case delay that captures high load characteristics,
and a typical delay that captures the current network load. Each node in the net-
work takes safe routing decisions by considering delays already encountered and
the amount of remaining time.

5

The thesis applies reinforcement learning to route packets through the net-
work with minimal delays while ensuring the total path delay from source to
destination does not exceed the pre-determined deadline of the packet. The
reinforcement learning algorithm explores new edges to find optimal routing
paths while ensuring safety through a simple pre-processing algorithm. The the-
sis shows that it is possible to apply powerful reinforcement learning techniques
to time-critical systems with expert knowledge about the system.

6

Acknowledgements

This thesis would not have been possible without the amazing support and su-
pervision of my supervisor Martina Maggio. She has been the pillar of support
throughout my PhD right from when I had my interview 5 years ago, believing
in me when I have doubted myself. I will be forever grateful for her insight and
guidance both with life in the department, and survival out in the wild world of
Academia. Also I would like to thank my co-supervisor Karl-Erik Årzen who gave
me the opportunity to interview and catch a glimpse of life at the department.
He is always ready with great guidance regarding everything from the most ap-
propriate conference for the paper, to the best bar in any given city.

The department provides a great environment that is always friendly, wel-
coming and intellectually challenging. The regular fikas provide a great break
from work to rant about reviewers, fix Ladok problems and even discuss the
weather. A special thanks to the whole administration group that always went out
of their way to help with problems. Specifically Mika, Ingrid, and Cecilia, thank
you for your help with ladok, primula and always finding ways to fix adminis-
tration issues. Thanks to Anders Nilsson, Anders Blomdell and Pontus Anders-
son for timely help with all computer and equipment related issues. A special
thanks to Eva (secret boss) for always listening to my rants, providing pep talks
that never failed and having an unlimited supply of candy helpful during the-
sis writing crunch time. Life at the department has provided the familial feeling
required to get through the dark winters of Sweden.

A thanks to the amazing friends I have made on this journey. The best mentor,
Fredrik Bagge Carlson, thank you for showing me your wise ways in life. I have
been mentored in a wide variety of life skills although I don’t believe that was
the aim of the mentorship program at the department. Richard pates, thank you
for always pushing me to do better and helping a vegetarian survive in China.
Mattias Fält, thank you for giving me a crash course about life in Sweden, making
life competitive, and providing me a roof over my head. I will always be thankful
for the adventures we four undertook, be it the Tura or cheap Wizz Air flights.
Alex, thank you for helping me discuss new research topics and the crash course
on tea variety. Thank you Marcus Thelander Andrén and Tommi Berner for great
discussion of ideas during workshops and conferences.

7

Martin Heyden, thank you for sharing the disc golf madness and much
needed golf breaks during thesis writing. A special thanks to Kaoru Yamamoto
and Michelle Chong for always checking in on me and buoying my spirits during
difficult times. Thank you Kaoru for also proof reading the thesis. Adriana Sanna,
thank you for pushing my comfort zone to help me learn more about myself. Leila
Jabrane, thank you for the amazing culinary adventures and always reminding
me that everything will be good. Radhika, thank you for proof reading the thesis
and offering suggestions for improvement from a different perspective.

I would also like to thank my office mates through this journey, Fredrik, Mat-
tias, Frida Heskebeck, Emil Vladu, Sebastian Banert, and a host of visiting re-
searchers including Li Zhu, Amani Jaafer, José Manuel Gonzáles Cava that always
made discussions in the office interesting.

I am lucky to have large support from my family and friends all the way from
India. Adi and Sachin, thank you for the zoom talks and always being there to
help me believe in myself.

My family has been a big pillar of support for the whole duration of my thesis.
Thank you Ajja and Anama for showing unparalleled love and affection. Thank
you to my biggest believer Kolar Ajja, always worried about prices in Sweden. Ma-
mama, tugele appara mogu ani super khaan javanaka konai match koru jaaina.

Ian Uncle, Thank you for always treating me as your own son, looking out for
me and for the supportive messages when most required.

Thank you to my brother Gaurav for being a big link to family back home
and keeping me grounded, the way only a brother can. Finally, thank you to my
parents whose love, affection, support and guidance have made me who I am
today.

Financial Support
Financial support for work in this thesis was provided through the Swedish Re-
search Council (VR) project titled "Feedback Computing in Cyber-Physical Sys-
tems" and ELLIIT LU project titled "Co-Design of Robust and Secure Networked
Embedded Control Systems".

8

Contents

Nomenclature 11

1. Introduction 13

2. Camera Surveillance Network 18
2.1 Camera Network Model . 18
2.2 Model Checking . 25
2.3 Camera Network Models . 28

3. Real-time Routing Network 32
3.1 Real-Time Network Construction 33
3.2 Reinforcement Learning . 34

4. Conclusion and Future Work 42

Bibliography 45

Paper I. Game-Theoretic Network Bandwidth Distribution for
Self-Adaptive Cameras 49
1 Introduction . 50
2 Model . 52
3 Implementation and Setup . 57
4 Experimental Validation . 58
5 Conclusion . 62
References . 63

Paper II. Event-Driven Bandwidth Allocation with Formal Guarantees
for Camera Networks 65
1 Introduction . 66
2 Time-triggered activation . 67
3 Towards event-triggered activation 72
4 Event-triggered activation . 75
5 Formal methods . 76
6 Experimental results . 82
7 Related work . 84
8 Conclusion . 86
References . 86
A A timeline example . 89

9

Contents

B Model of camera and network manager behavior 89
C Overhead evaluation . 91
D Additional results . 91

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme
for Video-Surveillance Systems 95
1 Introduction . 96
2 System Model . 98
3 Model Checking . 103
4 System Implementation . 106
5 Verification Results . 109
6 Experimental Results . 111
7 Related Work . 116
8 Conclusion . 118
References . 119

Paper IV. Model Checking a Self-Adaptive Camera Network with
Physical Disturbances 123
1 Introduction . 124
2 System Overview . 125
3 Verification and Model Checking 127
4 Results . 136
5 Related Work . 141
6 Conclusion . 143
References . 143

Paper V. Adaptive Routing with Guaranteed Delay Bounds using Safe
Reinforcement Learning 149
1 Introduction . 150
2 Algorithm . 151
3 Evaluation . 158
4 Related Work . 166
5 Conclusion . 168
References . 169
A Routing Path analysis . 170
B Algorithm Comparisons . 172

Paper VI. Adaptive Routing for Real-Time Networks with Dynamic
Deadlines using Safe Reinforcement Learning 173
1 Introduction . 174
2 Model . 176
3 Algorithm . 181
4 Proof . 184
5 Experimental results . 185
6 Discussion . 195
7 Related work . 197
8 Conclusion . 198
References . 198

10

Nomenclature

Camera Surveillance Network

Notation Description
C = {c1, ...,cn} The set of n cameras in the network
M The network manager
H The limited global available network
qp,w Encoding quality of frame w of camera p
bp,t Fraction of bandwidth allocated to camera p at time t
Bp,w Amount of bandwidth allocated to frame w of camera p
sp,w Frame size of frame w of camera p
s∗p,w Estimated frame size of frame w of camera p
sp,max The maximum possible generated frame size of camera p
δsp,w Disturbance in frame size of frame w of camera p
πalloc The allocation period for cameras to transmit images
ep,w Error between the allocated bandwidth and current frame size
kp Proportional gain of the camera controller
ki Integral gain of the camera controller
fp,t Match between the allocated bandwidth and the frame size
λp,t Emphasis of bandwidth reallocation
τthr Triggering threshold of the event-based manager

Real-Time Routing Network

Notation Description
e : (x → y) Directed edge from node x to node y
cW

x y Worst case transmission time over edge e : (x → y)
cT

x y Typical transmission time over edge e : (x → y)
δi t Actual transmission time from source i to destination t

cx y t
Minimum guaranteed delay from node x to
destination t over edge e : (x → y)

cx_t
Minimum guaranteed worst-case delay from node x to
destination t over all outgoing edges

11

Nomenclature

Abbreviation Description
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index Measure
MDP Markov Decision Process
FSM Finite State Machine
CTL Computational Tree Logic
PCTL Probabilistic Computational Tree Logic
DP Dynamic Programming
TD Temporal Difference
RL Reinforcement Learning

12

1
Introduction

“You can’t ever reach perfection, but you can believe in an asymptote
toward which you are ceaselessly striving. "

— Paul Kalanithi, When Breath Becomes Air

Control engineering works on the basic premise of sensing a system and actuat-
ing it to a desired state. Although its origin is found in physical systems, control
engineering concepts have a wide field of application with objectives that range
from automation to rejection of disturbances. This thesis applies these control
concepts and techniques to computer systems, namely real-time networks. Real-
time networks require robust guarantees on their safety with optimality in their
operation. Some relevant objectives in real-time networks are robust guarantees
on end-to-end delays for time-critical systems, performance evaluation of fair
resource allocation schemes in resource constrained systems, and system per-
formance in the presence of an adversary.

Advancements in computing have resulted in a large number of edge systems
that share a constrained resource. Edge systems in these embedded networks are
generally mobile and capable of regulating their resource utilization. In such a
system the goal is to distribute resources to all edge systems while ensuring fair-
ness and no resource wastage. This thesis considers a network of surveillance
cameras that are capable of regulating their bandwidth through image encod-
ing. An event-triggered manager distributes bandwidth to all the cameras in the
network in a fair and efficient manner. It is not trivial to provide guarantees on
the behaviour of the event-based resource allocation scheme that reacts only
when required. The safety requirements of such systems can be provided through
application of formal verification and model checking. New research in model
checking tools provides new methods for translating computer science require-
ments into formal descriptions that are suitable for formal verification.

Model checking of complex computer systems leads to a large state space
leading to memory issues during property verification. State space explosion
problem during system verification is well known in model checking and has
been widely studied [Clarke, Klieber, Nováček, and Zuliani, 2012]. There have
been recent attempts in mitigating the problem of state space explosion. These
methods either reduce the footprint of the state space by discarding unnecessary
states [Baier, Clarke, Hartonas-Garmhausen, Kwiatkowska, and Ryan, 1997] or

13

Chapter 1. Introduction

relaxing guarantees on system performance through statistical model checking
(SMC) [Legay, Delahaye, and Bensalem, 2010]. SMC simulates the system for a
finite number of executions and provides statistical bounds on safety guarantees
during verification of system properties. Although this is an relaxed verification
bound, statistical model checking handles much larger state-spaces compared
to classical model checking as it does not store the whole state space in mem-
ory. The later part of the thesis obtains robust system performance bounds with
smaller state spaces through usage of reinforcement learning.

Reinforcement Learning (RL) is an alternate approach of guaranteeing sys-
tem safety while only exploring necessary states of the system. Systems for RL
are modelled using Markov Decision Processes (MDPs) similar to model check-
ing and build the state space of the system through exploration. The thesis
constructs real-time networks using a dual-delay model introduced recently
in [Baruah, 2018] and introduces safe RL algorithms for routing packets with-
out violating pre-determined packet deadlines. RL algorithms optimize system
performance by exploiting information from previously explored states, and take
new actions that explore previously unknown states to obtain new information
about the system. Exploration of new states is however a risky action, and is op-
posite to the concept of safety required for real-time networks. RL exploration
can be however made safe through expert knowledge of the system that does not
take unsafe actions. This safe reinforcement learning leads to the generation of
smaller, more efficient state spaces and allows application of powerful RL algo-
rithms to time critical networks.

Contributions of the Thesis
The thesis is based on the following six publications. Papers I, II, III and IV explore
application of control concepts together with model checking to real-time cam-
era networks. Papers V and VI explore application of safe reinforcement learning
for packet routing in real-time communication networks.

Paper I
G. Nayak Seetanadi, L. Oliveira, L. Almeida, K.-E. Årzén, and M. Mag-
gio (2018). “Game-Theoretic Network Bandwidth Distribution for
Self-Adaptive Cameras”. In: SIGBED Review. Association for Com-
puting Machinery

Real-time camera networks consisting of a large number of cameras compete
for bandwidth which is constrained. The cameras record a stream of images and
transmit them to a central manager over a shared channel. The central manager
regulates the share of the bandwidth allocated to each camera. In this paper we
evaluate the need for control at each camera ensuring adherence to the allo-
cated bandwidth. This bandwidth regulation is performed regulating the quality
(compression) of each frame using a PI controller. The central manager allocates

14

Chapter 1. Introduction

bandwidth to each camera in the network using a game-theoretic bandwidth al-
location scheme.

The main idea for the paper was obtained through previous research on
game-theoretic application manager done by M. Maggio and K.-E. Årzén. The
use of PI control for frame rate control arose from discussions with all the co-
authors. L. Oliveira and L. Almeida were involved with initial experiments con-
ducted at FEUP Porto, Portugal and contributed to the sections of the paper
that concern image capture. G. Nayak Seetanadi performed the experiments and
recorded data for bandwidth allocation schemes. The manuscript was written by
G. Nayak Seetanadi with input and comments from M. Maggio and K.-E. Årzén.

Paper II
G. Nayak Seetanadi, J. Camara, L. Almeida, K.-E. Årzén, and M. Mag-
gio (2017). “Event-Driven Bandwidth Allocation with Formal Guar-
antees for Camera Networks”. In: 2017 IEEE Real-Time Systems Sym-
posium (RTSS)

In this paper we build on work from Paper I by providing guarantees on the be-
haviour and safety of the real-time camera network. We also implement and eval-
uate a event-triggered manager compared to the periodic manager from Paper
I. The different entities in the real-time network, cameras and the manager are
modelled using Markov Decision Processes (MDP) and properties are verified
using the PRISM model checker [Kwiatkowska, Norman, and Parker, 2011]. We
discuss the choice of the triggering threshold τthr and its effect on system per-
formance.

The event-triggered manager was discussed as a natural progression from
the previous publication by G. Nayak Seetanadi and his supervisors. J. Camara
brought expertise with model checking and building of models using MDP, used
for verification of the camera network. L. Almeida helped with image encoding
on the real camera test-bed. G. Nayak Seetanadi and M. Maggio performed veri-
fication with PRISM model checker. G. Nayak Seetanadi performed experiments
on the camera test-bed. The manuscript was written by G. Nayak Seetanadi with
input from M. Maggio and comments from the other co-authors.

Paper III
G. Nayak Seetanadi, K.-E. Årzén, and M. Maggio (2020). “Control-
Based Event-Driven Bandwidth Allocation Scheme for Video-
Surveillance Systems”. In: Taylor & Francis Cyber-Physical Systems.
Under Review

In this paper we extend the camera models from Paper II to incorporate dis-
turbances that are inherent in image capture and encoding. We construct two
models, one without disturbances and another with disturbances as probabili-
ties. The amount of frames dropped is evaluated for different values of controller

15

Chapter 1. Introduction

gain for the different models. We also compare classical model checking which
provides definite guarantees with statistical model checking that provides statis-
tical guarantees. On the experimental side, this paper incorporates a larger num-
ber of cameras and triggering thresholds, τthr .

The idea for the paper was discussed as an extension to the preceding paper
by all the co-authors. G. Nayak Seetanadi and M. Maggio performed verification
of the camera models with PRISM model checker. G. Nayak Seetanadi performed
experiments on the camera test-bed. The manuscript was written by G. Nayak
Seetanadi with inputs an comments from the co-authors.

Paper IV
G. Nayak Seetanadi, K.-E. Årzén, and M. Maggio (2019). “Model
Checking a Self-Adaptive Camera Network with Physical Distur-
bances”. In: 2019 IEEE International Conference on Autonomic Com-
puting (ICAC)

In this paper we evaluate properties of the camera network such as number
of frames sent, frames dropped and manager interventions using three differ-
ent models. The deterministic and probabilistic models from Paper III are com-
pared with a non-deterministic model. The non-deterministic camera model
uses stochastic MDPs to inject disturbances into the frame sizes. In this paper
we also evaluate the performance of the system when the cameras and the man-
ager compete or collaborate to fulfill their unique objectives using PRISM games.

The paper expands the complexity of camera models and the idea was de-
vised entirely by G. Nayak Seetanadi. G. Nayak Seetanadi and M. Maggio de-
veloped the three camera models used for verification. G. Nayak Seetanadi per-
formed model checking using PRISM for all the camera models. The manuscript
was written by G. Nayak Seetanadi with inputs and comments from all the co-
authors.

Paper V
G. Nayak Seetanadi, K.-E. Årzén, and M. Maggio (2020). “Adaptive
Routing with Guaranteed Delay Bounds Using Safe Reinforcement
Learning”. In: Proceedings of the 28th International Conference on
Real-Time Networks and Systems (RTNS)

Model checking has the drawback of requiring large state spaces to model real
systems with Markov Decision Processes (MDPs). This leads to relaxation of
model complexity or reducing the stringent requirements for system verifica-
tion. In this paper we choose to explore the MDP using Reinforcement Learning
(RL) instead. Using RL allows the system to build the model of a system dynam-
ically using exploration. Random exploration can lead to problem in time sensi-
tive systems. We apply RL to safely transmit packets through a real-time network

16

Chapter 1. Introduction

ensuring that no packets violate their deadline. We use a pre-processing algo-
rithm to evaluate worst-case transmission times. RL then chooses a path with
minimum transmission times depending on the current network load. We en-
sure the algorithm performs safe exploration using information obtained in the
pre-processing stage.

The idea for the paper was brought forward by K.-E. Årzén and M. Maggio
after hearing a presentation at RTSS 2018. RL algorithms use MDPs similar to
model checking used in the previous papers. RL algorithms however build state-
space through exploration and thus do not require large memory. The RL algo-
rithm and the routing model were designed and implemented by G. Nayak See-
tanadi. The manuscript was written by G. Nayak Seetanadi with inputs and com-
ments from all the co-authors.

Paper VI
G. Nayak Seetanadi (2020). “Adaptive Routing for Real-Time Net-
works with Dynamic Deadlines using Safe Reinforcement Learn-
ing”. In: ACM/IEEE Conference on Internet of Things Design and Im-
plementation (IoTDI). (Under Review)

We build on the work done in Paper V by providing safety guarantees on the be-
haviour of our algorithm. This paper provides algorithms for safe addition and
removal of nodes in the network, essential for a large-scale communication net-
work. We also expand the state space to ensure its adaptability to varying dead-
line changes from each packet to the next. The paper evaluates the algorithm
against state of the art algorithms for packet transmission in real-time networks
and provides a discussion on their appropriate usage depending on the network
configuration.

The paper was a natural progression as reviews for previous work noted the
inability of the algorithms to adapt to network changes. G. Nayak Seetanadi came
up with the idea to extend the algorithm for addition and deletion of nodes from
the network, as well as the discussion on the performance of the various real-time
routing algorithms in different network conditions. The manuscript was written
by G. Nayak Seetanadi with comments from his supervisors.

17

2
Camera Surveillance
Network

This chapter provides background on the camera surveillance network explored
in Papers I, II, III and IV. The chapter describes the modelling of the camera net-
work and image encoding with disturbances that arise during image capture. It
gives an introduction to model checking and its application to the camera net-
work for property verification and safety guarantees.

2.1 Camera Network Model

The camera network in the thesis models a surveillance system consisting of n
cameras, C = {c1, ...,cn}, and a central manager,M. The cameras capture a stream
of images and transmit them to the central manager over a shared channel with
limited network bandwidth H. The cameras are self adaptive in nature and reg-
ulate their bandwidth usage by capturing images and encoding each image with
a quality factor. The manager M allocates a fraction of the total available band-
width to each camera in the network ensuring the allocation is fair. The man-
ager also ensures that the total bandwidth allocated to the cameras is less than or
equal to the total amount of available bandwidth H. The amount of bandwidth
allocated has to closely match the requirements of the cameras as images whose
frame sizes exceed the allocated bandwidth are dropped and lead to loss of infor-
mation.

Cameras
The camera cp∈{1,...,n} captures a frame w and encodes it using a quality factor
qp,w . The quality factor regulates the size of the resulting image changing the
camera bandwidth usage during each frame transmission.

Camera Encoding Images captured by the cameras are generally large in size
and thus unsuitable for direct transmission over the share communication chan-
nel. The images contain redundant information which leads to inefficient utiliza-
tion of the constrained bandwidth. Encoding an image with appropriate tech-

18

2.1 Camera Network Model

(a) Original Image (Size 798 kB)

(b) Image Encoded with Quality q = 10 (Size 1.1 kB)

(c) Image Encoded with Quality q = 50 (Size 260 kB)

(d) Image Encoded with Quality q = 85 (Size 498 kB)

Figure 2.1 Effect of Encoding on Image Size and Perceived Quality

19

Chapter 2. Camera Surveillance Network

niques reduces its size while retaining most information. The choice of the en-
coding algorithm affects the resulting frame size and determines the amount
of bandwidth utilization by the camera. Figure 2.1 shows the loss of informa-
tion that occurs during encoding of images using different qualities and resulting
frame sizes. As seen in the figure, encoding an image with a small quality factor
leads to smaller image sizes and artifacts in the encoded image. Using a higher
quality leads to better preservation of images at the cost of larger frame sizes.

This camera surveillance network with adaptive camera and the manager
consists of two independent control loops. The control loops regulate the con-
strained bandwidth to ensure a good match between the camera frame size and
bandwidth allocated to the camera.

• Image Fitting at Camera cp∈{1,...,n}: The camera p regulates the quality fac-
tor, qp,w , of each frame w to ensure it fits the amount of bandwidth allo-
cated by the manager, Bp,w .

• Bandwidth allocation by Manager M: The manager regulates the amount
of bandwidth allocated, Bp,w , to each camera in the network using a game-
theoretic approach considering the amount of available bandwidth avail-
able globally and the current camera requirements.

Figure 2.2 shows a camera network consisting of three cameras connected to
a central manager. An example timeline of bandwidth distribution is also shown
on the left. The black bar in the timeline indicates the start of a new transmission
slot at multiples of the allocation period πalloc. The manager M in the figure is
triggered periodically and recalculates the amount of bandwidth allocated to all
cameras in the network during each allocation period. Only cameras c1 and c2
are active during the first two allocation periods. M allocates bandwidth equally
to both cameras in the first allocation period as it has no information about the
camera requirements. The manager allocates more bandwidth to camera c2 from
the second period onward as the camera is capturing a dynamic scene with larger
frame sizes, thus it requires bigger portion of the available bandwidth compared
to camera c1. Camera c3 joins the network in the beginning of the third allocation
period. The bandwidth is initially distributed equally to all three cameras in the
network during the third allocation period and allocates bandwidth to the cam-
eras according to their relative bandwidth requirements during the subsequent
periods.

The quality factor and the encoding technique used for encoding the image
determines the resulting frame size of the image. Motion JPEG and H.264 (and
recently H.265) are among the most widely used standards for video compres-
sion. In this thesis, we use Motion JPEG (MJPEG) to encode images captured
by the cameras. MJPEG is an intra-frame encoding format where the video is
simply a sequence of individual JPEG images with no inter-frame compression.
Inter-frame compression used in H.264 and H.265, generates videos with smaller
bandwidth consumption compared to intra-frame compression, but a loss of
frame leads to large amount of useless frames due to inter-frame dependence.

20

2.1 Camera Network Model

c1 c2 c3

M
allocates
{b∗,t=1,b∗,t=2, . . . }

i1,w=1
i1,w=2
i1,w=3

. . .

i2,w=1
i2,w=2
i2,w=3

. . .
i3,w=1

. . .time

1πalloc 2πalloc 3πalloc 4πalloc

time

0

Figure 2.2 Camera network system architecture [Nayak Seetanadi, Camara,
Almeida, Årzén, and Maggio, 2017]

The camera network drops frames when the camera frame size is larger than the
allocated bandwidth. Thus we choose MJPEG as the encoding technique due to
its simplicity and inter-frame independence.

The exact relationship between encoding quality and the resulting frame size
is non-trivial due to disturbances like motion, sudden scene changes that arise
during image capture [Edpalm, Martins, Maggio, and Årzén, 2018]. Previous re-
search in the area of fitting an image to a pre-determined size is performed
with the use of complex models for specific encoding techniques. [Ding and Liu,
1996] describes a rate-quantization model to estimate frame-size s∗ when using
MJPEG encoding. The estimated frame size s∗p,w for camera p and frame number
w was determined as follows.

s∗p,w =α+ β

qλp,w

(2.1)

where α and β are internal parameters of the camera and λ regulates the
quantization curves for different frames. [Silvestre, Almeida, Marau, and Pe-
dreiras, 2007] uses the rate-quantization model to estimate the MJPEG frame-
size s∗ and fits the generated frames to bandwidth allocated by the manager
Bp,w for each frame. Recent encoding standards have complex inter-frame en-
coding and dependencies. [Edpalm, Martins, Maggio, and Årzén, 2018] [Edpalm,
Martins, Årzén, and Maggio, 2018] shows that estimation of instantaneous band-
width utilization for H.264 video compression is non-trivial. These models lead
to somewhat accurate prediction of the resulting s∗p,w with the drawback of large
computational overhead.

In this thesis we do not use complex non-linear models to obtain the exact
frame size estimations. We rely on simple linear models to get approximate esti-
mation of the frame size, and then regulate bandwidth utilization of the cameras

21

Chapter 2. Camera Surveillance Network

in combination with PI controllers. The PI controller adapts to changes in the
scene being recorded and treats them as disturbances.

s∗p,w = 0.01 ·qp,w · sp,max (2.2)

Equation (2.2) shows the generation of an image with size s∗p,w using quality
qp,w . The encoding quality qp,w is generally bounded and its value is dependent
on the encoding technique that is applied. The MJPEG qp,w ∈ (0,100]. sp,max is
the maximum size of the frame generated and it is dependent on a number of
factors such as the number of pixels, movement, noise and so on, see [Edpalm,
Martins, Maggio, and Årzén, 2018] for an analysis on the relationship between
qp,w and sp,max . The authors show that the relationship between encoding qual-
ity and generated frame size is non-trivial and is susceptible to disturbances that
arise due to changes in the scenes. These disturbances cause the generated im-
ages to have different frame sizes when encoded with the same quality factor.
This uncertainty is captured in Equation (2.3)

s∗p,w = 0.01 ·qp,w · sp,max +δsp,w (2.3)

The PI controller minimizes the normalized error ep,w between the band-
width allocated by the manager Bp,w−1 and the current frame size sp,w−1 as
shown in Equation (2.4)

ep,w = Bp,w−1 − sp,w−1

Bp,w−1
(2.4)

The normalized error limits the error between -1 and 1 in most operating con-
ditions, except for cases in which the image disturbances are too extreme. The
frame size is then regulated with a PI controller as shown in Equation (2.5)

qp,w = kp ·ep,w +ki ·
w−1∑
t=1

ep,t (2.5)

The values of kp and ki are the proportional and integral gains of the con-
troller. This control design achieves zero-steady state error in conditions with
no disturbances during image capture, i.e. when δsp,w = 0. The controller treats
scene changes as load disturbances and regulates image quality to minimize it.

Image Quality Human perception of quality of an image does not correlate di-
rectly with the encoding quality q or frame-size s. The most widely used metrics
to determine image quality are Mean Squared Error (MSE) and Peak Signal-to-
Noise Ratio (PSNR) which are simple to calculate. However, [Wang, Bovik, Sheikh,
and Simoncelli, 2004] showed that high performance in these metrics do not nec-
essarily correlate with better human perception of images. [Wang, Bovik, Sheikh,
and Simoncelli, 2004] also proposed a new Structural Similarity Index Measure
(SSIM) that has been widely studied since.

22

2.1 Camera Network Model

Paper I applies SSIM to compare the transmitted quality of images of two
cameras. However, using SSIM in camera networks to evaluate image quality is
impractical as it is dependent on comparison of two images. This requires the
camera to save the non-encoded images and compare them to the encoded im-
ages online leading to high computational costs. The images can also be com-
pared offline after image transmission however this information is outdated.
SSIM was used offline for comparing images encoded with different regulation
strategies in Paper I.

Manager
The network managerM allocates a fraction of the total bandwidth to each cam-
era in the network through a game-theoretic approach. The game-theoretic re-
source manager is based on [Maggio, Bini, Chasparis, and Årzén, 2013] where
the authors allocated computational resources to real-time applications period-
ically. Real-time applications are capable of regulating their service levels similar
to cameras. The resource manager in [Maggio, Bini, Chasparis, and Årzén, 2013]
was triggered periodically with constant resource usage evaluation and reallo-
cation. This approach is not efficient for the camera network as camera scene
changes are seldom and constant bandwidth evaluations can lead to unneces-
sary bandwidth reallocations.

The camera network manager receives the images transmitted by the cam-
eras and evaluates the match between the allocated bandwidth and its utilization
by the cameras. The manager also ensures that the total amount of bandwidth
allocated to the cameras does not exceed the global available bandwidth H. At
each instant t that the manager is invoked, it allocates a fraction of the band-
width bc∈C,t such that

∀t ,M selectsb∗,t = [b1,t , . . . ,bn,t]
such that

∑n
p=1 bp,t = 1 (2.6)

The bandwidth fraction vector b∗,t determines the fraction of bandwidth al-
located to the respective camera in the network. The actual amount of bandwidth
allocated to each camera is then determined by

Bp,w = bp,t ·H (2.7)

where H is the amount of global bandwidth available to all cameras. The
number of frames sent by the cameras in one allocation period is dependent
on the configuration of the system and all frames in the allocation period have
the same size of allocated bandwidth. If the current frame size of the camera
is larger than the allocated bandwidth sp,w > Bp,w then the frame is dropped.
On the other hand, sp,w ≤ Bp,w indicates suboptimal utilization of the allocated
bandwidth by camera cp . Thus, ideally bandwidth allocation is approximately
equal to the bandwidth allocated to the camera sp,w ≈ Bp,w . The manager re-
calculates the fraction of bandwidth allocated to each camera at every instance
(periodically or event-based) it is invoked according to Equation (2.8)

23

Chapter 2. Camera Surveillance Network

c2

c1

M

0ms 30ms 60ms 90ms . . . time →

t = 0 t = 1 t = 2

M assigns bp=1,t=1,bp=2,t=1

i1,1 i1,2 i1,3 i1,4 i1,5 i1,6

i2,1 i2,2 i2,3 i2,4 i2,5 i2,6

i p=1,w=2 : qp=1,w=2 → sp=1,w=2
bp=1,t=0 → Bp=1,w=2

Figure 2.3 Example timeline of a Time-triggered manager [Nayak Seetanadi,
Oliveira, Almeida, Årzén, and Maggio, 2018].

bp,t+1 = bp,t +ε ·
{
−λp,t · fp,t +bp,t ·

n∑
i=1

[
λi ,t · fi ,t

]}
(2.8)

The matching function fp,t determines the match between the allocated
bandwidth Bp,w and the frame size sp,w of frame w for camera cp . A simple
choice for the matching function is the normalized error function from Equa-
tion (2.4). λp,t determines the fraction of bandwidth adaptation performed by
the network manager. A small value of λp,t indicates that the network manager
regulates the bandwidth of camera cp with a lower priority and places a larger
emphasis on the camera to regulate its frame size to avoid frame drops. fp,t and
λp,t are discussed in more detail in [Maggio, Bini, Chasparis, and Årzén, 2013].

Figure 2.3 shows an example timeline when M is triggered periodically with
πM = 3 ·πalloc = 90ms and C = c1,c2. During each πalloc, each camera transmits
three frames. Each bar on the timeline corresponds to bp,w when p is the id of
camera cp and w is the frame number.

Each camera is allocated equal amount of bandwidth when t = 0 (b1,0 = b2,0).
M allocates more bandwidth to camera c1 at t = 1 (b1,4 > b2,4) depending on the
matching function of the cameras (| f1| > | f2|). b1,_ and b2,_ are recalculated every
period, determining the actual bandwidth allocated, B1,_ and B2,_ respectively.

The time-triggered manager has two major drawbacks,

• Choice of periodπM: Choosing a small value ofπM ensures thatM recal-
culates the bandwidth allocation vector b∗,t more often. This leads to faster
adaptation to camera requirements but also leads to unnecessary adap-
tation during scenarios with no scene changes in the images captured by
the cameras. The number of bandwidth recalculations performed by the
manager is reduced by choosing a larger value of πM. However, it has the
drawback of slow reactions to changes in camera bandwidth requirements
causing dropped frames and bandwidth underutilization.

24

2.2 Model Checking

• Resource allocation overhead: The manager M recalculates the band-
width at an allocation period πM each time it is invoked. The vector b∗,t is
recalculated at each invocation according to Equations (2.6) and (2.8). The
computational complexity of bandwidth recalculation is dependent on the
number of cameras in the network leading to computation times that sig-
nificantly impact the amount of time available for frame transmission.

These drawbacks are mitigated through the use of an event-based trigger-
ing scheme for the network manager. An event-based manager reallocates band-
width to the cameras in the network only when required avoiding unnecessary
manager interventions. The event-based manager intervenes when the number
of cameras in the network changes and also when the value of normalized error
of any camera in the network exceeds a triggering threshold τthr . τthr is a de-
sign choice that is dependent on the camera network and the scenes captured by
the cameras. A small τthr forces the manager to intervene often even for small
changes in the scenes being captured. On the contrary, a large τthr leads to fewer
manager interventions placing an emphasis on camera adaptation.

2.2 Model Checking

Subsection 2.1 describes two triggering strategies for the manager, namely, time-
triggered and event-triggered. Guarantees on the time-triggered manager are de-
rived intrinsically based on work from [Chasparis, Maggio, Bini, and Årzén, 2016].
These safety guarantees do not necessarily hold for the event-triggered manager
and they are obtained using model checking. Papers II, III and IV apply model
checking to the event-triggered manager to provide guarantees on its behaviour.
Model checking is the method of verifying functionality of a system that is mod-
elled as a Finite State Machine (FSM).

Figure 2.4 shows the general flow of applying model checking to verify de-
sired properties of a system. The system model and the system property to be
verified are modelled using formal language and formal mathematics. We use
Markov Decision Processes (MDP) to represent the different entities in the sys-
tem, namely the manager and the cameras. The stochastic nature of image cap-
ture is modelled using probabilistic transitions and non-deterministic MDPs.
System properties capture the different behaviours of the system for verification
and are either qualitative or quantitative in nature. For example, some proper-
ties for the camera network are “Stability after Bandwidth allocation”, “Number
of Frames Dropped”, “Number of Manager Interventions” and so on.

The model checking software indicates affirmative/negative property ver-
ification for qualitative properties, and the cost/reward incurred for quan-
titative properties. A property verification failure indicates that the model
needs to be refined or the property constraints need to be relaxed. We use
PRISM [Kwiatkowska, Norman, and Parker, 2011], a probabilistic model checker
for formal modelling and analysis of stochastic and probabilistic systems. Prob-
abilistic model checking is the formal technique for analyzing systems with

25

Chapter 2. Camera Surveillance Network

Model Checker

System PropertySystem Model

Property satisfied?

Yes No

Relax conditions
or refine model

Figure 2.4 Model Checking Methodology

probabilistic and stochastic behaviours such as disturbances during image cap-
ture, randomized algorithms, communication networks with packet uncertainty,
and other such dynamic systems.

System Models
The physical system being verified is modelled using the appropriate framework
depending upon the relevant behaviour captured. Generally, systems are mod-
elled as Markov chains consisting of states and transitions. Each state in the
Markov chain captures the complete system in that state. All models in the cam-
era network are modelled using Markov Decision Processes (MDPs). An MDP is
an extension of Markov chains with the possibility of modelling discrete-time
stochastic control processes through probabilistic transitions.

DEFINITION 1
An MDP is a 4-tuple (S ,A,P,R), where S is a set of finite states, A is a set of ac-
tions, P : (s, a, s′) → {p ∈R | 0 ≤ p ≤ 1} is a function that encodes the probability of
transitioning from state s to state s′ as a result of an action a, and R : (s, a, s′) →N

is a function that encodes the reward received when the choice of action a deter-
mines a transition from state s to state s′.

System Property
System properties describe the relevant behaviour of the system and are con-
structed using Probabilistic Computation Tree Logic (PCTL). Computational tree
logic (CTL) is branching logic with a tree structure where different paths of the
system are represented as individual branches. PCTL, an extension of CTL, is

26

2.2 Model Checking

used to construct both probabilistic and non-deterministic properties of the sys-
tem model. Model checking softwares construct the whole state space of system
model using computational trees for verification. PCTL properties are then in-
terpreted to be true for either a state s ∈ S, or over a probabilistic path over the
computational tree. PRISM supports a variety of operators for property construc-
tion including P: Probabilistic Operator, S: Steady State Operator, R: Reward Op-
erator, A: For-All Operator, and E: There-Exists Operator. The following system
properties are constructed for evaluation of the camera network using the rele-
vant operators.

Qualitative Properties

• P≥1[G (Halloc =H)] : The allocated bandwidth Hal loc is equal to the avail-
able bandwidth H, globally with a probability of 1.

• P≥1[F (G!(any_change_event))] : No changes, or no changes in the state
transitions occur globally with a probability of 1.

• P≥1[G (used_bw=max_bw)] : The total amount of bandwidth used by the
cameras is equal to the maximum amount of available bandwidth with a
probability of 1.

Quantitative Properties

• Rrm_calls
max/min=?

[F end] : The maximum/minimum number of manager inter-
ventions during model checking. The variable _calls tracks the number of
times the state nm_calc_bw is reached in the network manager MDP shown
in Figure 2.5.

• Rframes_dropped
max/min=?

[F end] : The maximum/minimum number of frames
dropped. The dropped frames are tracked by comparing the amount of
bandwidth allocated and the frame size of the cameras and storing the
value in variable frames_dropped.

• Rcost
max/min=?

[F end] : The maximum/minimum cost accumulated by track-
ing a predefined cost function.

Applications of Model Checking
A variety of hardware and software systems have been successfully verified with
model checking through a combination of different model and property types.
Model checking has also been applied in industry owing to its ability to evaluate
correctness of complex stochastic systems, see [Cimatti, 2001] for survey on in-
dustrial applications. Similarly, probabilistic model checking has been applied to
verify different stochastic systems such as distributed algorithms [Kwiatkowska,
Norman, and Parker, 2012; Lehmann and Rabin, 1981], network protocols [Du-
flot, Kwiatkowska, Norman, and Parker, 2006; Kwiatkowska, Norman, and Spros-
ton, 2002] and biological systems [Heath, Kwiatkowska, Norman, Parker, and
Tymchyshyn, 2006; Kwiatkowska, Norman, and Parker, 2008].

27

Chapter 2. Camera Surveillance Network

nm_init

nm_calc_bw

nm_alloc_bw

nm_wait

nm_end

[man_inter]

[bw_allocated]

[last_cam_sent]

[last_cam_sent]

[bw_allocated]

[end]

Figure 2.5 Network Manager, MDP Representation

2.3 Camera Network Models

The different entities of the camera network, namely the manager and the cam-
eras, are built with independent system modules. The different entities of the
network are synchronized by labels attached to the different transitions in the
system modules. The modules capture the relevant behaviour of each of the en-
tities as described in Section 2.

Network Manager
The network manager performs event-based resource allocation and is modelled
identically in all instances, irrespective of the camera model in the network. Fig-
ure 2.5 shows a simplified MDP representation of the network manager as state-
transition pairs. Each state in the MDP captures the current behaviour of the
manager. The network manager MDP is completely deterministic and does not
contain any probabilistic and non-deterministic transitions.

The state nm_init denotes the initial state of the network manager where
the different properties of the manager are initialized. The network manager
(re)calculates the amount of bandwidth allocation to the cameras in state
nm_calc_bw. The state nm_alloc_bw indicates the bandwidth allocation by the
network manager in that period. The label [man_inter] is used in the reward
structure to calculate the number of manager interventions.

nm_wait denotes that the manager is waiting for cameras to transmit im-
ages and nm_end denotes the end of image transmission with a self-absorbing
state. The end state is configured to be reachable after the transmission of a
pre-determined number of frames. Labels [bw_allocated] and [last_cam_sent]
indicate the completion of bandwidth allocation and completion of image trans-
mission respectively. The labels are also used for synchronization of the various
different modules during model checking.

Camera Models
The different camera models in the thesis describe three unique ways of repre-
senting camera behaviour described in Subsection 2.1. The cameras are mod-
elled using deterministic, probabilistic, and non-deterministic MDPs.

28

2.3 Camera Network Models

cam_init

cam_calc_fr

cam_wait

[bw_allocated]

[- or last_cam_sent]

[bw_allocated]

Figure 2.6 Deterministic Camera Model

cam_init

cam_calc_fr

cam_wait

[bw_allocated]

[- or last_cam_sent]
0.3: s’ = framesize_disturbance

[- or last_cam_sent]
0.7: s’ = framesize

[bw_allocated]

Figure 2.7 Probabilistic Camera Model

Deterministic MDPs model the camera as a completely deterministic state
space. Deterministic models do not contain probabilistic or non-deterministic
transitions between the different states in the state space. Figure 2.6 shows the
state transition representation of a completely deterministic camera MDP. Each
camera in the network is represented by an independent module with the same
model. The model does not consider disturbances during image capture.

cam_init is the initial state of the camera. The camera transitions to the
next state during the appropriate network manager transition. The transitions
in the manager and the other camera modules are synchronized with the la-
bel [bw_allocated]. The camera calculates the resulting frame size without distur-
bances given by Equation 2.2 in the state cam_calc_fr. The label [last_cam_sent]
is present only in the MDP of the last camera (all other cameras have no label,
given by [-]) and indicates the transmission of the image by the final camera. The
cameras wait for further bandwidth allocations in state cam_calc_fr. The cameras
stop image transmissions when the manager MDP reaches the state nm_end.

Deterministic models are simple and small in nature but do not capture com-
plete real life behaviour that exhibits uncertainty and stochasticity. Stochastic be-
haviour in real systems is modelled using probabilities and non-determinism in
model checking.

Probabilistic models attach probabilities to transitions from one state to an-
other while ensuring that all probabilities from a state sum to one. The models
capture uncertain behaviour such as “The message is lost with a probability of
0.1", “The coin toss is heads with a probability of 0.5 and tails with a probability
of 0.1" and “The system will fail with a probability of 0.001". The camera network
model attaches a probability of 0.3 to the transition that causes disturbance dur-
ing image capture and 0.7 to the transition with no disturbances.

29

Chapter 2. Camera Surveillance Network

cam_init

cam_calc_fr

cam_wait

[bw_allocated]

[- or last_cam_sent]

[bw_allocated]

(a) Camera

env_wait

env_calc_dist

q_dist = 0 or 5 or ...
[bw_allocated]

(b) Environment

Figure 2.8 Non-Deterministic Camera Model

Figure 2.7 shows the probabilistic model of a camera that models distur-
bances through probabilities on transitions. The disturbance is introduced into
the generated frame size described in Equation (2.3). The uncertainty in image
capture is modelled by the transitions from state cam_calc_fr to cam_wait. The
two transitions correspond to two different equations. The transition on the right
calculates the frame size without disturbances given by Equation (2.2) and is at-
tached a probability of 0.7. The transition on the left calculates the frame size
with disturbances given by Equation (2.3) and is attached a probability of 0.3.
The two different transitions model the scenario in which disturbances occur less
frequently in the cameras.

The addition of probabilities to the camera model increases the complex-
ity and size of the resulting state space compared to the deterministic model.
The larger state space leads to state space explosion and causes complications in
property verification [Nayak Seetanadi, Årzén, and Maggio, 2019].

Non-deterministic MDPs are an alternative approach of modelling stochastic
and uncertain behaviour in systems. Non-determinism is particularly useful in
systems in which the probabilities of transition are not explicitly known. Stochas-
tic systems with concurrent behaviour, consisting of an unknown adversary and
similar systems are suitable for modelling with non-deterministic MDPs. In the
non-deterministic camera model, an environment module inserts disturbances
during image size calculations by varying the encoding quality.

Figure 2.8 shows the non-deterministic model of a camera together with an
environment module. The camera model is identical to the deterministic cam-
era with the same states, transitions and labels. The size of disturbances dur-
ing frame size calculations are determined by the environment module and syn-
chronized using the same label [bw_allocated]. The environment module ran-
domly allocates a value to the disturbance of individual frames of each camera
in the network leading to changes in the resulting frame sizes. The value of dis-
turbance ranges from 0 (indicating a deterministic frame with no disturbances)
to a value that determines the stochastic nature of the current scene. The differ-
ent dashed lines in the figure denote the different transitions with unique dis-
turbance values and all transitions are allocated a probability of 1. This forms

30

2.3 Camera Network Models

the non-deterministic choice capturing the disturbances that arise during image
capture.

Models using non-determinism, similar to probabilities models, are more
complex in their state space and larger in size compared to deterministic mod-
els. [Nayak Seetanadi, Årzén, and Maggio, 2019] showed that non-deterministic
models scale better with respect to probabilities models. Non-deterministic
models also lead to better property verification as they capture a varied be-
haviour of real systems. They also provide maximum and minimum values ob-
tained during verification of quantitative properties leading to better evaluation
of system performance.

Drawbacks of Model Checking
The largest drawback of model checking is the widely studied state space explo-
sion problem [Clarke, Klieber, Nováček, and Zuliani, 2012]. State space explosion
is caused by the exponential increase in the number of states describing a sys-
tem. The large number of states is inevitable when describing complex systems
with uncertainties in its behaviour. As model checking tools build and store the
whole state space in memory, it causes memory issues during model building
leading to failure. This restricts either the model complexity or the duration of
system functionality modelled for verification.

Research into the state space explosion problem has developed differ-
ent techniques for mitigating it through different approaches. Most of the
approaches involve reducing the memory footprint of the state space either
through symbolic model checking with binary decision diagrams [Baier, Clarke,
Hartonas-Garmhausen, Kwiatkowska, and Ryan, 1997]. Similarly, counter ex-
ample guided abstraction refinement builds only the appropriate states and
bounded model checking applies SAT solvers to provide counter examples. Un-
folding techniques search the constructed state space for property verification
without considering all possible paths in concurrent systems modelling [McMil-
lan and Probst, 1995] [Esparza and Heljanko, 2000]. These techniques are imple-
mented inherently into the different model checking tools. In conjunction with
advances in model checking tools, there are also specification guidelines in order
to avoid state space explosion problems [Groote, Kouters, and Osaiweran, 2015].

31

3
Real-time Routing Network

This chapter provides an introduction to the real-time dual-delay routing net-
works investigated in papers V and VI. First, the chapter discusses the construc-
tion of the two different routing networks constructed. Then a short dive in re-
inforcement learning is provided, finally concluding with the description of the
safe routing algorithm used for real-time packet routing.

A recent paper [Baruah, 2018] introduced a dual-delay model for communi-
cation in real-time networks consisting of computational nodes that are inter-
connected with directed edges. Each node x in the network has limited com-
putational capacity and makes independent routing decisions, while each edge
e : (x → y) from node x to node y in the network is characterized by two different
transmission times:

• Worst-case transmission time, cW
x y : The worst-case transmission time that

the system is guaranteed to never violate even under extreme load. cW
x y is

obtained through worst case timing analysis before transmission of pack-
ets and is considered static.

• Typical transmission time, cT
x y ∈ (0, cW

x y]: The typical transmission times

capturing the current network behaviour and load. cT
x y is pre-determined

using knowledge about time-dependent network loads or explored dy-
namically through packet transmission.

The goal of real-time routing algorithms is to determine a route from source i
to destination t that minimizes the total path transmission δi t while also ensur-
ing that δi t is less than or equal to the pre-determined packet deadline DF .

In general, routing algorithms can be divided into static and dynamic rout-
ing. In static routing the complete path for packet transmission is determined
before the packet leaves the source node. This has low complexity but can lead
to suboptimal transmission times in networks with varying cT . In dynamic rout-
ing, routing decisions are taken at each node considering the current network
load and delays already encountered and it generally leads to lower transmission
times compared to static routing.

32

3.1 Real-Time Network Construction

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

Figure 3.1 Routing network from [Nayak Seetanadi, Årzén, and Maggio, 2020]

This objective of minimizing delays while subject to constraints can be repre-
sented as a cost minimization problem. Prior work done in the field of cost min-
imizing for paths with multiple constraints can be divided into bi-criteria and
multi-criteria optimization. Bi-criteria shortest path problems [Hansen, 1980;
Chen and Nie, 2013] consist of edges with two cost parameters similar to the
one considered in the thesis. These problems have also been extended to multi-
criteria shortest path problems [Gandibleux, 2006] with varying non-linear cost
functions. The solutions to multi-criteria problems generally assume the differ-
ent costs to be unrelated to each other. Also research in this area is generally
constricted to static optimization with non-varying cost. This is not a realis-
tic assumption for a routing network with varying load and dynamic structure
changes. This thesis solves the optimization problem using reinforcement learn-
ing with a modified exploration policy to ensure safety.

3.1 Real-Time Network Construction

The thesis considers two example real-time networks constructed with the dual-
delay specifications to evaluate real-time routing algorithms. Each network is a
graph G with independent nodes and multiple outgoing edges from each node in
the network. Each edge e : (x → y) is a directed edge from node x to node y and
is characterized by the two delays described above.

Routing network from [Nayak Seetanadi, Årzén, and Maggio, 2020]
Figure 3.1 shows a directed graph with five nodes and seven edges. The network
is constructed with directed edges and no loops exist in the network. The typical
delays over each edge are show in blue and the worst-case delays are shown in
red. The example network was first introduced in the presentation of [Baruah,
2018] and implemented for evaluation of routing algorithms in papers [Nayak
Seetanadi, Årzén, and Maggio, 2020] and [Nayak Seetanadi, 2020].

33

Chapter 3. Real-time Routing Network

There exist four possible paths from source i to destination t for different
end-to-end delay guarantees. The following table shows the worst-case delay and
typical delays encountered on the paths when cT

x y is static and known.

Path Worst-case Delay Typical Delay

i → t 25 12
i → x → t 20 14
i → x → y → t 30 10
i → x → y → t 40 6

The path (i → x → y → t) has the typical delay of 10 and guaranteed worst-case
delay of 30, whereas path (i → x → z → t) has the typical delay of six and a guar-
anteed delay of 40. In a completely deterministic network, i.e. where the actual
transmission timeδx y is equal to the typical transmission time cT

x y over each edge
e : (x → y), the choice of routing path is trivial and can be performed with the help
of a similar routing table. The choice of routing path becomes complicated when
the actual transmission times differ from the typical transmission times and is
highly dependent on the given deadline DF and the amount of delay already en-
countered by the packet on arrival at a node.

Routing Tree Network from [Nayak Seetanadi, 2020]
Figure 3.2 shows a tree network modified with more interconnections between
the nodes. Compared to the previous network, the modified tree network con-
sists of a larger number of feasible paths for packet routing capturing a realistic
model of a modern routing network with larger number of nodes and connec-
tions. Each edge in the network is directed and is assigned a random value for
typical transmission times cT , and worst-case transmission times cW . Paper VI
uses the modified tree network to evaluate complexity of the different routing
algorithms in the presence of a large number of nodes and edges.

3.2 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning that works on the
premise of an agent learning about the environment, to maximize a long-term
reward. Figure 3.2 shows the general feedback loop through which an agent in-
teracts with the environment. The real-time routing algorithms described in the
thesis are based on reinforcement learning with few modifications to guarantee
safe routing of packets.

The following basic terminology describes the different components of rein-
forcement learning algorithms:

• State s: The state s of the system is a complete description of the current
status of the system. It contains all information about the current environ-

34

3.2 Reinforcement Learning

i

1 2 3

4 5 6 7 8 9 10 11 12

13 14 15 37 38 39

t

Figure 3.2 Modified Tree Network [Nayak Seetanadi, 2020]

ment that is observable by the agent. The term state space describes the
current combination of states and actions that are known to the agent.

• Action a: The agent interacts with the environment through an action a to
transition from the current state s to the next state s′. The complete set of
valid actions is termed as the action space which can be either discrete or
continuous depending upon the environment.

• Policyπ: The agent chooses an action a from the feasible action space with
the help of a policy π. The policy of an agent dictates the exploration of the
environment by it and is generally based on a probability distribution.

The agent interacts with the environment through actions and manipulates
the current state of the environment. The environment rewards actions per-
formed by the agent either instantaneously or in a delayed manner. The agent
executes multiple actions during one complete system simulation, called an
episode, and aims to improve knowledge about the environment that is already
obtained during subsequent episodes. Exploration of the different states is per-
formed through a probabilistic distribution that dictates the action chosen from
a state. The tradeoff between visiting states that consistently award large rewards
and exploring states in search of higher rewards is well known and termed the
exploration/exploitation tradeoff [Sutton and Barto, 2018].

35

Chapter 3. Real-time Routing Network

Agent

Environment

Action aState s
Reward R

Figure 3.3 Reinforcement Learning Feedback Loop

The broad premise of reinforcement learning can be applied to a variety of
topics such as:

• An agent learning to play the popular video game Super Mario Bros. The
agent can move left, right and jump forming its action space. The environ-
ment rewards the agent positively for progressing further through the level
and defeating enemies while penalizing the agent for loosing lives.

• An autonomous car driving through a maze to its destination. The agent is
given positive rewards on how fast it reaches the destination, with a neg-
ative reward for crashing. The action space for the car is the amount of
acceleration and direction of steering.

• Packet routing through a network. The agent transmits packets from source
to destination through multiple possible paths with minimal delays. The
action space for agent is the next edge for packet transmission an the agent
obtains a positive reward inversely proportional to the packet delay.

RL has found recent success in the context of video games where it has
achieved superhuman level of expertise [Silver et al., 2018; Vinyals et al., 2019].
Recent research attempts to emulate the success of RL algorithms on real-time
systems with safety constraints. These safety constraints necessary for critical
systems are opposite to the inherent risk of RL algorithms and lead to safety
violations in stochastic systems. RL algorithms can be modified to reduce, or
even eliminate risk and are termed as safe reinforcement learning algorithms.
see [García and Fernández, 2015] for a survey on current research landscape of
safe reinforcement learning. In general, RL algorithms are augmented to consider
safety constraints through:

• Modifying the optimization criteria. Minimize the probability of reaching
unsafe states by attaching a high cost.

• Exploration through safe actions. Mitigate risk by taking only safe actions
during the exploration phase. Actions are determined to be safe through
expert system knowledge.

36

3.2 Reinforcement Learning

Algorithm 1 Pre-Processing:

1: for each node x do
2: for each outgoing edge (x → y) do
3: cx y t = cW

x y + min(cy_t)

i

x y

z

t

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

1,15,30

1,15,15

Figure 3.4 Network after pre-processing

This thesis applies a modified exploration policy to safely route packets
through real-time communication networks. Safe RL routing algorithm devel-
oped in the thesis consists of three independent algorithms. A Pre-processing al-
gorithm run during network initialization determines safe edges for packet trans-
mission using worst-case delays. A Node Logic algorithm is run at each node at
the arrival of each packet to determine the optimal edge for packet transmission
that is also safe. Finally, the Environment Reward algorithm evaluates the opti-
mality of the routing path on arrival of the packet at the destination.

Pre-processing Stage
Safe exploration in RL algorithms is performed with knowledge about the system
to ensure safety. We run a pre-processing algorithm to obtain information on the
minimum delay to destination t over each edge e : (x → y) given by cx y t . Papers V
and VI use a simple Dijkstra’s shortest path algorithm [Dijkstra, 1959; Mehlhorn
and Sanders, 2008] for pre-processing. For each outgoing edge e : (x → y) from
each node x in the network, we add the worst-case delay over the edge, cW

x y , to
the minimum worst-case delay to destination from node y , cy_t to obtain the
minimum guaranteed worst-case delay from node x to destination t over the
edge e : (x → y), cx y t . The term min(cy_t) denotes the least guaranteed worst-
case delay over all outgoing edges of node y . The pre-processing algorithm is run
inversely to the direction of packet transmission as preceding nodes depend on
delay values of links from the following nodes. The values obtained after the pre-
processing stage determine the safe bounds for packet transmission and avoid
unsafe edges during exploration.

Figure 3.4 shows the real-time network from [Nayak Seetanadi, Årzén, and

37

Chapter 3. Real-time Routing Network

Maggio, 2020] with cx y t shown over each edge obtained after execution of
the pre-processing algorithm. Algorithm 1 shows the pseudocode of the pre-
processing algorithm that is executed on a global level during network initial-
ization and network reconfiguration to obtain worst-case transmission times to
destination, cx y t .

Optimization phase
The optimization phase, also called value iteration, of RL estimates and updates
the value function of a state and is an integral part of all RL algorithms. The func-
tion determines the value of being in the current state and the reward expected
from the remainder of the episode. The same can be extended to estimate values
of state action pairs and the reward expected after taking a particular action. RL
algorithms constantly update value functions of states (or state action pairs) and
capture the evolution of the environment over numerous episodes.

RL algorithms can be mainly divided into model-based and model-free al-
gorithms, depending upon whether the agent has access to a model of the en-
vironment. Model-based algorithms make efficient use of the information ob-
tained per episode from the environment and have been studied extensively in
other research domains. The problem of finding optimal solutions for model-
based problems has been studied in optimal control through the use of Dynamic
Programming (DP) [Bertsekas, Bertsekas, Bertsekas, and Bertsekas, 1995] [Kirk,
2004]. DP is also used to solve MDPs and compute optimal policies given a per-
fect model of the environment. This requires complete knowledge about tran-
sition probabilities between the different states and the corresponding rewards
obtained, which is not always possible in most real world problems.

Model-free algorithms, such as Monte Carlo methods and Temporal-
Difference learning, are popular in reinforcement learning due to their simple
implementation and the large number of episodes generally performed in RL.
Monte Carlo (MC) methods are simple, model-free algorithms that use expe-
rience obtained through system sampling to execute optimal actions. These
methods do not assume complete knowledge of the environment and learn
through interactions with it. Value iteration in MC methods are performed af-
ter completion of one episode and this knowledge is used in the subsequent
episodes.

Temporal-Difference (TD) learning is a model-free value iteration method
that combines properties of both Monte-Carlo methods and dynamic program-
ming. TD learning explores the environment through samples similar to MC
methods. Compared to MC methods however, TD learning methods update state
value estimates without waiting for the episode termination, resulting in faster
learning. A unique version of TD learning where value iteration is performed after
each step as opposed to at the end of the episode, is termed as TD(0) or one-step
TD and is shown in Equation (3.1).

Q (s, a) =Q (s, a)+α · (R+γ ·max
(
Q(s′, a′)

)−Q (s, a)
)

(3.1)

38

3.2 Reinforcement Learning

States s and s′ are the current state and next state respectively and a is
the action taken from state s to transition to state s′. Q (s, a) and Q

(
s′, a′) are

the Q-values for the current and next state-action pairs respectively. The term
max

(
Q(s′, a′)

)
denotes the estimated maximum Q-value for all actions from state

s′. α is the learning rate that determines the amount of old state information
that is overwritten with new information obtained in the current episode. The
discount factor γ determines the emphasis placed by the algorithm on future
rewards. A small value of γ means the agent will only consider current rewards
whereas a large value will make the agent try to obtain higher long-term rewards.
R is the reward from the environment obtained from state s after taking action
a.

This thesis applies TD(0) where values of state action pairs are updated im-
mediately after packet transmission, while minimizing transmission of unnec-
essary messages. Each state in the routing algorithm is a duplex of the current
node, x, and the amount of time remaining for packet transmission, (DF −δi x),
where DF is the pre-determined packet deadline andδi x is the time elapsed upon
packet arrival at node x.

The learning agent is tuned to obtained large rewards and performs actions
consistently that have previously resulted in minimal transmission times. New
paths from a state are explored regularly to ensure that any new paths, or paths
that were previously congested and result in lesser delays, are considered for fu-
ture transmission. This continuous exploration ensures that the agent adapts
to congestions in the network at expense of few packets having comparatively
higher delays.

Exploration policy
The exploration policy of RL algorithms determines the method with which an
agent chooses an action a from a given state s in order to maximize the obtained
reward. The policy also explores unknown states in the environment in search
of higher rewards. In a dynamic environment, the algorithm also explores states
that previously returned poor rewards.

We use ε-greedy exploration algorithm in the thesis to determine the outgo-
ing edge from each node on packet arrival. ε-greedy exploration provides a bal-
ance between exploration and exploitation in RL. The term ε in ε-greedy refers
to the probabilities that determines the choice of action from a state. The policy
chooses the best action, i.e. the action that has the maximum value associated
with it, with a probability of (1−ε) in most episodes. The policy also explores new
and sub-optimal actions with a small probability of ε.

The ε-greedy algorithm in the thesis applies a modified probability distribu-
tion to ensure safe exploration by attaching a probability of 0 to unsafe edges.
This exploration policy ensures that new routing paths are explored regularly in
search of links with lower delays resulting in load balancing while also ensuring
that the paths chosen by the algorithm are safe.

Algorithm 2 shows the pseudocode of the ε-greedy exploration algorithm
and TD(0) optimization for packet routing. The algorithm is run at each node

39

Chapter 3. Real-time Routing Network

Algorithm 2 Node Logic (x)

1: for Every packet do
2: if x = source node i then
3: Dx = DF // Initialize the deadline
4: δi t = 0 // Initialize total delay for packet = 0

5: for each edge (c → y) do
6: if cx y t > Dx then // Edge is infeasible
7: P (x|y) = 0
8: else if Q((x,Dx), y) = max(Q((x,Dx),_ ∈F)) then
9: P (x|y) = (1−ε)

10: else
11: P (x|y) = ε/(si ze(F −1))

12: Choose edge (x → y) with Probability P
13: Observe δx y

14: δi t += δx y

15: D y = Dx −δx y

16: R = Environment Reward Function(x,δi t)
17: Q((x,Dx), y) = Value iteration
18: if y = Destination node t then
19: DONE

x at the arrival of the packet. If the node is the source, the deadline is initialized
to the final deadline of the packet, Dx = DF , and the total path delay is initialized
to 0, δi t = 0. The exploration phase of the algorithm is shown in Lines five to 12
and value iteration is shown in Lines 13 to 17.

The exploration phase of the algorithm evaluates the feasibility of each out-
going edge from node x, (x → y). If cx y t > Dx then the edge is unsafe and is as-
signed probability of 0 and is not chosen for packet transmission. The remaining
safe edges form the set of feasible edges F for packet routing. The edge asso-
ciated with the maximum Q value, Q((x,Dx), y) = max(Q((x,Dx),_ ∈ F)), is as-
signed the highest probability P (x|y) = (1− ε). The rest of feasible edges are as-
signed probabilities such that P (x|y) = ε/(si ze(F−1)). The outgoing edge (x → y)
is then chosen with probability P .

The value iteration phase evaluates the value of being in the current state and
it is updated after receiving the reward from the environment. The state value up-
date is performed in Line 17 of the node logic algorithm. The choice of the value
iteration algorithm depends upon the different parameters of the network. A sim-
ple choice is updating values of the state action pairs using the TD(0) algorithm
given by Equation (3.1).

Reward Function
The reward function is the score obtained by the agent to determine the net pos-
itive/negative effect of actions taken during the episode. Thus the objective of

40

3.2 Reinforcement Learning

Algorithm 3 Environment Reward Function(x,δi t)

1: Assigns the reward at the end of transmission
2: if Node x = Destination node t then
3: R = DF −δi t

4: else
5: R = 0

an agent is to maximize the total reward over multiple episodes. The agent also
alters its exploration policy through the reward function due to low rewards ob-
tained due to a particular action. The reward function for real-time routing is the
total amount of time saved when the packet reaches its destination. The reward
obtained reduces when a particular edge is congested, altering the exploration
policy to choose other edges for packet transmission.

Algorithm 3 shows the pseudocode of the reward function for the safe routing
algorithm. The reward R is obtained after each edge traversal by the algorithm. If
x 6= t , the packet is still in transmission and the destination is not reached. The
episode continues and the packet is propagated to the next node. If x = t , the
destination is reached and the reward is calculated. The positive reward is the
amount of time saved during complete packet transmission. It is calculated as
R = DF −δi t and awarded at the end of the episode.

41

4
Conclusion and Future
Work

The thesis investigated the application of control techniques to improve perfor-
mance and ensure correctness of surveillance cameras and real-time routing net-
works. This was accomplished through control techniques with co-application of
model checking and reinforcement learning techniques. The thesis showed that
application of model checking simplifies verification of the correctness and fair-
ness of the event-based manager. The self-adaptive cameras in the network reg-
ulated their bandwidth utilization efficiently through simple PI controller min-
imizing error as opposed to complex models that rely on estimating the frame
size of images to fit the allocated bandwidth. The properties of the camera net-
work were constructed and verified using deterministic, probabilistic, and non-
deterministic models built using Markov Decision Process (MDP). The thesis also
party investigated strategy generation using model checking and contention be-
tween the different entities in the camera network model. Books [Clarke, Hen-
zinger, Veith, and Bloem, 2018] and [Baier and Katoen, 2008] provide further in-
formation on nuances of model checking and the various modelling and prop-
erty verification techniques.

The dual-delay model in the second part of the thesis implemented safe
packet routing in real-time networks. The algorithms proposed in the thesis en-
sured safety by exploring only safe paths using expert information on the sys-
tem obtained through a pre-processing algorithm. The routing algorithm is then
run independently at each node to route packets on paths with minimal delays,
while exploring sub-optimal paths in search of better rewards. This continuos
exploration ensures that the routing algorithms react to time-varying delays and
link congestions and perform automatic load balancing over different outgoing
paths. The thesis showed the possibility of application of powerful reinforcement
learning algorithms to time-sensitive critical systems using system knowledge.
[Sutton and Barto, 2018] is the premier authority on reinforcement learning and
provides further analysis of the TD learning algorithm used in the thesis. The
book provides an introduction to construction of the RL environment and the
different learning techniques applied to various problems.

42

Chapter 4. Conclusion and Future Work

The following areas show promise for future research and expansion on ideas
presented in the thesis.

The self adaptive cameras in the surveillance network from the thesis are as-
signed equal priorities in the network. Their relative importance is then calcu-
lated using the error function and the bandwidth is allocated to them accord-
ingly. Instantaneous changes in the scenes captured by the camera can lead to
large changes in the frame sizes, causing frame drops. An interesting area for in-
vestigation is application of simple image processing with object and motion de-
tection to predict the camera priorities and reduce frame drops due to bandwidth
mismatch.

Paper I applies Structural Similarity Index (SSIM) [Wang, Bovik, Sheikh, and
Simoncelli, 2004] to perform image analysis and compare the quality of encoded
images. SSIM was not used in the following research due to its high computa-
tion overhead at the camera. This can be mitigated by applying recent advance-
ments in edge computing for complex and fast image analysis at the cameras.
This image analysis could make it possible for informed priority assignments to
the cameras without complete dependence on the error function for bandwidth
allocation.

Paper II explored strategy generation for the camera network through the ap-
plication of model checking. The model checking tool was tasked with inves-
tigating a strategy to minimize cost that penalized manager interventions and
dropped frames with a single cost. This could be expanded to generate differ-
ent strategies during the different stages of operation. For example, attaching a
higher cost for consecutive dropped frames as the camera would lose data for a
longer period of time as opposed to singular dropped frames which would lead
to choppy video but better information.

The camera models built for model checking in papers II, III and IV were re-
stricted in their scope due to tool limitations. The complexity, number of cam-
eras in the surveillance network, and the time horizon of property verification
was low due to the state space explosion problem. Current research into appli-
cation of machine learning for state space reduction and prediction is promising
but was not accessible during the writing of the thesis. A possible future direction
of research can utilize these new techniques to build complex non-deterministic
models with larger time horizon for verification.

[Edpalm, Martins, Maggio, and Årzén, 2018] investigated frame size estima-
tion when using H.264 video compression. The authors compared different es-
timation models including the linear model from the thesis. The linear camera
model under performs other models as the model is more suitable for feedback-
based frame size regulation as opposed to frame size estimation. An interesting
extension is using the linear camera model for bandwidth regulation of video
with inter-frame compression techniques such as H.264. This would also evalu-
ate disturbance rejection and regulation of video bandwidth in the presence of
embedded audio.

The dual-delay routing used in the thesis was introduced recently [Baruah,
2018] and shows promise in its application to various domains. Paper V explored

43

Chapter 4. Conclusion and Future Work

the application of the dual-delay model for safe routing using safe-reinforcement
learning. Paper VI showed that the choice of routing algorithm is non-trivial
and is dependent on network size and requirements. Both papers used Net-
workX [Hagberg, Schult, and Swart, 2008], a graph emulator to implement the
example networks without complete network emulation. It would be interesting
to investigate the performance of the routing algorithms with full IP-stack on a
network emulator or even a real network.

The dual-delay model is unique as previous research did not investigate dual-
criteria optimization for two costs that are independent of each other. The dual-
delay model can naturally represent traffic flows on highways and evaluate differ-
ent routing algorithms of transportation networks. Reinforcement learning can
then be applied to optimize traffic over highways and reduce congestions.

44

Bibliography

Baier, C., E. M. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan
(1997). “Symbolic model checking for probabilistic processes”. In: Automata,
Languages and Programming, pp. 430–440.

Baier, C. and J.-P. Katoen (2008). Principles of model checking. MIT press. ISBN:
9780262026499.

Baruah, S. (2018). “Rapid routing with guaranteed delay bounds”. In: 2018 IEEE
Real-Time Systems Symposium (RTSS). Nashville, TN, USA. DOI: 10.1109/RTSS.
2018.00012.

Bertsekas, D. P., D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas (1995). Dy-
namic programming and optimal control. Vol. 1. 2. Athena scientific Belmont,
MA.

Chasparis, G. C., M. Maggio, E. Bini, and K.-E. Årzén (2016). “Design and imple-
mentation of distributed resource management for time-sensitive applica-
tions”. Automatica 64, pp. 44–53. DOI: 10.1016/j.automatica.2015.09.015.

Chen, P. and Y. Nie (2013). “Bicriterion shortest path problem with a general non-
additive cost”. Transportation Research Part B: Methodological 57, pp. 419–
435. DOI: 10.1016/j.trb.2013.05.008.

Cimatti, A. (2001). “Industrial applications of model checking”. In: Modeling and
Verification of Parallel Processes: 4th Summer School, MOVEP 2000 Nantes,
France, June 19–23, 2000 Revised Tutorial Lectures. Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp. 153–168. DOI: 10.1007/3-540-45510-8_6.

Clarke, E. M., T. A. Henzinger, H. Veith, and R. Bloem, (Eds.) (2018). Handbook of
Model Checking. Springer. ISBN: 978-3-319-10574-1.

Clarke, E. M., W. Klieber, M. Nováček, and P. Zuliani (2012). “Model checking
and the state explosion problem”. In: Tools for Practical Software Verification:
LASER, International Summer School 2011, Elba Island, Italy, Revised Tutorial
Lectures. Berlin, Heidelberg, pp. 1–30.

Dijkstra, E. W. (1959). “A note on two problems in connexion with graphs”. Nu-
merische Mathematik 1:1, pp. 269–271. DOI: 10.1007/BF01386390.

45

Bibliography

Ding, W. and B. Liu (1996). “Rate control of mpeg video coding and recording by
rate-quantization modeling”. IEEE Transactions on Circuits and Systems for
Video Technology 6:1, pp. 12–20. DOI: 10.1109/76.486416.

Duflot, M., M. Kwiatkowska, G. Norman, and D. Parker (2006). “A formal analysis
of bluetooth device discovery”. International Journal on Software Tools for
Technology Transfer 8:6, pp. 621–632. DOI: 10.1007/s10009-006-0014-x.

Edpalm, V., A. Martins, K.-E. Årzén, and M. Maggio (2018). “Camera Networks
Dimensioning and Scheduling with Quasi Worst-Case Transmission Time”.
In: 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Vol. 106.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many, 17:1–17:22. ISBN: 978-3-95977-075-0.

Edpalm, V., A. Martins, M. Maggio, and K.-E. Årzén (2018). H.264 Video Frame Size
Estimation. Technical Reports TFRT-7654. Department of Automatic Control,
Lund Institute of Technology, Lund University.

Esparza, J. and K. Heljanko (2000). “A new unfolding approach to ltl model check-
ing”. In: Montanari, U. et al. (Eds.). Automata, Languages and Programming.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 475–486. ISBN: 978-3-540-
45022-1.

Gandibleux, X. (2006). Multiple Criteria Optimization: State of the Art Annotated
Bibliographic Surveys. International Series in Operations Research & Man-
agement Science. Springer US.

García, J. and F. Fernández (2015). “A comprehensive survey on safe reinforce-
ment learning”. Journal on Machine Learning Research 16:1, pp. 1437–1480.

Groote, J. F., T. W. Kouters, and A. Osaiweran (2015). “Specification guidelines to
avoid the state space explosion problem”. Software Testing, Verification and
Reliability 25:1, pp. 4–33. DOI: https://doi.org/10.1002/stvr.1536.

Hagberg, A. A., D. A. Schult, and P. J. Swart (2008). “Exploring network structure,
dynamics, and function using networkx”. In: Varoquaux, G. et al. (Eds.). Pro-
ceedings of the 7th Python in Science Conference. Pasadena, CA USA, pp. 11–
15. URL: https://www.researchgate.net/publication/236407765_Exploring_
Network_Structure_Dynamics_and_Function_Using_NetworkX.

Hansen, P. (1980). “Bicriterion path problems”. In: Multiple Criteria Decision
Making Theory and Application. Springer, Berlin, Heidelberg, pp. 109–127.
DOI: 10.1007/978-3-642-48782-8_9.

Heath, J., M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn (2006).
“Probabilistic model checking of complex biological pathways”. In: Proc.
Computational Methods in Systems Biology (CMSB’06). Vol. 4210. Springer,
pp. 32–47. DOI: 10.1007/11885191_3.

Kirk, D. E. (2004). Optimal control theory: an introduction. Courier Corporation.

Kwiatkowska, M., G. Norman, and D. Parker (2008). “Using probabilistic model
checking in systems biology”. ACM SIGMETRICS Performance Evaluation Re-
view 35:4, pp. 14–21.

46

Bibliography

Kwiatkowska, M., G. Norman, and D. Parker (2011). “PRISM 4.0: verification of
probabilistic real-time systems”. In: Proc. 23rd International Conference on
Computer Aided Verification (CAV’11). Vol. 6806. LNCS, pp. 585–591.

Kwiatkowska, M., G. Norman, and D. Parker (2012). “Probabilistic verification
of herman’s self-stabilisation algorithm”. Formal Aspects of Computing 24:4,
pp. 661–670.

Kwiatkowska, M., G. Norman, and J. Sproston (2002). “Probabilistic model check-
ing of the IEEE 802.11 wireless local area network protocol”. In: Proc. 2nd Joint
International Workshop on Process Algebra and Probabilistic Methods, Per-
formance Modeling and Verification (PAPM/PROBMIV’02). Vol. 2399. LNCS.
Springer, pp. 169–187. DOI: 10.1007/3-540-45605-8_11.

Legay, A., B. Delahaye, and S. Bensalem (2010). “Statistical model checking: an
overview”. In: International Conference on Runtime Verification. LNCS 6418.
Springer, pp. 122–135. DOI: 10.1007/978-3-642-16612-9_11.

Lehmann, D. and M. Rabin (1981). “On the advantage of free choice: A symmetric
and fully distributed solution to the dining philosophers problem (extended
abstract)”. In: Proc. 8th Annual ACM Symposium on Principles of Program-
ming Languages (POPL’81), pp. 133–138. DOI: 10.1145/567532.567547.

Maggio, M., E. Bini, G. Chasparis, and K.-E. Årzén (2013). “A game-theoretic re-
source manager for rt applications”. In: Euromicro Conference on Real-Time
Systems. DOI: 10.1109/ECRTS.2013.17.

McMillan, K. L. and D. K. Probst (1995). “A technique of state space search based
on unfolding”. Formal Methods in System Design 6:1, pp. 45–65. DOI: 10.1007/
BF01384314.

Mehlhorn, K. and P. Sanders (2008). Algorithms and Data Structures: The Basic
Toolbox. 1st ed. Springer. ISBN: 9783540779773.

Nayak Seetanadi, G., K.-E. Årzén, and M. Maggio (2019). “Model checking a self-
adaptive camera network with physical disturbances”. In: 2019 IEEE Interna-
tional Conference on Autonomic Computing (ICAC). DOI: 10.1109/ICAC.2019.
00021.

Nayak Seetanadi, G., J. Camara, L. Almeida, K.-E. Årzén, and M. Maggio (2017).
“Event-driven bandwidth allocation with formal guarantees for camera net-
works”. In: 2017 IEEE Real-Time Systems Symposium (RTSS). DOI: 10.1109/
RTSS.2017.00030.

Nayak Seetanadi, G. (2020). “Adaptive routing for real-time networks with dy-
namic deadlines using safe reinforcement learning”. In: ACM/IEEE Confer-
ence on Internet of Things Design and Implementation (IoTDI). Under Review.

Nayak Seetanadi, G., K.-E. Årzén, and M. Maggio (2020). “Adaptive routing with
guaranteed delay bounds using safe reinforcement learning”. In: Proceedings
of the 28th International Conference on Real-Time Networks and Systems. DOI:
10.1145/3394810.3394815.

47

Bibliography

Nayak Seetanadi, G., L. Oliveira, L. Almeida, K.-E. Årzén, and M. Maggio (2018).
“Game-theoretic network bandwidth distribution for self-adaptive cameras”.
In: SIGBED Review. Association for Computing Machinery. DOI: 10 . 1145 /
3267419.3267424.

Silver, D. et al. (2018). “A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play”. Science 362:6419, pp. 1140–1144. DOI:
10.1126/science.aar6404.

Silvestre, J., L. Almeida, R. Marau, and P. Pedreiras (2007). “Dynamic qos man-
agement for multimedia real-time transmission in industrial environments”.
In: 2007 IEEE Conference on Emerging Technologies and Factory Automation
(EFTA 2007). DOI: 10.1109/EFTA.2007.4416963.

Sutton, R. S. and A. G. Barto (2018). Reinforcement learning: An Introduc-
tion. Adaptive computation and machine learning. MIT Press. ISBN:
9780262039246.

Vinyals Orioland Babuschkin, I. et al. (2019). “Grandmaster level in starcraft ii us-
ing multi-agent reinforcement learning”. Nature 575:7782, pp. 350–354. DOI:
10.1038/s41586-019-1724-z.

Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli (2004). “Image quality
assessment: from error visibility to structural similarity”. IEEE Transactions
on Image Processing 13:4. DOI: 10.1109/TIP.2003.819861.

48

Paper I

Game-Theoretic Network Bandwidth
Distribution for Self-Adaptive Cameras

Gautham Nayak Seetanadi Luis Oliveira Luis Almeida

Karl-Erik Arzén Martina Maggio

Abstract

Devices sharing a network compete for bandwidth, being able to transmit
only a limited amount of data. This is for example the case with a net-
work of cameras, that should record and transmit video streams to a moni-
tor node for video surveillance. Adaptive cameras can reduce the quality of
their video, thereby increasing the frame compression, to limit network con-
gestion. In this paper, we exploit our experience with computing capacity
allocation to design and implement a network bandwidth allocation strat-
egy based on game theory, that accommodates multiple adaptive streams
with convergence guarantees. We conduct some experiments with our im-
plementation and discuss the results, together with some conclusions and
future challenges.

©2018 ACM. Originally published in 2018 ACM SIGBED Review, Volume 15,
Number 3, Pages 31-36. Reprinted with permission. The article has been refor-
matted to fit the current layout.

49

Paper I. Game-Theoretic Network Bandwidth Distribution ...

1. Introduction

Nowadays, networked devices became commonplace, from surveillance cam-
eras to industrial sensors and actuators, or even team of mobile robots. If these
devices access the network in an on-demand fashion, sharing bandwidth may
result in problems due to network congestion. On the contrary, when the num-
ber of devices is unchanged during execution and the communication pattern
is very streamlined, network dimensioning should be enough to handle all the
simultaneous transmissions in a timely manner.

Unfortunately, there are circumstances in which a proper dimensioning of
the network capacity is either impossible, or too expensive. This can for exam-
ple be the case with a network of cameras. Suppose we have a surveillance cam-
era network, where a certain number of cameras are monitoring a given area. In
general, if the designer allocates to each camera the maximum bandwidth they
may require, there will be a significant bandwidth over-provisioning. A more ef-
ficient approach would be to allocate an average bandwidth so that the cameras
can transmit their video streams with an average quality. However, if something
is happening in one area – for example a lot of movements are detected by one
camera – the bandwidth of the corresponding video stream may be increased,
granting it better quality. At the same time, another area may be empty and there-
fore the corresponding bandwidth can be decreased to accommodate the higher
quality stream. The camera network becomes therefore adaptive and is able to
adjust to the characteristics of the execution environment.

Problem Statement. We consider a system composed of a set of cameras that
send video streams to a monitoring node through a shared Ethernet network that
supports virtual channels with bandwidth reservations. The cameras must re-
spect their assigned bandwidth, therefore, they run some basic computation on
the captured frames to determine the compression level that they should apply.
The bandwidth in the network needs to be dynamically allocated at runtime by a
monitoring node to accommodate the transient needs of the different cameras.
The monitoring node needs to quickly redistribute the available bandwidth in-
troducing as little additional overhead as possible, in particular concerning the
transmission of additional information.

Contribution. We propose to achieve the mentioned low-overhead adapta-
tion by decoupling the action of the resource manager, in charge of the network
bandwidth distribution, and the cameras. Recently, the same strategy has been
adopted for CPU allocation [Maggio, Bini, Chasparis, and Årzén, 2013], where
the decoupling of adaptation at the application level and of the adjustment of
the scheduling parameters has proven successful. The consequences of allocat-
ing CPU can be disruptive for the system but the action itself of allocating CPU
itself is is a fairly “safe” operation – with respect to the amount of overhead intro-
duced for the scheduling parameter change – on the contrary changing the chan-
nel size has a non-negligible additional overhead in terms of messages exchange,
and some associated risks. In fact, if the amount of bandwidth is not enough to
stream the frames, every other frame transmission is dropped and a significant

50

1 Introduction

reduction in effective video frame rate takes place, with strong negative impact
on quality. This paper presents the implementation of a resource manager, al-
locating network bandwidth to a network of self-adaptive cameras, preserving
some guarantees on the transmission of the streams.

Related Work. The topic of self-adaptive cameras has already been investi-
gated for a long time, particularly in the scope of video transmission over the
Internet or in local area networks [Vandalore, Feng, Jain, and Fahmy, 2001; Com-
munication, 2004; Rinner and Wolf, 2008]. Research has mainly focused on two
complementary issues, video transmission and image compression. The former
led to standard protocols such as Real-Time Transport Protocol (RTP), Real-Time
Streaming Protocol (RTSP), Session Initiation Protocol (SIP) and their improve-
ments, which measure key network parameters, such as bandwidth usage, packet
loss rate, and round-trip delays, to cope with network load conditions, control-
ling the load submitted to the network [Veeraraghavan and Weber, 2008] or us-
ing traffic prioritization with allocation of network resources in the nodes [Cao,
Nguyen, and Nguyen, 2013].

On the other hand, image and video compression led to standards such as
MJPEG, JPEG2000, MPEG-4, H.264 and more recently MPEG-H and H.265 that
work by exploring redundant information within each image frame and in se-
quences of frames. However, these techniques frequently impose strong delays
and thus a careful selection must be done for different application domains.
While streaming of stored video can tolerate longer delays other domains im-
pose more stringent limitations such as live streaming with augmented real-
ity [Razavi, Fleury, and Ghanbari, 2008], surveillance [Genetec, 2010], industrial
supervised multimedia control [Rinner and Wolf, 2008], multimedia embedded
systems [Ramos, Panigrahi, and Dey, 2007], automated inspection [Kumar, 2008]
and vehicle navigation [Lima and Victorino, 2016].

In these cases, image compression is frequently preferred to video compres-
sion for the lower latency incurred and lower memory and computing resource
requirements. Nevertheless, any compression also incurs variability in transmis-
sion frame sizes that further complicates the matching with the instantaneous
network conditions and has motivated substantial research into adaptive tech-
niques [Rinner and Wolf, 2008; Ramos, Panigrahi, and Dey, 2007]. However, these
works have essentially focused on adapting (single) streams to what the network
provides, without protection against mutual interference. This protection can be
achieved using network reservations (channels), as with Resource Reservation
Protocol (RSVP) or lower layer real-time protocols. However, this has not been
common due to high potential for poor network bandwidth efficiency. The work
in [Silvestre-Blanes, Almeida, Marau, and Pedreiras, 2011] addressed this prob-
lem using adaptive network channels provided by a global network manager that
tracks the actual use that each camera is doing of its allocated bandwidth. In this
paper we follow this line of work by improving over [Silvestre-Blanes, Almeida,
Marau, and Pedreiras, 2011] in the way cameras adapt to their allocated band-
width, namely using a PI feedback controller, and in the way the manager allo-
cates bandwidth, using a game theoretic approach [Maggio, Bini, Chasparis, and

51

Paper I. Game-Theoretic Network Bandwidth Distribution ...

Figure 1. System architecture.

Årzén, 2013].

2. Model

The system is composed of a central node receiving video streams from a set of
cameras, C = {c1, . . . ,cn}, with cardinality n, |C| = n. The central node also runs a
resource manager M, in charge of distributing the available network bandwidth
H. Figure 1 shows a system with a node that is in charge of being the network
manager and the monitor for the cameras, a switch where bandwidth can be al-
located and two cameras sharing the bandwidth.

2.1 The camera
This subsection describes the behavior of a camera cp with p ∈ {1, . . . ,n}. The
camera records a stream of frames. Each of these frames is encoded in an im-
age, that is then sent to the central node via the network. The stream of images
can be denoted with Ip = {ip,1, . . . , ip,m}, where p is the camera identifier and m
is the cardinality of the set of images (the longer the system runs, the more im-
ages each camera produces). Each element ip,w in the set, w ∈ {1, . . . ,m}, has the
following characteristics.

The value of qp,w represents the quality used for the frame encoding. The
quality is an integer number between 1 and 100, initialized using a parameter
qp,0, and loosely represents the percentage of information preserved in the en-
coding. The value of sp,w indicates the size of the encoded image. For each of the
cameras, depending on the resolution used for the recording and on actual man-
ufacturer parameters, the image size has a maximum and a minimum value, re-
spectively denoted with sp,max and sp,min, which we assume to be known. Finally,
each camera transmits τp frames per second, a parameter in our implementa-
tion.

The relationship between the quality used for the encoding qp,w , which can
be changed by the camera, and the size of the resulting frame sp,w is, in princi-
ple, rather complex (see [Marau, Almeida, and Pedreiras, 2006; Silvestre-Blanes,

52

2 Model

Almeida, Marau, and Pedreiras, 2011] for an early exponential model). It depends
on many factors, including the complexity of the scene to encode, the sensor
used by the camera manufacturer, the amount of light that reaches the sensor.
In this work we approximate this relationship using the following affine model

s∗p,w = 0.01 ·qp,w · sp,max +δsp,w , (4.1)

where δsp,w represents a stochastic disturbance on the frame size which can be
both positive and negative to capture more difficult or easier scenes to encode.
This model is only a coarse-grained approximation of the camera behavior, the
idea behind it being that, for control-purposes, the model needs to only capture
the trend in the size behavior – increasing quality will more or less linearly in-
crease the frame size, while decreasing quality will more or less linearly decrease
the frame size. Linearity is also assumed in the model but not necessarily needed
for the controller derivation, as the regulation adapts to the current operating
conditions in an adaptive way using a normalized error as seen below. Assuming
that a frame size has constraints, we then saturate the result to ensure that the
actual size is between the minimum and the maximum size:

sp,w = max{sp,min,min{sp,max, s∗p,w }}. (4.2)

The camera adapts its behavior, meaning that it automatically changes the
quality qp,w to match the amount of network bandwidth that it can use. We de-
note with Bp,w the amount of bandwidth that the p-th camera has available for
the transmission of the w-th image at a given frame rate (the channel allows the
transmission of a certain number of bytes per frame indicated with Bp,w). The
camera then adjusts its quality parameter using an Adaptive Proportional and
Integral (PI) controller

ep,w =

normalized error︷ ︸︸ ︷
Bp,w−1 − sp,w−1

Bp,w−1

q∗
p,w = kp ·ep,w +ki ·

w−1∑
t=1

ep,t

(4.3)

and saturating the result using the minimum and maximum quality values which
are 15 and 85 respectively1,

qp,w = max{15,min{85, q∗
p,w }}. (4.4)

The gains kp and ki are parameters of the controller inside the camera and de-
termine how aggressive the adaptation is. Depending on their values, the system
can be analyzed as a dynamical system and standard control theory can be used

1 Ideally, the quality is a number between 1 and 100, but in our controller we impose saturations
that are based on our prior experience with the equipment.

53

Paper I. Game-Theoretic Network Bandwidth Distribution ...

to prove that the value of qp,w converges to a specific value. Also, the same theory
allows to prove that if the conditions of the scene change – for example including
more artifacts that makes it more difficult to encode – the quality settles to a new
value that allows the transmission of the frame, if such a quality value exists. We
also implement an anti-windup mechanism in the controller, a standard practice
for PI controllers [Åström and Hägglund, 1995].

2.2 The network manager
To determine how to distribute the network bandwidth we use the approach pro-
posed in [Maggio, Bini, Chasparis, and Årzén, 2013] for CPU allocation and ex-
tend it to handle network bandwidth allocation. The network, particularly the
link between the switch and the monitoring station, has a fixed capacity, which
we denote H. The network manager M is in charge of allocating a specific
amount of the available network bandwidth to each of the cameras. For every
instant of time t in which the network manager is invoked, M selects a vector
b∗,w , whose elements sum to one.

∀t ,M selectsb∗,t = [b1,t , . . . ,bn,t]
such that

∑n
p=1 bp,t = 1 (4.5)

This means that each of the elements of the vector determines the fraction of the
available bandwidth that is assigned to each video stream. Denoting the actual
amount of bandwidth assigned by the resource manager to camera p at time t
with Bp,t , this implies Bp,t = bp,t ·H. Knowing the frame rate τp used by camera
p, then the bandwidth allocated by the network manager to that camera at time t
in bytes per second (Bp,t) can be easily converted to the bandwidth (in bytes per

frame) allocated to the transmission of frame w , (Bp,w) as follows: Bp,w = Bp,t

τp
.

The network manager is periodically triggered with period πM, a parameter
in our implementation. Its first invocation, at time 0 equally divides the avail-
able bandwidth to the cameras. The following executions, happening at times
{πM,2πM,3πM, . . . } assign the bandwidth based on the following relationship,
from [Maggio, Bini, Chasparis, and Årzén, 2013], where the index t denotes the
current time instant and t +1 the following one.

bp,t+1 = bp,t +ε · {−λp,t · fp,t +bp,t ·
n∑

i=1
[λi ,t · fi ,t]} (4.6)

Equation (4.6) introduces some terms. ε is a small constant and it is used to
limit the change in bandwidth that is actuated for every step. Typical values are
between 0.1 and 0.6. The choice of a suitable value for ε depends on the trade-
off between the responsiveness of the controller (higher values making it con-
verge faster, in principle, but also making it likely to have overshoots) and its ro-
bustness to disturbances (lower values delay convergence favoring a more sta-
ble behavior in the presence of transient disturbances). λp,t ∈ (0,1) is a weight
that denotes the fraction of adaptation that should be carried out by the resource

54

2 Model

manager. A lower λp,t value indicates that the resource manager is less willing to
accommodate the needs of the p-th camera. The importance of this value lays
in the relative difference between the values assigned to all the cameras. If all
the cameras have an equal λp,t , the resource manager is not going to favor any
of them. If one of the cameras has a higher value with respect to the others, the
resource manager is “prioritizing” the needs of that camera over the others, and
the changes will favor that specific camera. In the following, we will assume λp,t
to not change during execution, and use λp instead. A change in the value of λp
has no impact in our analysis, and can be used to change the resource manager
preference during runtime. fp,t is a function that we call the matching function,
and expresses to what extent the amount of network bandwidth given to the p-th
camera at time t is a good fit for the current quality. Denoting with w the in-
dex of the last transmitted frame at time t , and with tw the time of transmis-
sion of the w-th frame, fp,tw determines a match between the quality qp,w and
the bandwidth bp,tw available for the camera when the transmission of the w-th
frame happens. For the analysis in [Maggio, Bini, Chasparis, and Årzén, 2013] to
hold (therefore obtaining proof for the properties discussed in Section 2.3), the
matching function should satisfy the following properties:

(P1a) fp,tw > 0 if Bp,tw > sp,w

(P1b) fp,tw < 0 if Bp,tw < sp,w

(P1c) fp,tw = 0 if Bp,tw = sp,w

(P2a) fp,tw ≥ fp,tw−1 if qp,w ≤ qp,w−1

(P2b) fp,tw ≤ fp,tw−1 if qp,w ≥ qp,w−1

(P3a) fp,tw ≥ fp,tw−1 if bp,tw ≥ bp,tw−1

(P3b) fp,tw ≤ fp,tw−1 if bp,w ≤ bp,tw−1

This basically means that the matching function should be positive if the band-
width given is abundant, negative if it is insufficient and zero if the match is
perfect (P1); that the matching function should increase when the quality is de-
creased and decrease with increased quality (P2); and, finally, that the matching
function increases when more bandwidth is assigned and decreases when band-
width is removed (P3).

In our implementation we select the matching function to be a normalized
version of the mismatch between the bandwidth allocated to the camera and the
size of the frame produced by the camera, ep,w in Equation (4.3):

fp,tw = Bp,w − sp,w

Bp,w︸ ︷︷ ︸
Bp,w= Bp,t

τp
= bp,t ·H

τp

. (4.7)

The so defined matching function automatically satisfies properties (P1a-c) and
(P3a-b). If one assumes the disturbance δsp,w to be negligible, it is possible to

55

Paper I. Game-Theoretic Network Bandwidth Distribution ...

c2

c1

M t = 0 t = 1 t = 2

M assigns B2,t=0 B2,t=1

I1,1 I1,2 I1,3 I1,4 I1,5 I1,6

I2,1 I2,2 I2,3 I2,4

i1,2 : q1,2 → s1,2
B1,t=0 → B1,w=2

Figure 2. Example of system timeline.

use Equation (4.1) to verify that properties (P2a) and (P2b) hold. Notice that the
matching function corresponds to the normalized error used by the camera con-
troller described in Section 2.1. In the following we will use fp,t to indicate the
generic value of the matching function over time and fp,tw to indicate the precise
value of the matching function computed for the frame w transmitted at time tw .
Figure 2 shows a timeline example. At time 0 the network manager decides the
values of b1,0 and b2,0, which in turn assign a value to B1,t=0 and B2,t=0. Depend-
ing on the frame rates τ1 and τ2, the cameras have then a value for the amount
of bandwidth that each frame should consume. In the case of the first camera,
the choice of the resource manager determines B1,w=1, B1,w=2 and B1,w=3. In the
case of the second camera, only B2,w=1 and B2,w=2 are affected. At time t = 1 the
resource manager chooses a different allocation, affecting the frames in the next
interval. For each frame, the cameras determine a quality, that in turn affects the
frame size. For example, for I1,2, the second image transmitted by the first cam-
era, the quality q1,2 determines the frame size s1,2. Finally, the following quality
q1,3 is computed using the difference between the network bandwidth allocated
to the frame B1,w=2 and the size of the encoded frame s1,2.

2.3 System’s behavior
From a theoretical perspective, the resource allocation and camera adaptation
scheme is not different from the CPU allocation and service level adjustment
proposed in [Maggio, Bini, Chasparis, and Årzén, 2013; Chasparis, Maggio, Bini,
and Årzén, 2016]. In both cases, there is one entity determining the resource al-
location and other entities that can change their resource demands while being
cooperative in trying to reach an agreeable resource distribution without unfairly
favoring one entity. The behavior of the system has therefore been analyzed and
some properties have been proven [Chasparis, Maggio, Bini, and Årzén, 2016].
Here we only give a brief summary of these properties.
Starvation avoidance. A positive amount of resource is guaranteed for all cameras
that have a non-zero weight, ∀p such that λp > 0,∀t ,bp,t > 0.
Balance. The balance property holds in case of overload conditions. The network

56

3 Implementation and Setup

is overloaded when the capacity H is not enough to guarantee that all the cam-
eras have a matching function greater or equal to zero ∀p,∃i , fp,i ≤ 0, even when
∀p, qp,min. In this case, it is guaranteed that no camera can monopolize the avail-
able bandwidth at the expense of the others.
Convergence. The amount of bandwidth allocated to each camera and the
streams’ quality converge to a stationary point which corresponds to a unique
fair resource distribution (a distribution in which the matching function is zero
for all the cameras) whenever possible (in non-overload conditions) both in case
of synchronous [Chasparis, Maggio, Bini, and Årzén, 2016, Theorem 4.1] and
asynchronous [Chasparis, Maggio, Bini, and Årzén, 2016, Theorem 4.2] update.
Scalability. The average measured overhead for the computation of the band-
width distribution in the resource manager is 2µs, for a network of two cameras.
Despite this number being small, this is not the reason why we claim this ap-
proach has low overhead. One of the reasons why this resource allocation strat-
egy is low-overhead is its linear time complexity. The bandwidth to be allocated
can be computed in linear time with respect to the number of cameras, accord-
ing to Equation (4.6). This makes the system able to scale to a high number of
cameras with limited impact.

3. Implementation and Setup

This section describes the underlying protocol which is used to transmit data,
together with the acquisition and encoding of images. As shown in Figure 1, the
implemented system consists of a network manager and monitor node, together
with cameras connected over a Switched Ethernet local area network. The net-
work manager oversees all activity on the network and implements the band-
width allocation strategy described in Section 2.2. Since it acts as a monitor, it
also receives the images transmitted by the connected cameras. It continually
monitors the bandwidth consumption and apply bandwidth changes.

OpenCV. Each camera p captures an image w and encodes it using the given
quality qp,w computed according to Equation (4.4) in in Section 2.1. The camera
than transmits the image to the monitor node. We use OpenCV for image cap-
ture and modification, due to its pre-built open source libraries that implement
different image processing functionality [Bradski, 2000]. Specifically, our imple-
mentation uses the imencode function, which takes an input image and encodes
it using the jpeg format and a given compression ratio cp,w , that we compute as
cp,w = 100−qp,w .

FTT-SE. To dynamically change the amount of bandwidth allocated, we need
an underlying architecture that support bandwidth adaptation. For this, we use
the Flexible Time Triggered (FTT) scheduling [Pedreiras and Almeida, 2003],
which enforces adaptive hard reservations. In our implementation we use the
Switched Ethernet (SE) implementation FTT-SE [Marau, Almeida, and Pedreiras,
2006]. We use the asynchronous communication scheme for the FTT-SE setup

57

Paper I. Game-Theoretic Network Bandwidth Distribution ...

and select a frame transmission period of 30ms, as done in prior work. FTT-SE
uses trigger messages from the master (the network manager) to the slaves (the
cameras) to change the allocated bandwidth, providing guarantees on minimum
bandwidth allocation [Almeida et al., 2007].

Physical Setup. The following section describes experimental results obtained
with our implementation. The three physical units used for the experiments form
a multiple source single sink architecture. Each unit runs Fedora 21. The first unit
has a Intel Core i7-4790, 8 core CPU with 32 GB RAM. It runs the network manager
and monitor nodes, implemented as independent processes on the system. The
other two units are two cameras, for which we use the commercial off-the-shelf
cameras Logitech C270. The first camera was positioned to capture a scene with
a lot of artifacts, like fast moving objects. The second camera captures a mostly
static scene. We differentiate the scenes to simulate a scenario where cameras
have different priorities and needs.

Implementation parameters. For the entire infrastructure the implementation
parameters are the execution period πM, the total available network bandwidth
H and the value of ε. For all of the experiments described in Section 4, πM was
set to 300ms and εwas set to 0.15. In our setup, the available network bandwidth
H is 4Mbps. We deliberately set a low total bandwidth to stress the system and
make sure that adaptation is needed. When two cameras are active, the amount
of bandwidth is not enough to transmit the frames, unless the used compression
is really high.

Assessment Criteria. We use three different criteria to assess the obtained so-
lutions. The first criterion is the difference between the bandwidth allocated by
the resource manager (AllocBW) and the one used by the cameras (InstBW). The
second criteria is called Structural Similarity (SSIM) Index [Wang, Bovik, Sheikh,
and Simoncelli, 2004]. The SSIM is a metric that represents the information loss
from an original image to a transformed one. We use the SSIM to compare the
original and encoded image, computing it offline to avoid runtime overhead. Fi-
nally, the third assessment criterion is the amount of frames dropped because
the allocated bandwidth was not enough to transmit them. The camera captures
an image and stores it in the buffer. During transmission if the camera is unable
to transmit the whole frame in the allocated bandwidth, it is dropped. Notice that
the system does not have enough bandwidth to transmit the full set of frames it
records, therefore the optimal percentage of transmitted frames is not 100 (but
varies depending on what the network bandwidth allows to achieve).

4. Experimental Validation

We conducted experiments to compare different allocation methodologies (ours
and the state-of-the-art solution) and camera adaptation techniques. We recall
that there are two adaptation levels: (a) the network manager decides how to dis-

58

4 Experimental Validation

0 10 20 30 40 50 60 70 80
0.0

10.0

20.0

30.0

Time [s]

BW
[M

bp
s]

AllocBW Camera 1 AllocBW Camera 2 InstBW Camera 1 InstBW Camera 2

Figure 3. Results with Equal Distribution, without Camera Adaptation – Experi-
ment 1.

0.0

1.0

2.0

3.0

4.0

BW
[M

bp
s]

AllocBW Camera 1 AllocBW Camera 2 InstBW Camera 1 InstBW Camera 2

0 20 40 60 80 100 120
0.0

1.0

2.0

3.0

4.0

Time [s]

BW
[M

bp
s]

Figure 4. Results with Equal Distribution, and adaptation with [Silvestre-Blanes,
Almeida, Marau, and Pedreiras, 2011] (top) and PI controller (bottom) – Experi-
ment 2.

tribute bandwidth to the connected cameras, (b) the cameras adapt the encoding
process to use the bandwidth.

Experiment 1: need to adjust. In this first experiment, the network manager
distributes the bandwidth equally. The cameras do not apply any adaptation
mechanism. We use this experiment as a baseline to test the system’s operation.
Figure 3 shows the experiment results. For the first 20 seconds, there is only one
camera in the network, which receives all the bandwidth. A second camera joins

59

Paper I. Game-Theoretic Network Bandwidth Distribution ...

0 200 400 600 800 1,000 1,200 1,400 1,600
0.0

2 ·10−2
4 ·10−2
6 ·10−2
8 ·10−2
1 ·10−1

Frame Number

SSIM

Camera 1 Camera 2

Figure 5. SSIM difference between PI controller and the strategy in [Silvestre-
Blanes, Almeida, Marau, and Pedreiras, 2011] – Experiment 2.

the network around 20 seconds after the start and is turned then off when the
time is equal to 40 seconds. The manager reacts reducing the amount of band-
width allocated to first camera and equally distributing network resources to the
two cameras. The images produced by the cameras are too big and, in absence
of any kind of adaptation, they are often not able to send the data – as reported
in the first lines of Tables 1 and 2, only roughly 19% of the frames produced by
Camera 1 and 12% of the frames produced by Camera 2 are transmitted.

Experiment 2: comparison with [Silvestre-Blanes, Almeida, Marau, and Pe-
dreiras, 2011]. The next experiment compares two alternatives for the camera
adaptation strategies, using the same equal bandwidth allocation described for
Experiment 1. As done for Experiment 1, Camera 1 joins the network immedi-
ately, while the second one enters at around 40 seconds from the start of the ex-
periment. In both cases, the cameras attempt to match the size of the encoded
images to the available bandwidth. Around 85 seconds from the experiment start,
Camera 2 is shut down and releases its bandwidth, which is given to Camera 1.

In one case (the left plot in Figure 4), we use the model and adaptation strat-
egy in [Silvestre-Blanes, Almeida, Marau, and Pedreiras, 2011], which fits the Vari-
able Bit Rate (VBR) in the cameras to the given Constant Bit Rate (CBR) chan-
nel [Ding and Liu, 1996]. In the second case (the right plot in Figure 4), the cam-
era uses the adaptive PI controller described in Section 2 with kp is set to 10 and
ki is set to 1. We have tuned these parameters for the camera controller empiri-
cally according to standard control practice [Åström and Hägglund, 1995]. Com-
pared to the model in [Silvestre-Blanes, Almeida, Marau, and Pedreiras, 2011],
our camera is more efficient at using the bandwidth allocated by the network
manager. Figure 5 shows the differences in the SSIM per frame. Both the cameras
have a SSIM higher than 0. This indicates that quality of images captured in both
the cameras is higher with the PI controller compared to the model in [Silvestre-
Blanes, Almeida, Marau, and Pedreiras, 2011], making the PI controller a better
choice. The amount of frames dropped is similar in both the runs, with the PI
model allowing the cameras to transmit slightly more frames (another point in

60

4 Experimental Validation

0.0

2.0

4.0
BW

[M
bp

s]

Allocated BW Camera 1 Allocated BW Camera 2
Instantaneous BW Camera 1 Instantaneous BW Camera 2

0.8

0.9

1.0

SS
IM

Camera 1
Camera 2

0.0

0.5

1.0

b
p,

t

-1.0

0.0

1.0

f p
,t

0 10 20 30 40 50 60
20
50
80

Time [s]

q
p,

t

Figure 6. Results with Network manager and PI camera controller – Experiment
3.

favor) – see Tables 1 and 2.
Experiment 3: the full system. The last experiment incorporates the complete

adaptation strategy. The network manager uses the game-theoretic approach to
allocate bandwidth to the connected cameras and the cameras use the PI con-
troller to ensure to fully take advantage of the given bandwidth. As a result, the
frame that has a lot of artifacts (like Camera 1) and a very time-varying scene is
given more network bandwidth. The resulting system is efficient in both alloca-
tion and utilization of the allocated bandwidth.

Figure 6 shows the allocation of bandwidth to the two cameras. The network
bandwidth starts off by allocating most of the bandwidth available to Camera

61

Paper I. Game-Theoretic Network Bandwidth Distribution ...

Table 1. Statistics for Camera 1

Experiment No No of
Captured

frames

No of
Transmitted

frames

Percentage of
Transmitted

Frames

1 1475 280 18.98
2 [Silvestre-Blanes, Almeida,

Marau, and Pedreiras, 2011]
3285 1641 49.95

2 [PI] 3667 1869 50.96
3 1735 805 46.39

Table 2. Statistics for Camera 2

Experiment No No of
Captured

frames

No of
Transmitted

frames

Percentage of
Transmitted

Frames

1 517 62 11.99
2 [Silvestre-Blanes, Almeida,

Marau, and Pedreiras, 2011]
1005 593 59.00

2 [PI] 635 396 62.36
3 634 249 39.27

1. Around 25 seconds, Camera 2 is introduced. This causes the manager to re-
configure the network and allocate the bandwidth equally. Soon, the manager
realizes that Camera 2 does not require as much bandwidth as Camera 1. Thus,
the manager adjusts the allocation. Once Camera 2 leaves the network at around
62 seconds, Camera 1 receives the needed additional bandwidth. The Figure also
shows the remaining properties of the experiment: the normalized bandwidth
bp,t of the camera p at time t that the manager uses to calculate the amount of
bandwidth to be allocated, the matching function, fp,t and the quality qp,t set by
both cameras.

A negative value of fp,t indicates that the camera is starved and a positive
value indicates that the camera has an abundance of bandwidth allocated. The
optimal value of fp,t is zero. At every change in the network both the cameras
react by changing their qualities and the resource manager by changing the allo-
cation.

5. Conclusion

In this paper we have applied a CPU allocation strategy [Maggio, Bini, Chasparis,
and Årzén, 2013] to the problem of network bandwidth allocation with a set of
cameras competing for bandwidth. In this paper, we have shown that a resource
manager acting periodically in the system is able to achieve some guarantees on

62

References

convergence, scalability and the general behavior of the system itself.

References

Almeida, L. et al. (2007). “Online qos adaptation with the flexible time-triggered
(FTT) communication paradigm”. In: Insup Lee Joseph Y-T. Leung, S. H. S.
(Ed.). Handbook of Real-Time and Embedded Systems. CRC Press.

Åström, K. J. and T. Hägglund (1995). PID Controllers: Theory, Design, and Tuning.
2nd ed. Instrument Society of America, Research Triangle Park, NC.

Bradski, G. (2000). “The openCV library”. Doctor Dobbs Journal 25:11.

Cao, D. T., T. H. Nguyen, and L. G. Nguyen (2013). “Improving the video trans-
mission quality over ip network”. In: 2013 Fifth International Conference on
Ubiquitous and Future Networks (ICUFN). DOI: 10.1109/ICUFN.2013.6614884.

Chasparis, G. C., M. Maggio, E. Bini, and K.-E. Årzén (2016). “Design and imple-
mentation of distributed resource management for time-sensitive applica-
tions”. Automatica 64, pp. 44–53. DOI: 10.1016/j.automatica.2015.09.015.

Communication, A. (2004). White paper: digital video compression: review of the
methodologies and standards to use for video transmission and storage.

Ding, W. and B. Liu (1996). “Rate control of mpeg video coding and recording by
rate-quantization modeling”. IEEE Transactions on Circuits and Systems for
Video Technology 6:1, pp. 12–20. DOI: 10.1109/76.486416.

Genetec (2010). White paper: three simple ways to optimize your bandwidth man-
agement in video surveillance.

Kumar, A. (2008). “Computer-vision-based fabric defect detection: a survey”.
IEEE Transactions on Industrial Electronics 55:1, pp. 348–363. DOI: 10.1109/
TIE.1930.896476.

Lima, D. A. de and A. C. Victorino (2016). “A hybrid controller for vision-based
navigation of autonomous vehicles in urban environments”. IEEE Transac-
tions on Intelligent Transportation Systems 17:8, pp. 2310–2323. DOI: 10.1109/
TITS.2016.2519329.

Maggio, M., E. Bini, G. Chasparis, and K.-E. Årzén (2013). “A game-theoretic re-
source manager for rt applications”. In: Euromicro Conference on Real-Time
Systems. DOI: 10.1109/ECRTS.2013.17.

Marau, R., L. Almeida, and P. Pedreiras (2006). “Enhancing real-time communica-
tion over cots Ethernet switches”. In: IEEE International Workshop on Factory
Communication Systems. DOI: 10.1109/WFCS.2006.1704170.

Pedreiras, P. and L. Almeida (2003). “The flexible time-triggered (FTT) paradigm:
an approach to qos management in distributed real-time systems”. In: Pro-
ceedings International Parallel and Distributed Processing Symposium. DOI:
10.1109/IPDPS.2003.1213243.

63

Paper I. Game-Theoretic Network Bandwidth Distribution ...

Ramos, N., D. Panigrahi, and S. Dey (2007). “Dynamic adaptation policies to im-
prove quality of service of real-time multimedia applications in ieee 802.11e
wlan networks”. Wirel. Netw. 13:4, pp. 511–535. DOI: 10.1007/s11276- 006-
9203-5.

Razavi, R., M. Fleury, and M. Ghanbari (2008). “Low-delay video control in a per-
sonal area network for augmented reality”. IET Image Processing 2:3. DOI: 10.
1049/iet-ipr:20070183.

Rinner, B. and W. Wolf (2008). “An introduction to distributed smart cameras”.
Proceedings of the IEEE 96:10. DOI: 10.1109/JPROC.2008.928742.

Silvestre-Blanes, J., L. Almeida, R. Marau, and P. Pedreiras (2011). “Online qos
management for multimedia real-time transmission in industrial networks”.
IEEE Transactions on Industrial Electronics 58:3. DOI: 10 . 1109 / TIE . 2010 .
2049711.

Vandalore, B., W.-c. Feng, R. Jain, and S. Fahmy (2001). “A survey of application
layer techniques for adaptive streaming of multimedia”. Real-Time Imaging
7:3. DOI: 10.1006/rtim.2001.0224.

Veeraraghavan, V. and S. Weber (2008). “Fundamental tradeoffs in distributed
algorithms for rate adaptive multimedia streams”. Comput. Netw. 52:6,
pp. 1238–1251. DOI: 10.1016/j.comnet.2008.01.012.

Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli (2004). “Image quality
assessment: from error visibility to structural similarity”. IEEE Transactions
on Image Processing 13:4. DOI: 10.1109/TIP.2003.819861.

64

Paper II

Event-Driven Bandwidth Allocation with
Formal Guarantees for Camera Networks

Gautham Nayak Seetanadi Javier Cámara Luis Almeida

Karl-Erik Arzén Martina Maggio

Abstract

Modern computing systems are often formed by multiple components that
interact with each other through the use of shared resources (e.g., CPU, net-
work bandwidth, storage). In this paper, we consider a representative sce-
nario of one such system in the context of an Internet of Things application.
The system consists of a network of self-adaptive cameras that share a com-
munication channel, transmitting streams of frames to a central node. The
cameras can modify a quality parameter to adapt the amount of informa-
tion encoded and to affect their bandwidth requirements and usage. A crit-
ical design choice for such a system is scheduling channel access, i.e., how
to determine the amount of channel capacity that should be used by each of
the cameras at any point in time. Two main issues have to be considered for
the choice of a bandwidth allocation scheme: (i) camera adaptation and net-
work access scheduling may interfere with one another, (ii) bandwidth dis-
tribution should be triggered only when necessary, to limit additional over-
head. This paper proposes the first formally verified event-triggered adap-
tation scheme for bandwidth allocation, designed to minimize additional
overhead in the network. Desired properties of the system are verified us-
ing model checking. The paper also describes experimental results obtained
with an implementation of the scheme.

©2017 IEEE. Originally published in IEEE International Conference on Real-Time
Systems Symposium(RTSS), Paris, France, December 2017. Reprinted with per-
mission. The article has been reformatted to fit the current layout.

65

Paper II. Event-Driven Bandwidth Allocation with Formal ...

1. Introduction

Modern computing systems in which a multitude of devices compete for network
resources suffer from performance issues derived from inefficient bandwidth al-
location policies. This problem is often mitigated in bandwidth-constrained sys-
tems by introducing run-time device-level adaptations (e.g. adjustment of op-
eration parameters) to ensure correct information transmission [Pedreiras and
Almeida, 2003; Almeida et al., 2007]. Adapting their behavior, the devices are ca-
pable of consequently adjusting their bandwidth requirements. Such scenarios
present two main issues: (i) the adaptation at the device level can interfere with
network allocation policies; (ii) it is quite difficult to obtain formal guarantees
on the system’s behavior, given that multiple adaptation strategies (network dis-
tribution and device-level adaptation) are active at the same time – and hence
the presence of multiple independent control loops may lead to interference and
result in disruptive effects [Heo and Abdelzaher, 2009].

In this paper, we tackle the two aforementioned issues in bandwidth alloca-
tion, ensuring the satisfaction of formal properties like convergence to a steady
state. We apply our method to a camera surveillance network, in which self-
adaptive cameras compete for network resources to send streams of frames to
a central node.

The cameras adapt the quality of the transmitted frames every time a new
frame is captured. To ensure the satisfaction of control-theoretical properties, a
network manager is triggered periodically to schedule network access [Seetanadi,
Oliveira, Almeida, Arzen, and Maggio, 2017]. The periodic solution is desirable
because it is equipped with a formal guarantee of convergence of the system to
a single equilibrium in which all cameras are able to transmit their frames, if this
equilibrium exists. In the opposite case, the time-triggered action guarantees that
no camera can monopolize the network.

Despite this desirable property, the periodic solution has also severe short-
comings that are mainly related to the choice of the triggering period. The sys-
tem may be too slow in reacting to camera bandwidth requirements if the pe-
riod of the manager is too large. On the contrary, the system may exhibit poor
performance due to the overhead caused by unnecessary actions, if the network
manager is triggered too frequently – given a fixed number of cameras, the over-
head of the network manager execution is approximately constant, so reducing
the network manager period results in higher impact on the network operation.
These limitations can effectively harm the performance of the system and should
be taken into account when designing a network allocation strategy. Based on
these considerations, this paper introduces an event-triggering policy for the net-
work manager that minimizes the impact of the execution overhead on network
performance, while taking into account the dynamic needs of the devices, in-
duced by physical constraints and environmental factors – in our case study, for
example, image size fluctuations derived from changes in the scenes captured by
the cameras.

This paper provides the following contributions:

66

2 Time-triggered activation

• A formal model for the problem of allocating bandwidth to adaptive de-
vices. We cast this into the problem of a set of cameras collaborating to
deliver the best overall system performance by modifying their bandwidth
requirements and the quality of the encoded frames.

• Application of model checking to the event-triggered network manager. An
event-triggered solution limits the formal guarantees provided with clas-
sical control-theoretical tools [Chasparis, Maggio, Bini, and Årzén, 2016],
which are based on the assumption that the network manager is triggered
periodically. Nevertheless, we show how formal convergence guarantees
can be achieved employing model checking, even when the network man-
ager is not periodically triggered. We also verify additional properties and
synthesize an optimal triggering strategy that minimizes the system’s oper-
ational cost.

• Implementation and testing of the solution, to combine the theoretical
guarantees with experimental validation.

2. Time-triggered activation

This section introduces the system and the notation used in the rest of the paper.
The system is composed of a central node receiving video streams from a set of
cameras, Ct = {c1, . . . ,cn}, where t represents the current time instant and n is
the number of active cameras at time t . The central node also runs a network
manager M, in charge of distributing the available network bandwidth H, e.g.,
H= 4Mbps.

Figure 1 shows the system architecture when there are three cameras that
capture frames and the network manager that determines the network access
pattern for the cameras. In the network access timeline, black slots are used to
show when the network manager uses the network, while the other colors rep-
resent the cameras transmitting frames. The third camera, c3, is turned on when
the first two, c1 and c2, have already transmitted two frames.

This section assumes a time-triggered activation scheme for the network
manager, where the manager periodically senses the performance of the cam-
eras and chooses the bandwidth distribution for the next activation period.

2.1 The camera
This subsection describes the behavior of the cameras where cp with p ∈ {1, . . . ,n}
denotes camera p. The camera captures a stream of frames. Each of these frames
is compressed by an adequate encoder – e.g., MJPEG – and sent to the central
node via the network. The stream of frames is denoted by Ip = {ip,1, . . . , ip,m},
where p is the camera identifier and m is the cardinality of the set of frames (the
longer the system runs, the more frames each camera produces). Each element
ip,w in the set, w ∈ {1, . . . ,m}, has the following characteristics.

67

Paper II. Event-Driven Bandwidth Allocation with Formal ...

c1 c2 c3

M
allocates
{b∗,t=1,b∗,t=2, . . . }

i1,w=1
i1,w=2
i1,w=3

. . .

i2,w=1
i2,w=2
i2,w=3

. . .
i3,w=1

. . .time

1πalloc 2πalloc 3πalloc

time

0

Figure 1. System architecture.

The value qp,w represents the quality used for frame encoding, as in MJPEG.
The quality is an integer number between 1 and 100, initialized using a parame-
ter qp,0, and loosely represents the percentage of information preserved during
encoding. The value ŝp,w indicates the estimate of the size of the encoded frame.
For each of the cameras, depending on the resolution used for the recording and
on actual manufacturer parameters, the frame size has a maximum and a min-
imum value, respectively denoted by sp,max and sp,min, which we assume to be
known.

The relationship between the quality used for the encoding qp,w , which can
be changed by the camera, and the size of the resulting frame sp,w is rather com-
plex (see [Silvestre-Blanes, Almeida, Marau, and Pedreiras, 2011] for exponential
models). This complexity is explained by the many factors on which the relation-
ship between quality and frame size depends, including but not limited to the
scene that the camera is recording (e.g., the amount of artifacts in the scene), the
sensor used by the camera manufacturer, and the amount of light that reaches
the sensor. In this work we approximate this relationship using the following
affine model

ŝ∗p,w = 0.01 ·qp,w · sp,max +δsp,w , (4.1)

where δsp,w represents a stochastic disturbance on the frame size. We then sat-
urate the result to ensure that the actual size is between the minimum and the
maximum size:

ŝp,w = max{sp,min,min{sp,max, ŝ∗p,w }}. (4.2)

The model above is used to synthesize a controller for the camera that adapts
its behavior. The camera automatically changes the quality qp,w to match the
amount of network bandwidth that it can use, using an Adaptive Proportional
and Integral (PI) controller similar to the one developed in [Wang, Chen, Huang,

68

2 Time-triggered activation

Subramonian, Lu, and Gill, 2008]1. The quality parameter q∗
p,w is the control sig-

nal and roughly corresponds to the compression level for the frame. The con-
troller uses as a setpoint the channel size dedicated to the transmission of the
w-th frame Bp,w , and measures the size of the frame sp,w . In computing the error
ep,w we normalize the difference between the setpoint and the measured value,
dividing it by the setpoint Bp,w .

ep,w =

normalized error︷ ︸︸ ︷
Bp,w−1 − sp,w−1

Bp,w−1

q∗
p,w = kp,Proportional ·ep,w +ki ,Integral ·

w−1∑
t=1

ep,t

(4.3)

The integral action ensures that the stationary error is zero, i.e., that the setpoint
is reached whenever possible. In some cases, reaching the setpoint may not be
possible, due to the presence of saturation thresholds. We saturate the computed
quality q∗

p,w using the minimum and maximum quality values which we set at

qmin and qmax respectively2,

qp,w = max{qmin,min{qmax, q∗
p,w }}. (4.4)

The gains kp and ki are parameters of the controller inside the camera and de-
termine how aggressive the adaptation is. We also implemented an anti-windup
mechanism in the controller.

2.2 The network manager
To determine how to distribute the network bandwidth we use the approach pro-
posed in [Maggio, Bini, Chasparis, and Årzén, 2013] for CPU allocation and ex-
tend it to handle network bandwidth allocation. The network has a fixed capac-
ity H. The network manager M is in charge of allocating a specific amount of the
available network bandwidth to each of the cameras. For every instant of time t at
which the network manager is invoked, M selects a vector b∗,w , whose elements
sum to one.

∀t ,M selects b∗,t = [b1,t , · · · ,bn,t], such that
n∑

p=1
bp,t = 1 (4.5)

This means that each of the elements of b∗,t determines the fraction of the
available bandwidth that is assigned to each video stream until the next network
manager activation.

1 Given the model in Equation (4.2), an adaptive PI controller is capable of achieving a zero steady-
state error and selecting the desired quality.

2 Ideally, the quality is a number between 1 and 100, since it represents the compression level. How-
ever, we impose saturation levels that are based on our prior experience with the equipment, us-
ing qmin = 15 and qmax = 85.

69

Paper II. Event-Driven Bandwidth Allocation with Formal ...

The assignment is enforced periodically, in a Time Division Multiplexed Ac-
cess (TDMA) fashion. The network manager uses an allocation period πalloc =
30ms during which each active camera is expected to transmit a frame.

We denote by tw the start time of the transmission of the w-th frame and with
tM,w the time when the network manager computed the most recent bandwidth
distribution vector b∗,w when the w-th frame transmission starts. The manager
allows camera cp to transmit data for the w-th frame for an amount of time that
corresponds to the computed fraction of the TDMA period bp,tM,w ·πalloc. The
total amount of data that cp is allowed to transmit for the w-th frame is Bp,w .

Bp,w = bp,tM,w ·πalloc ·H (4.6)

If the size of the encoded frame is greater than the amount of data that the
camera can transmit, sp,w > Bp,w , the frame is dropped, as it would be outdated
for the next transmission slot. The current transmission slot is lost and cannot be
reclaimed by any other camera.

The network manager is periodically triggered with period πM, which must
be a multiple of πalloc and a parameter in our implementation. In its first invo-
cation, at time 0, the manager equally divides the available bandwidth among
the cameras. The following network manager interventions, happening at times
{πM,2πM,3πM, . . . } assign the bandwidth based on the following relationship,
from [Maggio, Bini, Chasparis, and Årzén, 2013], where the index t denotes the
current time instant and t +1 the following one.

bp,t+1 = bp,t +ε · {−λp,t · fp,t +bp,t ·
n∑

i=1
[λi ,t · fi ,t]} (4.7)

Equation (4.7) decides the bandwidth assignment for camera p in the next
time instant, and introduces the following parameters: (i) ε is a small constant
used to limit the change in bandwidth that is allocated at every step. The choice
of a suitable value for ε depends on the trade-off between the responsiveness of
the manager (higher values making it converge faster, in principle, but also mak-
ing it likely to have overshoots) and its robustness to disturbances (lower values
increase convergence time favoring a more stable behavior in the presence of
transient disturbances)3; (ii) λp,t ∈ (0,1) is a weight that denotes the fraction of
adaptation that should be carried out by the network manager. A lower λp,t value
indicates that the network manager is less willing to accommodate the needs of
the p-th camera. The importance of this value lies in the relative difference be-
tween the values assigned to all the cameras. If all the cameras have an equalλp,t ,
the network manager is not going to favor any of them. If one of the cameras has a
higher value with respect to the others, the network manager is “prioritizing” the
needs of that camera over the others. In the following, we assume that λp,t does
not change during execution, and use λp as a shorthand, for simplicity. A change
in the value of λp has no impact on our analysis, and can be used to change the

3 Typical values for ε are between 0.1 and 0.6.

70

2 Time-triggered activation

network manager preference during runtime; (iii) fp,t is a function that we call
the matching function, which expresses to what extent the amount of network
bandwidth given to the p-th camera at time t is a good fit for the current quality.

The matching function fp,tw is a concept introduced in [Maggio, Bini, Chas-
paris, and Årzén, 2013] and should determine a match between the quality qp,w
(which influences the frame size sp,w) and the resource allocation Bp,w available
for the camera when the transmission of the w-th frame happens. In our im-
plementation, we choose to use (Bp,w − sp,w)/Bp,w , also equal to the normalized
error ep,w in Equation (4.3) as the matching function. For the analysis in [Maggio,
Bini, Chasparis, and Årzén, 2013] to hold – which proves properties such as star-
vation avoidance, balance, convergence, and stability, discussed in Section 2.3 –,
the matching function should satisfy the following properties:

(P1a) fp,tw > 0 if Bp,tw > sp,w

(P1b) fp,tw < 0 if Bp,tw < sp,w

(P1c) fp,tw = 0 if Bp,tw = sp,w

(P2a) fp,tw ≥ fp,tw−1 if qp,w ≤ qp,w−1

(P2b) fp,tw ≤ fp,tw−1 if qp,w ≥ qp,w−1

(P3a) fp,tw ≥ fp,tw−1 if bp,tw ≥ bp,tw−1

(P3b) fp,tw ≤ fp,tw−1 if bp,w ≤ bp,tw−1

These properties entail that the matching function must be positive if the band-
width given is abundant, negative if it is insufficient, and zero if the match is per-
fect (P1); that the matching function must increase when the quality is decreased
and decrease with increased quality (P2); and, finally, that the matching function
increases when more bandwidth is assigned and decreases when bandwidth is
removed (P3).

Our implementation choice for the matching function – ep,w , from Equa-
tion (4.3) – automatically satisfies properties (P1a-c) and (P3a-b). If one assumes
the disturbance δsp,w to be negligible, it is possible to use Equation (4.1) to ver-
ify that properties (P2a) and (P2b) hold. Notice that the matching function cor-
responds to the normalized error used by the camera controller described in
Section 2.1. In the following we will use fp,t to indicate the value of the match-
ing function over time and fp,tw to indicate the value of the matching function
computed for the frame w transmitted at time tw . Also, we use bp to indicate
the sequence of bandwidth assignments for camera cp over time 〈bp,0,bp,1, . . .〉
and qp to indicate the sequence of quality per frame chosen by the camera
〈qp,w=0, qp,w=1, . . .〉. An example timeline can be seen in Appendix A.

2.3 System behavior
From a theoretical perspective, the resource allocation and camera adaptation
schemes are not different from the CPU allocation and service level adjustment
proposed in [Maggio, Bini, Chasparis, and Årzén, 2013]. The behavior of the sys-
tem has therefore been analyzed and some properties have been proven [Chas-

71

Paper II. Event-Driven Bandwidth Allocation with Formal ...

paris, Maggio, Bini, and Årzén, 2016]. Here we only give a brief summary of these
properties.

Starvation avoidance. A positive amount of resource is guaranteed for all cam-
eras that have a non-zero weight, i.e., ∀{t , p},λp > 0 ⇒ bp,t > 0.

Balance. The balance property holds in case of overload conditions. The net-
work is overloaded at time t when the capacity H is not enough to guarantee
that all the cameras have a matching function greater or equal to zero (∀p, qp,t =
qmin, fp,t ≤ 0)∧ (∃i , fi ,t < 0). In this case, it is guaranteed that no camera can mo-
nopolize the available bandwidth at the expense of the others.

Convergence. The amount of bandwidth allocated to each camera and the
streams’ quality converge to a stationary point which corresponds to a fair re-
source distribution (a distribution in which the matching function is zero for
all the cameras) whenever possible (in non-overload conditions) both in case
of synchronous (the cameras update their quality at the same time) [Chasparis,
Maggio, Bini, and Årzén, 2016, Theorem 4.1] and asynchronous updates (the
cameras update their quality potentially at different times) [Chasparis, Maggio,
Bini, and Årzén, 2016, Theorem 4.2].

Scalability. One of the reasons behind this resource allocation strategy is its
linear time complexity. The bandwidth to be allocated can be computed in linear
time with respect to the number of cameras, according to Equation (4.7). This
can scale to many cameras and is therefore beneficial in a complex setup. Ap-
pendix C shows the overhead introduced by the network manager’s execution
for a varying number of cameras. The execution overhead shown is per network
manager activation. With periodic execution, for large period values, the impact
of the overhead tends to become negligible, but the system is less responsive. On
the contrary, when the network manager period is short, the overhead is signifi-
cant, but the system is more responsive.

3. Towards event-triggered activation

As briefly summarized in Section 2.3, using time-triggered activation for the net-
work manager allows us to guarantee some desired properties of the system be-
havior. One key assumption, needed to derive the formal proof of convergence,
is the periodic computation of the resource distribution.

Time-triggered activation, however, has two major drawbacks. The first draw-
back is the difficulty in choosing an appropriate value for the period πM, which
has a remarkable impact on the system performance. The second drawback is
the additional overhead imposed by periodic activation of the network manager,
when only negligible adjustments are needed. In the following, we briefly discuss
these drawbacks, using data from our implementation to back up our claims.

72

3 Towards event-triggered activation

3.1 Period choice
An experiment was conducted with a network composed of two cameras and a
network manager, running the system for 90s. The first camera, c1, was active for
the entire duration of the experiment, [0s,90s], pointing at a scene with many ar-
tifacts. The second camera, c2, was transmitting during the interval [30s,55s] and
directed towards a scene that was easier to encode, with fewer artifacts. More
precisely, c2 is turned on a few seconds before, notifies the network manager
and gets some bandwidth allocated (around 28s), but starts transmitting frames
only after an initial handshake. The values of λ1 and λ2 are equal and set to
0.5. k1,Proportional and k2,Proportional are set to 10 and the values of k1,Integral and
k2,Integral are set to 10. Finally, the value of ε in the network manager is set to 0.5.

To highlight the criticality of this choice, we ran the experiment using differ-
ent periods: πM = 300ms, πM = 600ms, and πM = 3000ms. Figure 2 shows the
percentage of bandwidth assigned to the cameras (b1 and b2) and the quality
set by the camera controllers (q1 and q2) in the three different cases, in the most
interesting time interval, when the second camera is joining and when both cam-
eras are active.

When the network manager runs with periodπM = 600ms, the system shows
the desired behavior. Immediately after c2 joins the network, the bandwidth is
automatically redistributed, half of it being assigned to the new camera. The re-
duction of the available bandwidth for c1 causes a quality drop. While the quality
q1 is decreased, the quality q2 settles to a value that allows the camera to trans-
mit the frames. On the contrary, when the network manager period is longer
(πM = 3000ms), the system still reaches a steady state, but the quality q2 is much
higher than in the previous case, and the reduction in quality for q1 is substan-
tial, which is undesirable given that the first camera is capturing a scene with
more artifacts than the second one. Looking at the frame size, one discovers that
the higher quality does not come with additional information being transmitted,
since the camera is pointing to a scene that has fewer artifacts. Hence, in this
case the network manager would have done a much better job accommodating
the needs of c1. Finally, the plots forπM = 300ms show that the system converges
to values that are similar to the ones observed when πM = 600ms. However, the
quality of the image produced by the first camera is lower than it could be, and
the system shows oscillations.

For this specific execution conditions, the choice of the period πM = 600ms
is the best among the three tested choices, but different execution conditions can
lead to other values being preferable. To develop a solution that is not tied to a
specific use case and is applicable in practice, one has to design an event-based
intervention policy that triggers network manager interventions only when nec-
essary.

3.2 Resource allocation overhead
Even if we assume that we have the knowledge required to select the best period
for a specific scenario, when the system reaches an equilibrium, it is in a fixed

73

Paper II. Event-Driven Bandwidth Allocation with Formal ...

0.0

0.5

1.0
b 1

πM = 300ms πM = 600ms πM = 3000ms

0.0

0.5

1.0

b 2

15

50

85

q 1

30 40 50 60
15

50

85

Time [s]

q 2

Figure 2. Time-triggered activation with different network manager periods:
bandwidth allocation (b1 and b2) and image quality (q1 and q2).

point where things do not change unless there is a change in the execution con-
ditions. In such cases, there is no need to carry out substantial changes in the
amount of resources assigned and one should carefully evaluate the overhead of
computing a new resource allocation, balancing it against the benefit obtained
in terms of overall system performance.

To evaluate the computational overhead of determining a new resource dis-
tribution, we measured the time it takes for the network manager to: (i) retrieve
data about the size of the last frame sent by the cameras, compute the matching
function for the cameras using fp,t = ep,w as specified in Equation (4.3), (ii) com-
pute the new resource distribution vector b∗,t according to Equation (4.7), and
(iii) inform the cameras about their transmission slots’ duration.

We collected 5000 samples of the duration of the manager’s execution with
a network of two cameras and computed the following statistics. The average

74

4 Event-triggered activation

overhead is 0.0030s, with a standard deviation of 0.0284s (1% of the total time
if the activation period is πM = 300ms, 0.5% when πM = 600ms and 0.1% when
πM = 3000ms). Maximum and minimum values are respectively 0.9863s and
0.0001s. The maximum value is most likely caused by additional workload and
should happen infrequently. However, if this was the real computation time, the
network would not be able to operate at all when πM = 300ms or πM = 600ms,
since the entire time in the period is spent for the network manager computation
and none is left for camera transmissions. When πM = 3000ms, 33% of the time
in the period would be devoted to the network manager execution. Note that the
time complexity for the execution of the network manager increases linearly with
the number of cameras as specified in Section 2.3, which is the best alternative
when the network manager should take into account the needs of all the cameras
(meaning that the network manager needs to at least compute a performance
metric for each of the cameras) [Maggio, Bini, Chasparis, and Årzén, 2013]. This
means that using a different algorithm for the network manager computation will
achieve no significant scalability benefit and improvements on execution time
should be obtained in a different way – e.g. skipping executions.

Executing the network manager fewer times reduces the overhead for the
system. This indicates that avoiding unnecessary calls to the network manager
code would be very beneficial for the system and would improve its performance.
Leaving the periodic solution in place, this benefit can be achieved using a longer
period for the periodic activation scheme. However, the experiment presented
in Section 3.1 demonstrated that a larger activation period is not always a vi-
able alternative. This motivates our investigation of an event-triggered activation
scheme.

4. Event-triggered activation

The purpose of an event-based solution is to quickly react only when needed,
avoiding unnecessary interventions. To design an event-based network manager,
we need to define a set of event-triggering rules that determine when the network
manager is invoked and can intervene, and to describe how the corresponding
events are handled. In the following, we use t− to indicate the time instant that
precedes t , and – at time t – we denote the most recent frame that camera cp
transmitted by ip,wt . Using this notation, wt represents the index of the last frame
the camera transmitted at time t .

The choice done in this paper is to employ the following two triggering rules
and to trigger an event at time t if:

• Ct− 6= Ct , i.e., the network manager is triggered if the set of cameras
changes. In this case, one or more cameras are either removed or added
to the set4. The network manager handles this event by re-distributing

4 Given the TDMA bandwidth reservations, changes to the set of cameras that occur when a round
is in progress are deferred to the closest multiple of πalloc, therefore (t mod πalloc = 0).

75

Paper II. Event-Driven Bandwidth Allocation with Formal ...

the bandwidth equally among the active cameras at time t , ∀cp ∈ Ct =
{c1, . . . ,cn},bp,t = 1/n. At time t , after the network manager performs the
allocation, it sets a timeout τunresp, a multiple of πalloc. If there is one or
more cameras that have not transmitted any frame in the time interval
(t , t +τunresp], said cameras are removed from the set, triggering the same
event at time t + τunresp. This mimics the behavior of the time-triggered
network manager, as seen in the example shown in Figure 2.

• (∃cp s.t.τthr < |ep,wt |)∧(t mod πalloc = 0), i.e., when the transmission round
completes for all the cameras, at least one of them has a normalized error
whose absolute value is higher than a specific threshold τthr, a parameter of
the triggering policy. Just like in its time-triggered counterpart, the event-
based version of the network manager allocates the bandwidth fractions as
specified in Equation (4.7).

With this event-triggering policy, the critical implementation choice is the
value τthr. The normalized error will often be included in the interval [−1,1], al-
though this is not guaranteed by the expression in Equation (4.3). Nonetheless,
when the absolute value of the normalized error is higher than 1, the camera has
encoded a frame whose size is double with respect to the channel size. Therefore,
we assume that a value of 1 or higher should always trigger the network manager
intervention. We determine that τthr is bounded to the open interval (0,1). Within
the given interval, assigning a low value to τthr forces the network manager to in-
tervene often. On the contrary, when τthr approaches 1, the network manager is
triggered less often and relies more on the adaptation done by the cameras.

More complex triggering policies can be defined, some examples can be
found in [Heemels, Johansson, and Tabuada, 2012; Wang and Lemmon, 2011].
Despite their complexity, in event- and self-triggered controllers the triggering
rules are usually based on measurements from the system.

The main drawback of the transition to an event-triggered network manager
is that the properties proved in Section 2.3 do not necessarily hold in the event-
based implementation. The proof of the properties relies on the fact that the net-
work manager acts at pre-determined time instants. This cannot be guaranteed
in an event-based implementation, in which manager interventions depend on
the triggering rule.

In the following section, we therefore use model checking to obtain formal
guarantees on the behavior and the convergence of the system. We therefore pro-
vide a background on model checking and show the results obtained with our
model.

5. Formal methods

This section introduces our use of model checking to verify properties and to se-
lect optimal alternatives for the resource manager implementation. We first in-
troduce some background on Probabilistic Model Checking (PMC) in Section 5.1.

76

5 Formal methods

Then we introduce the model of the system in Section 5.2 and the properties we
prove in Section 5.3. Finally, we discuss an optimal network manager activation
strategy generated by our model checker in Section 5.4.

5.1 Background on model checking
Probabilistic Model Checking (PMC) [Kwiatkowska, Norman, and Parker, 2007]
is a set of formal verification techniques that enable modeling of systems that
exhibit stochastic behavior, as well as the analysis of quantitative properties that
concern costs/rewards (e.g., resource usage, time) and probabilities (e.g., of vio-
lating a safety invariant).

In PMC, systems are modeled as state-transition systems augmented with
probabilities such as discrete-time Markov chains (DTMC), Markov decision pro-
cesses (MDP), probabilistic timed automata (PTA), and properties are expressed
using some form of probabilistic temporal logic, such as probabilistic reward
computation-tree logic (PRCTL) [Andova, Hermanns, and Katoen, 2003], which
state that some probability or reward meet some threshold.

An example of a probability-based PRCTL property is P≥1[G Hal loc = H],
which captures the invariant “the allocated bandwidth to the cameras is al-
ways equal to the total available bandwidth.” In this property, the probability
quantifier P states that the path formula within the square brackets (globally5

Hal loc =H) is satisfied with probability 1. We assume that Hal loc is the sum of
allocated bandwidth to all cameras.

Reasoning about strategies6 is also a fundamental aspect of PMC. It enables
checking for the existence of a strategy that is able to satisfy a threshold or op-
timize an objective expressed in PRCTL, in systems described using formalisms
that support the specification of nondeterministic choices, like MDP.

For example, employing the PRCTL reward minimization operator Rr
mi n=?[F φ]

enables the synthesis of a strategy that minimizes the accrued reward r along
paths that lead to states finally satisfying the state formula φ. An example of a
property employing this operator for strategy synthesis is Rnmi

mi n=?[F t = tmax],
meaning “find a strategy that minimizes the number of total network manager
interventions (captured in reward nmi) throughout a system execution period
(0, tmax), i.e., when time is equal to tmax .”

In this section, we illustrate probabilistic modeling of the camera net-
work system using the high-level language of the probabilistic model checker
PRISM [Kwiatkowska, Norman, and Parker, 2011], in which DTMCs and MDPs
can be expressed as processes formed by sets of commands like the following

[acti on] g uar d → p1 : u1 + ...+pn : un

5 The G modality in PRCTL, read as “globally” or “always” states that a given formula is satisfied
across all states in a sequence that captures a system execution trace. The semantics of G in
PRCTL is analogous to those found in other temporal logics like CTL [Clarke and Emerson, 1982]
or LTL [Gerth, Peled, Vardi, and Wolper, 1996].

6 Strategies – also referred to a as policies or adversaries – resolve the nondeterministic choices of a
probabilistic model (in this case MDP), selecting which action to take in every state.

77

Paper II. Event-Driven Bandwidth Allocation with Formal ...

where g uar d is a predicate over the model variables. Each update ui describes
a transition that the process can make (by executing acti on) if the guard is sat-
isfied. An update is specified by giving the new values of the variables, and has a
probability pi ∈ [0,1]7. In an MDP model, multiple commands with overlapping
guards introduce local nondeterminism and allow the model checker to select
the alternative that resolves the nondeterministic choice in the best possible way
with respect to the property captured at the strategy synthesis level.

5.2 System model
The model consists of a set of modules, each of them capturing the behavior of
one of the entities in the system. The entire model is composed of one module
per camera, one module for the network manager and one module for the sched-
uler. The model imposes turns in executing all the components: it starts with the
cameras performing their actions – sending a frame each – and then continues
with the scheduler, which checks if the network manager should be executed,
calling it if necessary. During its execution, the network manager changes the
bandwidth allocation. Then the scheduler passes again the turn to the set of cam-
eras. The PRISM code for the camera and the manager is displayed in Appendix B,
while in the following we describe the Scheduler, shown in Listing 4.1.

The scheduler maintains two state variables, choice_done and calling_nm (lines
4-5), which keep track of when the choice about invocation is made and if the
network manager is to be called or not. The code in this model can be em-
ployed in two alternative ways. If the model checker is executed with constant
synth_schedule set to true (line 1), it synthesizes a strategy by resolving the nonde-
terminism between actions best_dont (lines 8-12) and best_do (lines 13-17), whose
guards overlap. The strategy minimizes a cost function defined in this case as a
penalty for every dropped frame and for each network manager intervention (cf.
Section 5.4).

1 const bool synth_schedule = true; // prism synthesis
2 const bool event = true; // event−based version
3 module scheduler
4 choice_done: bool init false;
5 calling_nm: bool init false;
6 // prism synthesis (synth_schedule = true) best_dont and best_do:
7 // conditions are the same, choices are different
8 [best_dont] (synth_schedule) & // if prism synthesis
9 (turn = sche) &

10 (rounds < max_frames) &
11 (!choice_done) −> // choice is not yet done
12 (calling_rm' = false) & (choice_done' = true); // choice no

7 In our model, we do not take advantage of probabilities. For each action, we define a single update
rule, with implicit probability 1. However, we could incorporate probabilistic choices with limited
and localized modifications. Probabilistic update rules can be beneficial when modeling physical
phenomena like disturbances, occurring with a certain probability and affecting the modules,
e.g., changes in frame size due to artifacts in the images.

78

5 Formal methods

13 [best_do] (synth_schedule) & // if prism synthesis
14 (turn = sche) &
15 (rounds < max_frames) &
16 (!choice_done) −> // choice is not yet done
17 (calling_rm' = true) & (choice_done' = true); // choice yes
18 // decision without synthesis
19 // if some of the cameras set want_nm to true, call the manager
20 [decision] (!synth_schedule) & // only if not prism synthesis
21 (turn = sche) &
22 (rounds < max_frames) &
23 (!choice_done) −> // choice is not yet done
24 (calling_nm' = want_nm) & (choice_done' = true);
25 // network manager calls or not after decision is made above
26 [] (turn = sche) & (rounds < max_frames) & (choice_done) &
27 (calling_nm) −> // let's call the manager
28 (turn' = nmng) & (calling_nm' = false); // giving turn to manager
29 [] (turn = sche) & (rounds < max_frames) & (choice_done) &
30 (!calling_rm) −> // not calling the manager (or already called)
31 (turn' = cam1) & // giving turn to first camera
32 (rounds' = rounds + 1) & // advancing rounds
33 (choice_done' = false) & // reset for next iteration
34 (want_nm' = event ? false : true) & // time−based acts every time
35 (nmchange' = false); // have not performed any change
36 endmodule

Listing 4.1. Scheduler module description

Alternatively, if the model checker is called with the variable synth_schedule
set to false, the scheduler can be executed either in the time-triggered version,
where the period is simply a constant representingπalloc or in the event-triggered
version (the constant event should be set to true in line 2). In the event-triggered
version, the action labelled decision (lines 20-24) determines if the network man-
ager should be called or not. If the network manager is not to be called, the last
action (lines 29-35) is performed and the turn is passed to the camera. In the op-
posite case (lines 26-28), the network manager is called and, when executed, it
returns the control to the scheduler that then passes the turn to the first camera
(lines 29-35).

5.3 Formal guarantees
With respect to the properties discussed in Section 2.3, starvation avoidance and
balance depend on how Equation 4.7 is constructed and are not influenced by
the event-triggering rule, as long as the network manager is triggered at least one
time when the set of cameras changes. Our triggering scheme guarantees that the
network manager is triggered once when a new camera joins the system or leaves
it, therefore starvation avoidance and balance are satisfied.

On the contrary, in the case of convergence we have no a priori guarantee that
the property holds in the event-triggered version of the network manager. In fact,

79

Paper II. Event-Driven Bandwidth Allocation with Formal ...

the proof of convergence depends on the assumption that the network manager
is periodically triggered and changes the resource assignment at specific time
instants. We therefore want to express the property using a PRCTL formula and
check it resorting to the probabilistic model checker capabilities.

We can formalize convergence for our system as the PRCTL formula
P≥1[F (G !(any_chang e_event))], where any_chang e_event is defined in our
formal model as the disjunction nmchang e ∨ c1chang e ∨ . . .∨ cnchang e. The
property can be interpreted as “the probability that the system will eventually
reach a state for which no change event occurs in the remainder of the execution
is 1”. In practice, this translates to checking that for all potential execution paths,
the system always reaches a state from which the resource manager does not
make any further updates to bandwidth assignment, and the cameras do not
make any further adjustments in quality.

We checked this property for the event-triggered version of our model in exe-
cutions with max_ f r ames = 30 (which means that convergence must occur be-
fore a cycle of 30 frames per camera is completed), for a network of two cameras,
and for all the combination of values of λ1, λ2 and τthr belonging to the vector
[0.01,0.02, . . .0.99], and assessed its satisfaction.

In addition to the assessment of properties described in Section 2.3, we
can also conduct sanity checks, like assessing the satisfaction of invariants. An
example is checking that the system always takes advantage of all the avail-
able bandwidth, assigning it to the cameras. We can formalize this property as
P≥1[G used_bw = max_bw], where used_bw is a formula defined as the sum-
mation of all bw_x variables in the model, where x is the camera number (see
Listing 4.3, lines 4-5).

Finally, we can also compare different design alternatives for the triggering
rules, to see which alternative exhibits the most desirable behaviour. One exam-
ple is checking the number of resource manager interventions during the exe-
cution of the system, which should ideally be minimized. We can capture this
property in PRCTL as Rnm_cal l s

max=? [F r ound s = max_ f r ames], which can be in-
terpreted as “maximum number of manager interventions (encoded in reward
structure nm_cal l s) until the end of the execution (the maximum number of
frames defined above as max_ f r ames)”. This property relies on the definition of
the reward structure nm_cal l s that captures the total number of network man-
ager interventions (encoded in variable nm_i nter venti ons in Listing 4.3, line
11).

5.4 Event-triggering policy synthesis
In addition to checking properties on a given version of the formal model, we
can also use the model checker to synthesize triggering policies for the network
manager that are optimal with respect to a specific property. The key idea behind
the synthesis is leaving the intervention choice underspecified in the model as
a nondeterministic choice between actions whose guards overlap – in our case
between the scheduler actions best_dont and best_do (Listing 4.1, lines 8 and

80

5 Formal methods

13, respectively). In such a way, the model checker can resolve the nondetermin-
ism by synthesizing a policy that optimizes an objective function embedded in a
PRCTL formula.

In this case, we are interested in minimizing the undesirable behaviours
of the system, that include the number of dropped frames, as well as the
amount of network manager interventions. We wrap both metrics into
a single cost function that we label tot al_cost , encoded as the sum of
penal t y_ f r ames · (dr op1+ . . .+dr opn) and
penal t y_i nter venti on · (nm_i nter venti ons), where dr opx is the number
of dropped frames for camera x at the end of the execution (Listing 4.2, line
23). The constants penal t y_ f r ames and penal t y_i nter venti ons capture the
relative importance of both penalized aspects of system operation, in our case
set to 10 for dropped frames and 1 for network manager interventions. The two
constants are set to separate the undesired behaviours by an order of magnitude
and penalize dropped frames more than resource redistribution.

Based on the definition of tot al_cost , we can define a reward structure that
captures its value at the end of the execution of the system, and employ it for
synthesis in the PRCTL property R tot al_cost

mi n=? [F r ound s = max_ f r ames], which
instructs the model checker to “find a strategy that minimizes the penalty of op-
erating the system based on the tot al_cost accrued throughout the execution of
the system.”

The synthesized strategy instructs the network manager to wait until the
cameras have reached convergence (two transmitted frames) before acting twice
to distribute network bandwidth in the best possible way. The optimal strategy in
this case is the sequence 〈best_dont , best_dont , best_do, best_do〉 followed
by an infinite sequence of best_dont . The synthesis of this “optimal” sequence
does not take into account further changes that happen in the system – e.g., the
scene of one camera has more artifacts. The strategy minimizes the cost for oper-
ating the system in the current conditions, without knowledge of what will hap-
pen in subsequent time instants.

After determining the best policy for minimizing the tot al_cost , we can fix it
on the model and check other properties like the one defined for convergence in
Section 5.3. We checked convergence, as well as the invariant for full bandwidth
allocation, which were always satisfied for the same set of λ1 and λ2 (weights on
camera vs. network manager adaptation) values described in 5.3.

For some set of parameters, the tot al_cost of running the optimal policy is
the same as some specific values for the threshold τthr. For some other set of pa-
rameters, on the contrary, the minimum tot al_cost that is achieved using this
strategy cannot be achieved with any value of the threshold, showing that the
threshold based policy is not necessarily optimal. In a static environment, the
strategy synthesized by PRISM is the best choice to minimize the tot al_cost of
operation. However, usually the execution environment is dynamic and the pol-
icy should react to changes that may happen, like additional artifacts in one of
the images. Despite this strategy being optimal, at run time it should be coupled
with an algorithm that detects when the strategy should be re-applied, and re-

81

Paper II. Event-Driven Bandwidth Allocation with Formal ...

triggers the strategy start or the policy synthesis process. From a practical stand-
point, the threshold-based policy shows very good properties and is therefore a
good triggering rule, though potentially sub-optimal.

Another question that we can answer using model checking is finding the
best threshold value for a specific situation. This is similar to the optimal strategy
synthesis, and entails finding the best threshold value for the specific conditions
that the system starts from, assuming that nothing else interferes – e.g., addi-
tional artifacts in the images captured by the cameras. The result is the threshold
that minimizes the total operational cost for the system, given the current status.

6. Experimental results

This section introduces the experimental validation we conducted with our cam-
era network. To dynamically change the amount of bandwidth allocated, we need
an underlying architecture that supports reservations with bandwidth adapta-
tion. For this, we use Flexible Time Triggered (FTT) paradigm [Pedreiras and
Almeida, 2003], which enforces adaptive hard reservations. In our implementa-
tion we use the Switched Ethernet (SE) implementation FTT-SE [Marau, Almeida,
and Pedreiras, 2006]. FTT-SE uses trigger messages from the master (the network
manager) to the slaves (the cameras) to change the allocated bandwidth, provid-
ing guarantees on minimum bandwidth allocation [Almeida et al., 2007].

We show the behavior of our implementation with an experimental result
with three or four physical units: the network manager and two or three cameras.
Each unit runs Fedora 24. The first unit runs the network manager and has a Intel
Core i7-4790, 8 core CPU with 32 GB RAM. The other units are off-the-shelf Log-
itech C270 cameras. Results with three cameras are shown in Appendix D. Notice
that our experiments are stress tests, as the network bandwidth is not enough
to transmit all the frames, and frame dropping must occur to guarantee correct
operation.

Our experiment has the following setup: k1,Proportional = 10, k2,Proportional = 10,
k1,Integral = 0.5, k2,Integral = 1, q1,0 = q2,0 = 15, q1,max = q2,max = 85, q1,min =
q2,min = 15, λ1 = 0.7, λ2 = 0.3, ε= 0.4, πalloc = 30ms, H= 4Mbps. We deliberately
set a low total available bandwidth to stress the system in under-provisioning
conditions, and make sure that adaptation is needed. We ran the experiment
varying the value of the threshold τthr, and with the PRISM strategy. We also com-
puted the best threshold value with the PRISM model checker, discovering that
its value is 0.3.

In the conducted experiment, both the cameras were added to the network
simultaneously. Camera c1 recorded a scene with many artifacts and c2 recorded
a simpler scene. Theoretically c1 would require a larger amount of bandwidth
generating larger sized images at lower qualities and c2 would require a lower
amount of bandwidth. Figure 3 shows the results of the experiment. The red
dashed line represents the PRISM strategy, that settles providing more bandwidth
to c1 and less to c2. Despite having less bandwidth, the quality of c2 reaches the

82

6 Experimental results

0.5
0.6
0.7

b 1

τthr = 0.1 τthr = 0.2 τthr = 0.3 τthr = 0.4 τthr = 0.5 PRISM

0.3
0.4
0.5

b 2

40

60

80

q 1

10 20 30 40
40

60

80

Time [s]

q 2

Figure 3. Event-triggered activation with τthr ∈ {0.1,0.2,0.3,0.4,0.5} and the op-
timal strategy synthesized by PRISM: bandwidth allocation (b1 and b2) and image
quality (q1 and q2).

maximum level of 85, while the quality of c1 oscillates to absorb changes in the
scene and adapt to the current execution conditions. The other lines represent
the execution with different values of the threshold (lower values of τthr are rep-
resented with lighter lines). Independently of what the threshold is, the event-
triggered network manager behaves similarly to the PRISM strategy, allocating
more bandwidth to c1. Figure 4 shows the metrics collected for different schemes
during the experiment. Looking at the interventions we can observe that the net-
work manager acts more often when the threshold is lower, with the PRISM strat-
egy having 2 interventions. Note that in the first 100 frames, the solution synthe-
sized by the model checker drops approximately 10% less frames than any of the
other solutions for both cameras, and minimizes overall cost.

This is consistent with the model checking results, which indicate that the
PRISM strategy improves over all the possible threshold-based policies, and that
an event-triggered policy with a threshold of τthr = 0.3 minimizes total cost.
When the system runs for more time, however, the cameras will record images

83

Paper II. Event-Driven Bandwidth Allocation with Formal ...

interventions c1 drop % (first 100 frames) c2 drop % (first 100 frames) total cost (first 100 frames)

11

78 78

1571

7

78 78

1567

6

77 77

1546

6

78 78

1566

4

78 78

1564

2

68 68

1362

τthr = 0.1 τthr = 0.2 τthr = 0.3 τthr = 0.4 τthr = 0.5 PRISM

Figure 4. Aggregate metrics for the experiment: resource manager interventions,
dropped frames and cost.

with different artifacts, and the optimal policy and the the best threshold, com-
puted by the model checker, will not necessarily hold anymore.

Indeed, if we compute the same metrics for a longer time frame during
which the recorded images are subject to changes and modifications unknown
to the PRISM strategy, the results differ. For all the alternatives, the percentage
of dropped frames decreases, indicating that the system is capable of adjusting
to even extreme underprovisioning. Computing the metrics for the entire run of
the experiment, the lowest total cost is 13731, achieved when the system uses an
event-triggering strategy with τthr = 0.1, while the PRISM strategy achieves a cost
of 14172. One of the drawbacks of the PRISM strategy is the lack of adaptation to
real-time changes in the camera environment which might lead to bandwidth re-
quirements different than the one initially allocated. This confirms the need for
constant adaptation and re-evaluation of the optimal strategy, but it also demon-
strates the potential for efficient solution generation using model checking.

7. Related work

The topic of self-adaptive cameras has been investigated in the scope of video
transmission over the Internet or in local area networks [Vandalore, Feng, Jain,
and Fahmy, 2001; Communication, 2004; Rinner and Wolf, 2008; Wang, Chen,
Huang, Subramonian, Lu, and Gill, 2008; Toka, Lajtha, Hosszu, Formanek, Géh-
berger, and Tapolcai, 2017; Zhang, Chowdhery, Bahl, Jamieson, and Banerjee,
2015], focusing on video transmission and image compression. The former led to
protocols such as RTP, RTSP, SIP and their improvements. These protocols mea-
sure key network parameters, such as bandwidth usage, packet loss rate, and
round-trip delays, to cope with network load conditions, controlling the load
submitted to the network [Veeraraghavan and Weber, 2008] or using traffic pri-
oritization [Cao, Nguyen, and Nguyen, 2013].

The latter led to standards such as MJPEG, JPEG2000, MPEG-4, H.264 and
more recently MPEG-H and H.265 that explore redundant information within
sequences of frames. These techniques frequently impose strong delays and ad-
ditional processing in the camera.

84

7 Related work

Surveillance – as other domains like augmented reality [Razavi, Fleury, and
Ghanbari, 2008], industrial supervised multimedia control [Rinner and Wolf,
2008], multimedia embedded systems [Ramos, Panigrahi, and Dey, 2007], au-
tomated inspection [Kumar, 2008] and vehicle navigation [Lima and Victorino,
2016] – impose limitations on the acceptable delays. In these cases, image com-
pression is frequently preferred to video compression for the lower latency in-
curred and lower memory and computing requirements. Nevertheless, any com-
pression also incurs variability in transmission frame sizes that further compli-
cates the matching with the instantaneous network conditions and motivated
substantial research into adaptive techniques [Rinner and Wolf, 2008; Ramos,
Panigrahi, and Dey, 2007; Wang, Chen, Huang, Subramonian, Lu, and Gill, 2008].
These works focused on adapting streams to what the network provides, with-
out network scheduling. Scheduling can be achieved using network reservations
(channels), as with RSVP or lower layer real-time protocols, with the risk of poor
network bandwidth efficiency. The work in [Silvestre-Blanes, Almeida, Marau,
and Pedreiras, 2011] addressed this problem using adaptive network channels
provided by a global network manager that tracks the actual use that each camera
is doing of its allocated bandwidth. In this paper, we use an approach based on
control theory for quality adaptation similar to the one applied in [Wang, Chen,
Huang, Subramonian, Lu, and Gill, 2008]. On top of that, we complement the
camera adaptation strategy with network bandwidth distribution. We also em-
ploy model checking to verify desirable properties of the system. Better perfor-
mance can be obtained [Toka, Lajtha, Hosszu, Formanek, Géhberger, and Tapol-
cai, 2017] using domain-knowledge to optimize the bandwidth allocation, but
this paper assumes no prior knowledge. The behavior of cameras that transmit
streams over wireless networks has also been investigated in [Zhang, Chowdhery,
Bahl, Jamieson, and Banerjee, 2015], highlighting the need for adaptation, in this
case reducing or increasing the amount of processing done at the node level. The
approach solves a more complex problem with respect to the one discussed in
this paper, but does not provide any analytic guarantee. In contrast, our solution
is equipped with the guarantees obtained via model checking.

Probabilistic model checking has been employed to verify performance prop-
erties of a video streaming system in [Nagaoka, Ito, Okano, and Kusumoto,
2011], where high-fidelity simulations are abstracted into probabilistic higher-
level models for analysis. PMC is also employed for verification of safety and
timeliness properties in air traffic control systems [Hanh and Van Hung, 2007].
In contrast with this work, we also utilize the model checker for strategy synthe-
sis. Strategy synthesis via PMC has been used to optimize run-time properties of
cloud-based systems, balancing performance and operation cost [Moreno, Cá-
mara, Garlan, and Schmerl, 2015]. Contrary to all the mentioned papers, we use
PMC to verify a class of properties that is typically related with control-theoretical
guarantees, like convergence.

85

Paper II. Event-Driven Bandwidth Allocation with Formal ...

8. Conclusion

This paper presented an event-triggered bandwidth allocation scheme de-
signed to complement self-adaptive cameras that adapt the quality of their
video streams to match specific bandwidth assignment. The main contributions
provided by the paper are: (i) the design of an adaptation scheme capable of
handling the requirements of multiple adaptive entities while preserving the in-
dependence of the single-entity adaptation, (ii) the implementation and testing
of the adaptation scheme, and (iii) the use of model checking to verify desirable
properties of the system.

The adaptation scheme has been tested with a network of up to three cameras
and different strategies for the invocation of the network manager. Future work
include testing using more network elements, and investigating the online gen-
eration and enactment of the most cost effective strategy, as determined by the
model checker. We also plan to verify additional properties, especially with re-
spect to the involved parameters for both the camera and the network manager
adaptation. Finally, introducing more complex network topology will further in-
crease the applicability of the proposed technique.

References

Almeida, L. et al. (2007). “Online qos adaptation with the flexible time-triggered
(FTT) communication paradigm”. In: Insup Lee Joseph Y-T. Leung, S. H. S.
(Ed.). Handbook of Real-Time and Embedded Systems. CRC Press.

Andova, S., H. Hermanns, and J.-P. Katoen (2003). “Discrete-time rewards model-
checked”. In: 1st International Workshop Formal Modeling and Analysis of
Timed Systems. DOI: 10.1007/978-3-540-40903-8_8.

Cao, D. T., T. H. Nguyen, and L. G. Nguyen (2013). “Improving the video trans-
mission quality over ip network”. In: 2013 Fifth International Conference on
Ubiquitous and Future Networks (ICUFN). DOI: 10.1109/ICUFN.2013.6614884.

Chasparis, G. C., M. Maggio, E. Bini, and K.-E. Årzén (2016). “Design and imple-
mentation of distributed resource management for time-sensitive applica-
tions”. Automatica 64, pp. 44–53. DOI: 10.1016/j.automatica.2015.09.015.

Clarke, E. M. and E. A. Emerson (1982). “Design and synthesis of synchronization
skeletons using branching-time temporal logic”. In: Logic of Programs. DOI:
10.1007/BFb0025774.

Communication, A. (2004). White paper: digital video compression: review of the
methodologies and standards to use for video transmission and storage.

Gerth, R., D. Peled, M. Vardi, and P. Wolper (1996). “Simple on-the-fly automatic
verification of linear temporal logic”. In: International Symposium on Proto-
col Specification, Testing and Verification. DOI: 10.1007/978-0-387-34892-6_1.

86

References

Hanh, T. and D. Van Hung (2007). Verification of an Air-Traffic Control System
with Probabilistic Real-time Model-checking. Tech. rep. UNU-IIST United Na-
tions University International Institute for Software Technology.

Heemels, W., K. Johansson, and P. Tabuada (2012). “An introduction to event-
triggered and self-triggered control”. In: IEEE Conference on Decision and
Control.

Heo, J. and T. Abdelzaher (2009). “Adaptguard: guarding adaptive systems from
instability”. In: 6th ACM International Conference on Autonomic Computing.
DOI: 10.1145/1555228.1555256.

Kumar, A. (2008). “Computer-vision-based fabric defect detection: a survey”.
IEEE Transactions on Industrial Electronics 55:1, pp. 348–363. DOI: 10.1109/
TIE.1930.896476.

Kwiatkowska, M., G. Norman, and D. Parker (2007). “Stochastic model checking”.
In: 7th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems. DOI: 10.1007/978-3-540-72522-0_6.

Kwiatkowska, M., G. Norman, and D. Parker (2011). “PRISM 4.0: verification of
probabilistic real-time systems”. In: 23rd International Conference on Com-
puter Aided Verification. DOI: 10.1007/978-3-642-22110-1_47.

Lima, D. A. de and A. C. Victorino (2016). “A hybrid controller for vision-based
navigation of autonomous vehicles in urban environments”. IEEE Transac-
tions on Intelligent Transportation Systems 17:8, pp. 2310–2323. DOI: 10.1109/
TITS.2016.2519329.

Maggio, M., E. Bini, G. Chasparis, and K.-E. Årzén (2013). “A game-theoretic re-
source manager for rt applications”. In: Euromicro Conference on Real-Time
Systems. DOI: 10.1109/ECRTS.2013.17.

Marau, R., L. Almeida, and P. Pedreiras (2006). “Enhancing real-time communica-
tion over cots Ethernet switches”. In: IEEE International Workshop on Factory
Communication Systems. DOI: 10.1109/WFCS.2006.1704170.

Moreno, G., J. Cámara, D. Garlan, and B. Schmerl (2015). “Proactive self-
adaptation under uncertainty: a probabilistic model checking approach”. In:
10th ACM/SIGSOFT Joint Meeting on Foundations of Software Engineering.
DOI: 10.1145/2786805.2786853.

Nagaoka, T., A. Ito, K. Okano, and S. Kusumoto (2011). “Qos analysis of real-
time distributed systems based on hybrid analysis of probabilistic model
checking technique and simulation”. Transactions on Information and Sys-
tems E94.D:5. DOI: 10.1587/transinf.E94.D.958.

Pedreiras, P. and L. Almeida (2003). “The flexible time-triggered (FTT) paradigm:
an approach to qos management in distributed real-time systems”. In: Pro-
ceedings International Parallel and Distributed Processing Symposium. DOI:
10.1109/IPDPS.2003.1213243.

87

Paper II. Event-Driven Bandwidth Allocation with Formal ...

Ramos, N., D. Panigrahi, and S. Dey (2007). “Dynamic adaptation policies to im-
prove quality of service of real-time multimedia applications in ieee 802.11e
wlan networks”. Wirel. Netw. 13:4, pp. 511–535. DOI: 10.1007/s11276- 006-
9203-5.

Razavi, R., M. Fleury, and M. Ghanbari (2008). “Low-delay video control in a per-
sonal area network for augmented reality”. IET Image Processing 2:3. DOI: 10.
1049/iet-ipr:20070183.

Rinner, B. and W. Wolf (2008). “An introduction to distributed smart cameras”.
Proceedings of the IEEE 96:10. DOI: 10.1109/JPROC.2008.928742.

Seetanadi, G. N., L. Oliveira, L. Almeida, K.-E. Arzen, and M. Maggio (2017).
“Game-theoretic network bandwidth distribution for self-adaptive cameras”.
In: 15th International Workshop on Real-Time Networks. DOI: 10 . 1145 /
3267419.3267424.

Silvestre-Blanes, J., L. Almeida, R. Marau, and P. Pedreiras (2011). “Online qos
management for multimedia real-time transmission in industrial networks”.
IEEE Transactions on Industrial Electronics 58:3. DOI: 10 . 1109 / TIE . 2010 .
2049711.

Toka, L., A. Lajtha, É. Hosszu, B. Formanek, D. Géhberger, and J. Tapolcai (2017).
“A resource-aware and time-critical IoT framework”. In: IEEE International
Conference on Computer Communications INFOCOM. DOI: 10.1109/INFOCOM.
2017.8057143.

Vandalore, B., W.-c. Feng, R. Jain, and S. Fahmy (2001). “A survey of application
layer techniques for adaptive streaming of multimedia”. Real-Time Imaging
7:3. DOI: 10.1006/rtim.2001.0224.

Veeraraghavan, V. and S. Weber (2008). “Fundamental tradeoffs in distributed
algorithms for rate adaptive multimedia streams”. Comput. Netw. 52:6,
pp. 1238–1251. DOI: 10.1016/j.comnet.2008.01.012.

Wang, X., M. Chen, H. M. Huang, V. Subramonian, C. Lu, and C. D. Gill (2008).
“Control-based adaptive middleware for real-time image transmission over
bandwidth-constrained networks”. IEEE Transactions on Parallel and Dis-
tributed Systems 19:6. DOI: 10.1109/TPDS.2008.41.

Wang, X. and M. Lemmon (2011). “Event-triggering in distributed networked
control systems”. IEEE Transactions on Automatic Control 56:3. DOI: 10.1109/
TAC.2010.2057951.

Zhang, T., A. Chowdhery, P. (Bahl, K. Jamieson, and S. Banerjee (2015). “The de-
sign and implementation of a wireless video surveillance system”. In: Pro-
ceedings of the 21st Annual International Conference on Mobile Computing
and Networking, pp. 426–438. DOI: 10.1145/2789168.2790123.

88

A A timeline example

A. A timeline example

This appendix introduces an example of the system timeline, to familiarize with
the terminology and illustrate the different quantities involved in the system’s
behavior.

Figure 5 shows these quantities graphically. The period of the network man-
agerπM is equal to three times the period of the allocation,πM = 3πalloc = 90ms.
The index t counts the network manager interventions, while the index w counts
the frame transmitted. At time 0ms, which corresponds to t = 0, the network
manager decides the initial fraction of bandwidth to be assigned to both cameras
(b1,0 and b2,0). This initial assignment determines the value of the actual amount
of bandwidth that each frame is allowed to consume in each camera until the
next manager intervention (B1,1 −B1,3 for camera c1, and B2,1 −B2,3 for camera
c2). At time 90ms (t = 1), the network manager chooses a different allocation,
affecting the next three frames for the cameras. For each frame, the cameras de-
termine a quality, that in turn affects the frame size.

c2

c1

M

0ms 30ms 60ms 90ms . . . time →

t = 0 t = 1 t = 2

M assigns bp=1,t=1,bp=2,t=1

i1,1 i1,2 i1,3 i1,4 i1,5 i1,6

i2,1 i2,2 i2,3 i2,4 i2,5 i2,6

i p=1,w=2 : qp=1,w=2 → sp=1,w=2
bp=1,t=0 → Bp=1,w=2

Figure 5. Example of system timeline.

The gray box in the Figure shows relevant dependencies for i1,2, the second
image transmitted by the first camera. The quality q1,2 determines the frame size
s1,2. The bandwidth allocation computed in the first network manager interven-
tion at t = 0, bp=1,t=0, determines the size of the channel that the frame is allowed
to use Bp=1,w=2. The following quality q1,3 will then be computed using the dif-
ference between the network bandwidth allocated to the frame B1,2 and the size
of the encoded frame s1,2.

B. Model of camera and network manager behavior

Listing 4.2 shows the description of the behavior of an arbitrary camera in the
network – in this case c1. The first part of the code (lines 1-7) introduces terms
and constants that are then used for the camera state update: the proportional

89

Paper II. Event-Driven Bandwidth Allocation with Formal ...

and integral gain k1,Proportional and k1,Integral, the minimum and maximum qual-
ity qmin and qmax, and the minimum and maximum frame size s1,min and s1,max.
The second part of the code (lines 9-11) introduces the expressions that should
be computed for the model checking and for the camera controller: the calcu-
lation of the frame size according to Equation (4.2), the update of the quality in
the controller according to Equation (4.4), and the calculation of the normalized
error, or matching function, as the term e1,w in Equation (4.3).

1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CAMERA PARAMETERS
2 const double k1pro = 10.0; // proportional gain
3 const double k1int = 5.0; // integral gain
4 const int minimum_quality = 15; // minimum quality
5 const int maximum_quality = 85; // maximum quality
6 const int minimum_framesize = 64; // minimum of X bytes
7 const int maximum_framesize = 100000; // maximum of X bytes
8 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CAMERA FORMULAS
9 formula framesize1 = ... // compute frame size according to equation (4.2)

10 formula update_q1 = ... // control action according to equation (4.3) and (4.4)
11 formula f1 = ... // matching function e1,w according to equation (4.3)
12 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CAMERA MODULE
13 module c1
14 q1: [minimum_quality..maximum_quality] init maximum_quality;
15 s1: [minimum_framesize..maximum_framesize] init maximum_framesize;
16 tran1: int init 0; // number of frames transmitted by camera 1
17 drop1: int init 0; // number of frames dropped by camera 1
18 [] (turn = cam1) −> (turn' = cam2) // next in round
19 & (q1' = update_q1) // update quality with controller
20 & (s1' = framesize1) // compute framesize
21 & (c1change' = (q1 = update_q1 ? false : true)) // check if change
22 & (tran1' = compute_tn1 <= t1 ? tran1+1: tran1) // if transmitted
23 & (drop1' = compute_tn1 > t1 ? drop1+1: drop1) // if dropped
24 & (want_nm' = f1 > threshold_event | f1 < −threshold_event ? true : want_nm);
25 // check threshold
26 endmodule

Listing 4.2. Camera module description

Finally, the last part (lines 13-25) contains the camera module, which captures
the logic of the state update for the camera. The camera can only perform one
action to update its state variables during its turn (lines 18-24). This update in-
cludes yielding the turn to the next camera in the list (line 18), or to the scheduler
(in the last camera case). The action also updates the internal value for the cur-
rent quality parameter q1,w , determines the frame size based on the old quality
value, computes a boolean value that assess if there was a change in quality (used
for property verification, cf. Section 5.3), and determines if the frame was trans-
mitted or dropped. Finally, for the event-triggered network manager version, the
action determines if the camera triggers an intervention of the network manager
based on the value of the threshold (line 24).

90

C Overhead evaluation

1 formula update_bw1 = ... // update bw according to equation (4.7)
2 formula update_bw2 = ... // update bw according to equation (4.7)
3 module nm
4 bw1: [min_bw..max_bw] init floor(max_bw / num_cameras);
5 bw2: [min_bw..max_bw] init ceil(max_bw / num_cameras);
6 nm_interventions: int init 0;
7 [] (turn = nmng) −> (want_nm' = false) & // reset because done
8 (bw1' = update_bw1) & // update camera 1
9 (bw2' = update_bw2) & // update camera 2

10 (nmchange' = (bw1 = update_bw1 ? false : true)) &
11 (nm_interventions' = nm_interventions+1) &
12 (turn' = sche); // go back to the scheduler
13 endmodule

Listing 4.3. Network manager module description

The code for the network manager (Listing 4.3) is similar, in structure, to the
code for a camera. When invoked, the manager performs a single action updat-
ing the bandwidth distribution (lines 8-9), it determines if there was a change
updating a boolean value (line 10), it updates a counter that keeps track of the
number of performed interventions (line 11), and finally it passes the turn to the
scheduler (line 12).

C. Overhead evaluation

In our experimental evaluation, we have considered a system composed of two
cameras. However, in a classical IoT setup, there are a multitude of devices shar-
ing the network. As recalled in Sections 2 and 3, one of the advantages of using
the allocation policy proposed in [Maggio, Bini, Chasparis, and Årzén, 2013] is its
linear time complexity with respect to the number of cameras.

To collect the overhead data, we have randomized the values of λ{1..m} where
m is the number of cameras for the experiment. We have then measured the over-
head of invoking the function that: (i) computes the network bandwidth distri-
bution according to Equation (4.7), (ii) saturates the computed values using a
minimum and maximum threshold, (iii) saves the old values for the following it-
eration. We measured the time to invoke the function 105 times and computed
its average to obtain a reasonable estimate of the overhead. Figure 6 shows the
average overhead in nanoseconds, when the number of cameras varies from 1 to
100. The complexity increases linearly with the number of cameras, which makes
this algorithm practical for modern networks.

D. Additional results

This appendix presents additional experiments that assess the performance of

91

Paper II. Event-Driven Bandwidth Allocation with Formal ...

1 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

number of cameras

ov
er

he
ad

[n
s]

Figure 6. Average overhead measured for the computation of the network allo-
cation.

the complete system. This set of experiments was conducted with a system that
includes three cameras. We run the system with the time-triggered solution de-
scribed in Section 2, and with the event-triggered network manager described
in Section 4, each of them using different parameters. For the time-triggered net-
work manager, the only solution parameter is the manager period πM. In our ex-
periments the period belongs to the set {600ms,3000ms,6000ms}. For the event-
triggered solution, we experimented with the triggering threshold τthr belonging
to the set {0.1,0.2,0.3}. As explained in Section 5 the optimal triggering policy, de-
spite its optimality in terms of cost minimization, is not a viable solution for long
experiments, because the environment dynamically changes and the network
manager should be aware of these changes to trigger the “reaction-to-changes
protocol”. We have therefore excluded the PRISM strategy from this set of experi-
ments.

Table 1 reports the results of this set of experiments. Each row represents a
one-hour long run of the system using a specific strategy. The first three rows
show the time-triggered (TT) solutions, while remaining rows represent the
event-triggered (ET) solutions. The parameters chosen for the solutions follow
in parenthesis. The columns represent the percentage of frames that are cor-
rectly transmitted for the three cameras, cx Tx% for camera x, the number of
interventions of the network manager nmi nt and the total cost computed as de-
fined in Section 5.4. For correct operation, frame dropping must occur, as the
network bandwidth is not enough for all the cameras. This is because we plan to
stress the system and test it in extreme conditions. The event-triggered version
of the network manager achieves lower running costs and higher percentages
of transmitted frames for the cameras, with a very small number of interven-
tions in the system. In the event-triggered category, a threshold τthr = 0.2 min-
imizes the total cost for running the system, achieving the highest percentage of
transmitted frames with a low number of interventions. The resource manager
intervenes only 5 times. This is a negligible overhead, especially compared to the
time-triggered policy that achieves the best cost, which has periodπM = 3000ms
and intervenes 958 times. The higher number of interventions does not result in
a higher number of transmitted frames.

To confirm the validity of these results, we executed each experiment 10

92

D Additional results

Table 1. Additional Experiment: 3-cameras system

Strategy c1

TX%
c2

TX%
c3

TX%
nmi nt Total cost

TT (πM = 600ms) 37.66 37.04 40.46 4460 1069140
TT (πM = 3000ms) 45.18 43.14 45.83 958 956198
TT (πM = 6000ms) 35.99 37.83 36.63 435 1092125
ET (τthr = 0.1) 48.08 47.92 56.59 7 848977
ET (τthr = 0.2) 53.88 49.26 59.75 5 789735
ET (τthr = 0.3) 43.46 45.48 51.25 3 920403

TT (πM
= 600ms)

TT (πM
= 3000ms)

TT (πM
= 6000ms)

ET (τ thr=
0.1)

ET (τ thr=
0.2)

ET (τ thr=
0.3)

500000

1000000

1500000

Strategy

To
ta

lc
os

t

Figure 7. Total cost box plot for 10 1-hour long executions traces.

times, and computed the total cost for each execution. We display the cost us-
ing box plots, in Figure 7. The event-triggered strategy has lower median values
in terms of cost, although a couple of outliers are shown with τthr = 0.3. This
implies that τthr = 0.2 is a more flexible value, as also discussed for the single
run results shown in Table 1. The time-triggered solutions have higher median
cost, and higher maximum values. At the same time, the time-triggered solution
may achieve lower cost (see for example πM = 6000ms) but seems to be less
predictable (the range is wider). The experiments highlight that using an event-
triggered solution increased the overall predictability of the system.

93

Paper III

Control-Based Event-Driven Bandwidth
Allocation Scheme for Video-Surveillance

Systems

Gautham Nayak Seetanadi Karl-Erik Årzén Martina Maggio

Abstract

Modern computer systems consist of large number of entities connected
through a shared resource. One such system is a video surveillance network
consisting of a set of cameras and a network manager. The surveillance cam-
eras capture a stream of images and transmit them to the manager over a
shared constrained network. The central manager allocates bandwidth to
the cameras in a fair manner using a threshold based game-theoretic ap-
proach. The cameras regulate their bandwidth using a quality factor to fit
sizes of the generated frames to the bandwidth allocated to the manager.
The presence of these multiple control loops that interact with each other
leads to complexity in providing performance and safety guarantees.

Our previous work [Seetanadi, Camara, Almeida, Årzén, and Maggio,
2017] explored performance of the event-based manager using model
checking to verify relevant properties. However, the paper only evaluated
linear models of camera behavior without the presence of disturbance that
arise during image capture and encoding. In this paper we build on our
previous work by verifying complex camera models that capture uncertain-
ties during image capture. We model the uncertainties using probabilistic
Markov Decision Processes (MDPs) and verify relevant properties of the sys-
tem. We also evaluate system performance for different system parameters
with varying triggering thresholds, showing the advantage of model check-
ing for safe and informed parameter selection. Finally, we evaluate the effect
of varying thresholds on manager interventions by capturing images on a
commercial off-the-shelf (COTS) camera test-bed.

Journal Manuscript under Review.

95

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme ...

1. Introduction

Large number of interconnected devices in complex computational infrastruc-
tures has increased the need to share common system resources (e.g., CPU,
network bandwidth, storage). Sharing resources leads to contention within the
connected devices for access to the constrained resource. In these constrained
dynamical systems, performance problems are mitigated mainly through two
methods. The first is through over-provisioning of the constrained resource. This
however is not an economical solution due to resource under-utilization. Over-
provisioning is also not possible in systems without accurate knowledge about
resource requirements. The second preferred method is by employing entities
that can adapt their utilization to use only a fraction of the constrained resource.
But this scenario where the entities adjust their requirements in the presence of
multiple independent loops can cause disruptive effects and lead to system in-
stability [Heo and Abdelzaher, 2009].

This paper considers a video-surveillance system that is composed of a net-
work manager and cameras using a shared communication channel. The cam-
eras capture a stream of images and encode each captured image using a quality
factor which in turn regulates its bandwidth utilization. The frame is then trans-
mitted over the network to a central node, the network manager.

The network manager is a decision node that allocates a fraction of total avail-
able bandwidth to all the cameras connected in the network. The manager en-
sures that the bandwidth allocated to the cameras in a fair manner based upon
the errors between the bandwidth allocated by it and the actual bandwidth uti-
lization by the cameras. The amount of allocated bandwidth allocated is calcu-
lated either periodically or only when required due to larger changes in the im-
ages captured by the cameras.

The periodically triggered manager is efficient and predictable, but has the
drawback of unnecessary communication and non-trivial triggering period se-
lection. If the period is too large then the manager is slow to react to changes in
the camera bandwidth requirements. On the other hand a small period causes
large communication overhead due to the number of control messages sent to
the cameras. The event based manager is triggered based on events related to
the scene being captured by the cameras. This minimizes network reconfigura-
tion, reducing calculation overhead but complicates guarantees provided on the
behavior of the system.

The cameras in the network are adaptive and regulate their bandwidth uti-
lization by encoding the images. Images captured directly by the camera are large
in size and unsuitable for direct transmission. The size of images after encoding
them is dependent on the encoding technique used and the amount of compres-
sion decided by the quality factor. Image quality denotes the amount of informa-
tion retained in the image after encoding with a higher quality generally leading
to a clearer image but with a large frame size. The resulting frame size is also de-
pendent on the artifacts in the images captured, arising due to lighting, move-
ment, nature among others [Edpalm, Martins, Maggio, and Årzén, 2018] [Ed-

96

1 Introduction

palm, Martins, Årzén, and Maggio, 2018] [Ding and Liu, 1996], leading to different
sizes for images encoded with the same quality factor.

The co-presence of these multiple, event-based and time-triggered control
strategies can affect the performance and stability of the camera system. Model
checking has shown promise in verification of such complex systems with en-
tities displaying stochastic behaviors. It has already been applied successfully to
validate and prove relevant properties of real-time systems [Nagaoka, Ito, Okano,
and Kusumoto, 2011; Hanh and Van Hung, 2007]. Applying it to the camera net-
work model allows us to prove properties like stability, convergence, number
of manager interventions and number of dropped frames [Seetanadi, Camara,
Almeida, Årzén, and Maggio, 2017].

We use a probabilistic model checker PRISM [Kwiatkowska, Norman, and
Parker, 2011], to verify different properties of the system by including probabilis-
tic disturbances in the camera model. The complex models used for verification
lead to state space explosion problem [Valmari, 1998] due to the presence of com-
plex models. We also show that using Statistical Model Checking (SMC) helps to
reduce the impact of state-space explosion at the expense of relaxed guarantees
on system performance.

The contributions of this paper are as follows:

• Realistic camera model implementation by incorporating dynamics that
arise during image capture

• Comparison of system behavior with varying camera parameters for model
with disturbances

• Evaluation of statistical model checking of the camera network with re-
laxed guarantees

• Expanded experiments on the real camera network with larger number of
cameras for larger number of triggering thresholds

This paper expands on the results from [Seetanadi, Camara, Almeida, Årzén,
and Maggio, 2017] in several directions, both from the model checking (theoreti-
cal) perspective and from the practical (implementation) standpoint. On the the-
oretical side, We verify properties of probabilistic camera models using both clas-
sical model checking and statistical model checking. On the experimental eval-
uation side, we analyze system performance for a larger number of triggering
thresholds of the event based manager. Finally, the paper also analyses the ef-
fect of threshold selection on the number of manager interventions and frames
dropped by the cameras.

Paper Organization: First we introduce the camera network architecture in
Section 2 and discuss the behavior of the cameras. The section also describes
the two different triggering strategies of the network manager. Section 3 gives
an introduction to model checking and describes the different types of model
verification. Section 4 describes the implementation of the camera network in
PRISM [Kwiatkowska, Norman, and Parker, 2011], the model checking tool used

97

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme ...

in this paper. Sections 5 and 6 discuss the results obtained using model checking
and the camera test-bed respectively. Finally, we discuss related work in 7 and
conclude the paper in Section 8.

2. System Model

This section describes the architecture and modeling of the camera surveillance
network. We also introduce the notation used in the remainder of the paper.

2.1 System Architecture
The system consists of a set of cameras connected to a central manager via
Ethernet networking. At each time instant t , we define a set of active cameras
Ct = {c1, . . . ,cn} where n is the number of active cameras. Each camera in the net-
work captures a stream of images, encodes, and transmits them to the network
manager. The camera encodes each image ensuring that the resulting frame size
is less than the bandwidth allocated by the network manager. The manager allo-
cates bandwidth to all the cameras in the network at each instant it is invoked.
Bandwidth allocation to all the cameras is the network is recalculated by evalu-
ating the camera requirements and its relative error compared to other cameras
in the network.

The architecture enables the use of two independent strategies to achieve a
good match between the resource allocated to each camera and their resource
consumption:.

• Image fitting at camera p: To fit a frame w to the allocated bandwidth,
Bp,w , by choosing the appropriate image quality, qp,w .

• Bandwidth allocation at the manager: The amount of bandwidth to allo-
cate to each of the cameras while ensuring the bandwidth does not exceed
the total amount of available bandwidth H.

Figure 1 shows an example network with 4 cameras, (c1,c2,c3,c4) connected
to a network manager through a router. The unidirectional blue arrows denote
the control signals sent from the manager to the cameras. The control signals
contain information about the amount of bandwidth allocated to each cameras
and their appropriate communication slot. The black arrows denote images sent
from the cameras to the network manager over the shared Ethernet connection.

The manager enforces bandwidth restrictions for each camera using flexi-
ble time-triggered Switched Ethernet (FTT-SE) [Silvestre-Blanes, Almeida, Ma-
rau, and Pedreiras, 2011]. FTT-SE dynamically allocates Ethernet bandwidth to
all the cameras independently and frames that are larger in size compared to the
instantaneous allocated bandwidth are dropped.

98

2 System Model

c1

c2

c3

c4

router

Data
Control

Figure 1. System Overview

2.2 Camera Behaviour
The cameras in the network capture a set of frames and encode them using the
chosen encoding technique (In this paper we use Motion JPEG(MJPEG)). The
images are then transmitted to the manager over a common Ethernet connec-
tion during each transmission period. Figure 2 shows an original image and an
image after encoding. The original frames captured by the camera consist of re-
dundant information and are unsuitable for direct transmission. Most encoding
techniques use a quality factor qp,w to encode images and reduce the amount
of redundant information contained. Higher values of qp,w leads to frames of
larger sizes with fewer artifacts. Motion JPEG (MJPEG) generally has quality fac-
tor bounded such that qp,w ∈ (0,100].

The camera generates a frame of size s∗p,w as shown in Equation 4.1. sp,max
is the estimated maximum frame size that is dependent on the number of pixels
in the image. The frame size is then saturated to set global limits for the maxi-
mum and minimum frame sizes. δsp,w indicates the stochastic disturbance that
occurs due to changes in the scene being captured such as movement, illumina-
tion, number of people in frame to name a few.

ŝ∗p,w = 0.01 ·qp,w · sp,max +δsp,w , (4.1)

ŝp,w = max{sp,min,min{sp,max, ŝ∗p,w }}. (4.2)

The camera frame size controller is synthesized using Equation 4.2. The
frame size sp,w is determined by regulating the quality qp,w with a simple PI con-
troller. The controller minimizes the error ep,w , between the allocated bandwidth
Bp,w , and the resulting frame-size sp,w as shown in Equation 4.3. ep,w is then nor-
malized, limiting the error between -1 and 1 in most operating conditions.

This control design achieves a zero-steady state error (when δ = 0) ensuring
that the size of the encoded frame is equal to the amount of bandwidth allocated
by the manager. The quality parameter qp,w is the control signal for the camera

99

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme ...

Figure 2. Camera Encoding

controller and it roughly corresponds to a compression level of the frame. The
values of kp and ki are the proportional and integral gains of the camera con-
troller respectively.

ep,w =

normalized error︷ ︸︸ ︷
Bp,w−1 − sp,w−1

Bp,w−1
(4.3)

q∗
p,w = kp ·ep,w +ki ·

w−1∑
t=1

ep,t (4.4)

qp,w = max{qmin,min{qmax, q∗
p,w }}. (4.5)

2.3 Manager Behaviour
The network manager M acts on a global scale deciding the optimal bandwidth
to allocate to the cameras Ct connected in the network. The manager also ensures
that the total allocated bandwidth does not exceed the fixed capacity H of the
network. M selects the bandwidth allocation vector b∗,w at each instant t that it
is invoked such that,

∀t ,M selectsb∗,t = [b1,t , . . . ,bn,t]
such that

∑n
p=1 bp,t = 1 (4.6)

Each element of b∗,t determines the fraction of the bandwidth assigned to
the respective camera in the network. The bandwidth assignment is done peri-
odically during each allocation period.

Equations 4.7 and 4.8 form the core of calculations in the manager. Bp,w de-
notes the amount of bandwidth allocated to camera p for frame w which is a
function of the bp,tM,w , the fraction of bandwidth (between 0 and 1).

100

2 System Model

Table 1. Explanation of camera terms

Term Explanation

cp Camera number p
sp,w Size of frame w captured by camera p
qp,w Quality of frame w captured by camera p
δsp,w Stochastic disturbance on frame w
ep,w Error during tx of frame w of camera p
Bp,w Amount of bandwidth allocated to camera p for frame w
kp , ki Proportional and Integral gains of the controller in the camera

Bp,w = bp,tM,w ·πalloc ·H (4.7)

If the frame size is greater than the amount of bandwidth allocated, i.e. sp,w >
Bp,w , the frame is dropped as it is outdated and the corresponding transmission
slot is lost.

bp,t+1 = bp,t +ε · {−λp,t · fp,t +bp,t ·
n∑

i=1
[λi ,t · fi ,t]} (4.8)

The fraction of bandwidth allocated to each camera is calculated using Equa-
tion 4.8. λp,t ∈ [0,1] denotes the relative importance of camera cp in the network
and the extent of bandwidth reallocation by the manager. ε is a constant that
limits the change in bandwidth trading off between the responsiveness of the
manager and its robustness to disturbances.

The matching function fp,t determines a match between the frame size sp,w
and the allocated bandwidth Bp,w for the w-th frame of camera p. In the current
implementation the matching function is chosen to be the same as the normal-
ized error used in the camera given by Equation 4.3. In order for the system to
adhere to properties such as starvation avoidance, balance, convergence and sta-
bility, the matching function has to satisfy the following properties:

(P1a) fp,tw > 0 if Bp,w > sp,w ,

(P1b) fp,tw < 0 if Bp,w < sp,w ,

(P1c) fp,tw = 0 if Bp,w = sp,w ;

(P2a) fp,tw ≥ fp,tw−1 if qp,w ≤ qp,w−1,

(P2b) fp,tw ≤ fp,tw−1 if qp,w ≥ qp,w−1;

(P3a) fp,tw ≥ fp,tw−1 if bp,tw ≥ bp,tw−1 ,

(P3b) fp,tw ≤ fp,tw−1 if bp,w ≤ bp,tw−1 .

101

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme ...

Table 2. Explanation of manager terms

Term Explanation

M Manager
Bp,w Bandwidth allocated to camera p for the transmission of the

w-th frame
bp,t Fraction of bandwidth calculated for camera p at time t

(between 0 and 1)
πalloc Allocation period
H Global available bandwidth
ε Scaling factor that decides the aggressiveness of the manager
λp,t Decides the importance of camera in the network [Maggio,

Bini, Chasparis, and Årzén, 2013]
fp,t Error of camera p at time t
τthr Threshold that triggers the manager

The manager is triggered with either a time-triggered or an event-based strat-
egy. The time-triggered manager is activated periodically with periodπM, a mul-
tiple of πalloc, the allocation period. At time 0 the manager divides the available
bandwidth among the cameras equally. The following network manager inter-
ventions, happening at times {πM,2πM,3πM, . . . }, assign the bandwidth based
on the relationship from Equation 4.8. This triggering strategy has some draw-
backs. Triggering the manager has a computational overhead with linear com-
plexity on the number of cameras. The choice of πM is also non-trivial. Choos-
ing a small value of πM invokes the manager too frequently causing constant
bandwidth reallocation. On the other hand, a large value leads to slow reactions
to changes in the scenes captured by the cameras.

An event-based manager reallocates bandwidth only when necessary, avoid-
ing frequent bandwidth recalculations [Seetanadi, Camara, Almeida, Årzén, and
Maggio, 2017]. We formulate the following rules to ensure the event-based man-
ager reacts to changes in the network.

• Ct− 6= Ct . When the number of cameras in the network changes. The man-
ager starts by allocating equal amount of bandwidth to all the cameras and
then proceeds to allocate bandwidth depending on the threshold and cal-
culates it using on Equation 4.8.

• (∃cp s.t.τthr < |ep,wt |)∧ (t mod πalloc = 0). When all the cameras have fin-
ished transmission and a camera has an error greater than the absolute
value of the threshold τthr.

The system allows cameras to dynamically join and leave the network. For
convenience Tables 1 and 2 give the summary of terms used in this paper.

102

3 Model Checking

3. Model Checking

This section gives an introduction to model checking. First we discuss the mod-
eling checking methodology and describe the two camera models constructed.
Then we define the different camera properties constructed for evaluation and
model parameters used for system evaluation.

3.1 Model Checking Introduction and Motivation
Cyber-physical systems and communication networks are growing in complex-
ity. This rapid growth also increases the presence of errors and makes the reli-
ability of these systems a critical issue. Model checking has shown promise in
detecting errors and providing guarantees in large scale cyber-physical systems.

Traditionally, software testing has been the dominant methodology to ver-
ify software systems. However it has the drawbacks of being a time consuming,
complex, and costly procedure. In some cases testing is not feasible due to the in-
ability to cover all test cases. In general, model checking is a more powerful tool
compared to testing as it uses a model and provides more useful information
about system behavior.

Hardware systems have high manufacturing costs, and therefore it is crucial
to catch design errors early. Hardware correctness is generally verified using em-
ulation and simulation. Similar to software verification, exploring all the possible
input combinations and verifying all outputs is often not feasible. Model check-
ing can be used in both these scenarios.

Model checking is used to verify certain properties of a system model. In
model based verification, the models are described in a mathematically precise
way. Systems are modeled as Markov chains and verified using existing model
checking and verification tools, some of which are PRISM [Kwiatkowska, Nor-
man, and Parker, 2011], SPIN [Holzmann, 2003], UPPAAL [Larsen, Pettersson,
and Yi, 1995].

Model checking also makes it possible to generate strategies for optimal op-
eration of the modeled system while subjected to required constraints. This strat-
egy of operation depends on precise modeling of the system. It is therefore im-
portant to eliminate any ambiguities or incompleteness in the model but include
non-determinism and a characterization of the uncertainty.

Figure 3 shows the general work-flow of applying model checking for prop-
erty verification. The system model represents the functioning of the system as
an MDP consisting of states and transitions. Sytem property is the required be-
haviour of the system that is evaluated. The surveillance camera network model
and properties are explored in sections 3.2 and 3.3 respectively.

Probabilistic Model Checking (PMC) involves modeling of systems with
stochastic behavior and the verification of properties of such systems. In PMC,
systems are modeled as state-transition systems where transitions between
the different states are decided by probabilities. Discrete-Time Markov chains
(DTMC), Markov Decision Processes (MDP) and Probabilistic Timed Automata
(PTA) are some of the models that support probabilistic transitions. The prop-

103

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme ...

Model Checker

System PropertySystem Model

Property satisfied?

Yes No

Relax conditions
or refine model

Figure 3. Model Checking Methodology

erties to be verified are expressed using probabilistic temporal logic, such as
probabilistic reward computation-tree logic (PRCTL) [Andova, Hermanns, and
Katoen, 2003]. The camera surveillance network is modeled using Markov Deci-
sion Processes (MDP).

.
A MDP is a 4-tuple (S ,A,P,R), where S is a set of finite states, A is a set of

actions, P : (s, a, s′) → {p ∈R | 0 ≤ p ≤ 1} is a function that encodes the probability
of transitioning from state s to state s′ as a result of an action a, and R : (s, a, s′) →
N is a function that encodes the reward received when the choice of action a
determines a transition from state s to state s′.

3.2 Deterministic vs Probabilistic Models
Deterministic models are simple system representations that do not contain any
probabilities on transitions between the different states in the system model.
This makes property verification simple and allows larger number of sub-systems
in the system model. However, these simple models does not cover realistic be-
haviors of a system. Systems with unreliable or uncertain behavior require mod-
eling of probabilities between the different transitions in the model. Probabilistic
models are used for verifying randomised algorithms like coin tossing experi-
ments and model-based performance evaluation in failure prone systems.

Uncertainties in the camera network model arise during image capture as
shown in Equation 4.1. Previous work [Seetanadi, Camara, Almeida, Årzén, and
Maggio, 2017] considered a linear relationship was considered between quality
and frame size and did not consider the disturbance δ during system verification.

104

3 Model Checking

3.3 Property Verification
The characteristics of the system that is being verified are modeled as properties
using formal language. The properties are modeled using precise mathematical
equations and check for the presence of appropriate states and paths in the state-
space. The different properties are classified into Qualitative and Quantitative
properties.

Qualitative properties evaluate definite state reachability or full probability
of the property. For example, P≥1[G Halloc = H], where H indicates the total
amount of bandwidth available and Hal loc indicates the total amount of band-
width allocated to all the cameras connected in the network. G denotes that the
property is checked globally. The property checks for complete bandwidth allo-
cation with a probability of 1.

Quantitative properties evaluate whether the system reaches a state or ex-
ceeds a property with a threshold. They are framed similar to qualitative proper-
ties with a relaxed probability requirement. Considering the same PRTCL prop-
erty as above, P≥ 2

3
[GHalloc =H] relaxes the previous strict probability to 2

3 . The

relaxed bound simplifies property verification and accommodates larger model
sizes.

3.4 Classical vs Statistical Model Checking
Model checking tools construct the whole state-space by building states and
transitions, and storing it in memory. These tools have an upper limit on mem-
ory usage to limit runoff programs, restricting the size and complexity of sys-
tem models. Classical model checking builds the whole state-space irrespective
of the presence(or absence) of probabilities in transitions. Probabilistic models
capture complex behaviors of the system but are larger in size in comparison to
deterministic models. This state-space explosion causes memory issues during
verification of complex system models.

Statistical model checking (SMC) [David, Larsen, Legay, Mikučionis, and
Wang, 2011] performs Monte Carlo simulations of the system with stochastic be-
haviors. SMC simulates the system for a finite number of runs and applies tech-
niques from the area of statistics to evaluates it for property verification (or fail-
ure). These Monte Carlo simulations of the system provide estimates on the prob-
abilistic measure on executions. SMC provides relaxed bound on system perfor-
mance useful for verification of large complex systems, where classical model
checking fails due to memory limitations [David, Larsen, Legay, Mikučionis, and
Poulsen, 2015].

3.5 Strategy generation
Strategy generation in a probabilistic system selects an optimal action or state
transitions to resolve non deterministic choices and maximise rewards (or min-
imise cost). PRTCL reward minimization operator Rr

min=?
selects a strategy that

resolves r where r is the reward.

105

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme ...

For example, Rr
min=?

[Fφ] minimises the total reward r along paths that leads
to state satisfy the state formula φ. In the camera network, some relevant strate-
gies are ‘minimise the number of manager interventions’, ‘minimise the total
number of dropped frames’, ‘minimise a defined cost’ or maximise the band-
width utilization’. Strategy generation is considered to be out of scope of this pa-
per.

4. System Implementation

This section describes the modeling of the camera surveillance system and dis-
turbances during image capture using PRISM model checker. We also describe
the construction of different camera properties and model parameters used for
model checking.

4.1 System Modelling
The different entities of the system are modeled as a set of modules in PRISM. In
the camera network model, the different modules are namely the manager, the
scheduler and the cameras. The cameras are modeled identically to each other
but have their own independent modules. The scheduler is introduced into the
camera model to determine the order in which the the different modules in the
system are invoked. This module is necessary as the network manager is modeled
to act only when required in an event-based manner. The camera modules are
scheduled in a turn based manner and then the scheduler evaluates the necessity
of invoking the event-based manager. An example schedule is show below.

[Tur n1]schedul er → manag er → cam1 → cam2 →camn

[Tur n2]schedul er → manag er → cam1 → cam2 →camn

[Tur n3]schedul er → cam1 → cam2 →camn

....

....

....

[Tur nX]schedul er → manag er → cam1 → cam2 →camn

The scheduler invokes the manager and all the cameras in order during Turns
1 and 2. Turn 3 shows a scenario when the cameras have reached equilibrium (the
frame sizes match the allocated bandwidths) and the manager is not invoked. It
is invoked again during Turn X when the allocated bandwidth requires recalcu-
lation.

106

4 System Implementation

4.2 Disturbance Modelling
Disturbances occur in the camera due to changes in the scene captured by the
camera. Equation 4.1 models the behavior of a camera with disturbances where
δ denotes the disturbance. This uncertainty is modeled in PRISM using proba-
bilities on the different transitions. The camera module is composed of two dif-
ferent formulas for calculation of the frame size. The first formula considers the
value of δ to be 0. The second formula includes δ during frame size calculations
and results in a frame of larger size. The current model assigns a probability of
0.7 to the linear formula and 0.3 to the formula for frame size with disturbances
to ensure that the total probability is 1.

4.3 Properties
Model checking involves verifying relevant properties of a given system model.
These properties are generally the desired/undesired behaviors of the model.
Real life requirements are converted to formal language and input into the model
checker as shown in figure 3. The following properties for the camera model are
verified

1. Convergence:
Pmin =?[F(G!(any_change_event))]

Convergence is defined as “nothing happens in the model after some time”
for model checking. The PRCTL formula above returns the minimum prob-
ability Pmin of the model finally F , globally G such that no changes occur
in the system !(any_change_event). !(any_change_event) is a variable that
records changes in the bandwidth allocations and can be used as a mea-
sure to gauge if the system has converged.

2. Number of Resource Manager Interventions:

Rrm_calls
max =?[F(rounds=max_rounds)]

This property is used to quantify the number of manager interventions

during one verification run of the model. The reward operator Rrm_calls
max

here counts the maximum number of resource manager calls rm_calls fi-
nally F after a certain number of rounds max_rounds have passed.

3. Number of dropped frames :

R
dropped_frames
max =?[F(rounds=max_rounds)]

Similar to the previous property, this property quantifies the number of

dropped frames. The reward operator R
dropped_frames
max counts the maxi-

mum number of dropped frames dropped_frames, finally F after a certain
number of rounds max_rounds have passed.

107

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme ...

4. Total cost:

Rtotal_cost
max =?[F(rounds=max_rounds)]

total_cost calculates the cost incurred by a triggering policy i.e chosen
threshold. The property is tuned differently depending upon actions that
are penalizing to a system. For example dropping of frames, manager
interventions, or addition/deletion of new cameras affect the camera
network differently dependent upon the configuration of the system. In
this paper we penalise dropped frames and manager interventions by
10 and 1 respectively. In PRISM this can be defined as total_cost = 10 ·
dropped_frames+1 · rm_calls.

4.4 Model Parameters
The performance of the system is evaluated with respect to different parameter
values using model checking. This enables faster parameter evaluation and tun-
ing with varying disturbances in the model. For the camera system the following
parameters are considered,

ε is the scaling factor that denotes the aggressiveness of the system. It is a
trade off between responsiveness and stability of the manager. Higher values of
ε increase convergence speed of the system but may cause overshoots, whereas
small values of ε result in a slower but more stable behavior during network re-
configurations. In the current model, ε is set to 0.5.

λ ∈ (0,1) denotes the importance of the camera in the network. When λ = 0,
the network manager does not reallocate bandwidth to the camera and the onus
is on the camera to adjust its bandwidth without manager interventions. When
λ = 1, the network manager adjusts the bandwidth allocated to the camera at a
higher rate with no quality changes expected from the camera. This methodology
grants the architecture the ability to incorporate multiple types of cameras in the
same network. For example, if camera cp is incapable of changing it encoding
quality, then λp is set to 1.

The triggering threshold τthr ∈ (0.1,0.9), determines the activation of the
manager for network re-configurations. The choice of τthr is non-trivial and is
discussed in detail in [Seetanadi, Camara, Almeida, Årzén, and Maggio, 2017].
Small values of τthr lead to quicker manager activation but cause higher number
of network re-configurations. Large values of τthr reduce the number of manager
interventions and network re-configurations at the cost of information loss.

kk,p and ki ,p are the proportional and integral gains of camera p that de-
termine the aggressiveness with which the camera regulates its quality. Large
controller gains generally lead to faster camera adaptations and larger quality
changes.

τthr and ki ,p are analyzed in more detail in the following sections.

108

5 Verification Results

5. Verification Results

This section discusses the verification results for the camera models built in
PRISM. The section also shows the state-space evolution and property verifica-
tion results for the two different types of the model.

Model I: The first model of the camera system describes the system with no
probabilities. The camera modules use a linear equation to derive the frame size
ŝp,w given a quality qp,w . Equation 4.1 with δ = 0 disregards the effect of distur-
bance during image capture. This simplification in frame size calculation results
in a smaller state-space that enables performance evaluation of a larger num-
ber of cameras. Model II also provides stronger property verification guarantees
using classical model checking compared to Model II.

Model II: The second model of the camera network incorporates distur-
bances during image capture as probabilistic transitions. The probabilities are
added during the frame size calculation as shown in Equation 4.1. A realistic
model of the camera model is realized using two independent equations. The
first equation is linear and already described in Model I. A high probability is at-
tached to this equation. The second equation generates a larger frame size ŝp,w
for a given quality qp,w compared to the linear equation. A lower probability is
attached to this equation. The probability distribution models the scenario in
which disturbances occur in the generated frames.

5.1 Classical model checking results
Table 3 shows the evolution of the size of camera state-space. The camera and
manager modules are modeled in minimal number of states while capturing the
relevant behavior of the physical camera network. The system also imposes an
upper limit on the number of frames transmitted to the manager to ensure con-
vergence of property verification. Without the limit, the state space grows in-
finitely and makes model checking impossible due its infinite size.

Model I without probabilities grows at a lower rate compared to the model
with probabilities, Model II. PRISM is unable to build the model of the camera
network with probabilities due to memory limitations for Model II with number
of cameras larger than 5.

Deterministic Model Results The subsection analyses the impact of controller
gain ki on the performance of the camera model without disturbances. Figure 4
shows the effect of ki on the percentage of frames dropped by the manager due
to bandwidth restriction violations. The plot on the left shows the percentage
when controller gain ki is 5 and the right plot when ki is 25, for an increasing
number of cameras. There is a very low percentage of dropped frames when the
number of cameras in the network is 2, 4, 5 and 10 due to floating point calcu-
lations leading to quicker convergence of bandwidth calculations. The frames
are dropped mostly during network initialization and initial regulation of cam-
era quality. This is transient phase of the camera network as the total amount of
available bandwidth is lower than the ideal bandwidth required for each cam-

109

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme ...

Table 3. State space size evolution

Number of Cameras Model I Model II

2 123 309
3 157 5537
4 183 9297
5 213 54561
6 247 N/A
7 277 N/A
8 307 N/A
9 337 N/A

10 363 N/A

2 4 6 8 10
0.5

10

20

30

Number of Cameras, ki = 5

2 4 6 8 10

10

20

30

Number of Cameras, ki = 25

Th
re

sh
old

Figure 4. Percentage of Dropped Frames for Model I

era. This causes quality qp regulation in camera frame sizes. If the current frame
size, sp,w is greater than the amount of bandwidth Bp,w allocated by the man-
ager, then the frame is dropped. Larger ki leads to faster bandwidth adaptation
and convergence, leading to fewer dropped frames.

Probabilistic Model Results Adding probabilities to the model increases the
size of its state-space as shown in Table 3. This increases the complexity of prop-
erty verification due to the large state-space. PRISM is unable to build models
with large number of cameras due to memory issues resulting in a reduced num-
ber of cameras to 5. Figure 5 shows the percentage of dropped frames for two
values of controller gain ki . Having a low value of ki , causes a frame drop greater
than 75% while using a gain of higher value reduces the dropped frames. It is
also seen that the amount of dropped frames is higher for Model II compared
to Model I. This is due to the presence of dynamics in the model giving a more
complex analysis of the system. Using a probabilistic model in combination with

110

6 Experimental Results

2 3 4 5
0.560

70

80

Number of Cameras, ki = 5

2 3 4 5

60

70

80

Number of Cameras, ki = 25

Th
re

sh
old

Figure 5. Percentage of Dropped Frames for Model II

model checking enables choosing controller parameters using more detailed in-
formation. There is also faster convergence for a particular number of cameras
as seen in the previous experiment.

5.2 Statistical Model Checking Results
Statistical model checking allows verification of an increased number of camera
modules with disturbances using model II. Compared to classical model check-
ing, statistical model checking is able to build state-space of the camera network
with 20 cameras instead of 5. Figure 6 shows the effect of threshold, τthr on the
percentage of dropped frames by the cameras. The percentage of dropped frames
increases for higher values of τthr and lower values of ki as the camera adapta-
tion is slower and the manager does not intervene for small disturbances.

Higher values of ki leads to reduced number of dropped frames for all thresh-
olds due to faster camera adaptations. Increasing τthr does not increase the
number of dropped frames as the cameras regulate their bandwidth utilization
quicker. There is faster convergence for values 4, 5, 10 and 20 due to divisibil-
ity and model building convergence. We do not apply SMC to the linear camera
model, Model I, as the state-space of the model is smaller in size and classical
model checking provides more robust bounds on property verification.

6. Experimental Results

This section describes the experimental results obtained using the camera test-
bed. First, we provide context for the experiment by describing results from our
previous work [Seetanadi, Camara, Almeida, Årzén, and Maggio, 2017]. Next we
discuss costs obtained for varying triggering thresholds τthr with experiments
conducted to evaluate the number of dropped frames and manager interven-
tions.

111

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme ...

5 10 15 20
0.540

60

80

Number of Cameras, ki = 5

5 10 15 20

40

60

80

Number of Cameras, ki = 25

Th
re

sh
old

Figure 6. Percentage of Dropped Frames for Model II using SMC

6.1 Experimental Setup
The camera network is composed of multiple cameras and a network manager
connected through local Ethernet. The multiple units of the network are imple-
mented on a PC with Intel core i7-4790 8 core CPU with 32 GB RAM. The cur-
rent implementation of the network consists of three off-the-shelf Logitech C270
cameras.

The experiment has the following setup:

• Proportional Gain: kp,1 = kp,2 = 10

• Integral Gain: ki ,1 = ki ,2 = 0.5

• Minimum Quality: q1,min = q2,min = 15

• Maximum Quality: q1,max = q2,max = 85

• Camera Importance: λ1 = 0.7, λ2 = 0.3

• Scaling Factor: ε= 0.4

• Allocation Period: πalloc = 30ms

• Total Network Bandwidth: H= 4Mbps.

The total network bandwidth is constrained to ensure camera adaptation.

6.2 Results
Previous work [Seetanadi, Oliveira, Almeida, Arzen, and Maggio, 2017] describes
the results for camera adaptation with time-triggered manager. Similarly, [See-
tanadi, Camara, Almeida, Årzén, and Maggio, 2017] investigated the implemen-
tation of a event-triggered manager. This paper builds on the previous experi-
mental results by examining the operation of the event-triggered manager for a
larger number of threshold values.

112

6 Experimental Results

0 50 100
0.0

1.0

2.0

3.0

4.0

Time [s]

B
W

[M
b

p
s]

0 50 100
Time [s]

Allocated BW Camera 1 Allocated BW Camera 2

Instantaneous BW Camera 1 Instantaneous BW Camera 2

Figure 7. Results with Equal Distribution, and adaptation with [Silvestre-
Blanes, Almeida, Marau, and Pedreiras, 2011] (left plots) and PI controller (right
plots) [Seetanadi, Oliveira, Almeida, Arzen, and Maggio, 2017]

Recall that there are two control strategies:

• The network manager, that decides the amount of bandwidth to be allo-
cated to each of the cameras

• The camera, that adapts its quality to fit the frame to the allocated band-
width

[Seetanadi, Oliveira, Almeida, Arzen, and Maggio, 2017] described the cam-
era adaptation using control theory and also showed the advantage of co-
operation between the network manager and the cameras work to ensure opti-
mal network utilization. [Seetanadi, Camara, Almeida, Årzén, and Maggio, 2017]
improves on the work by showing a need for triggering the manager only when
required and the non-trivial decision involving the optimal selection of the trig-
gering threshold, τthr .

6.3 Time Triggered Manager
In this experiment, the manager allocates an equal amount of bandwidth to the
two cameras in the network to evaluate camera adaptation. The network man-
ager allocates bandwidth to the cameras periodically with game-theoretic band-
width allocation.

Figure 7 shows the comparison between two adaptation schemes, one
from [Silvestre-Blanes, Almeida, Marau, and Pedreiras, 2011] and the adaptive PI
controller from previous work [Seetanadi, Oliveira, Almeida, Arzen, and Maggio,
2017]. Only camera 1 is present initially up to time 40 seconds, then camera 2
joins the network. Camera 2 leaves the network at around time 80 seconds.

The left plot shows the adaptation strategy from [Silvestre-Blanes, Almeida,
Marau, and Pedreiras, 2011] with a frame size estimation model to fit image sizes
to the allocated bandwidth. The right plot shows the camera with a tuned PI con-
troller. The parameters of the camera controller are tuned empirically according

113

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme ...

0.5

0.6

0.7
b 1

τthr = 0.1 τthr = 0.2 τthr = 0.3 τthr = 0.4 τthr = 0.5 PRISM

0.3

0.4

0.5

b 2

40

60

80

q 1

10 20 30 40

40

60

80

Time [s]

q 2

Figure 8. Event-triggered activation with τthr ∈ {0.1,0.2,0.3,0.4,0.5} and the op-
timal strategy synthesised by PRISM: bandwidth allocation (b1 and b2) and image
quality (q1 and q2) [Seetanadi, Camara, Almeida, Årzén, and Maggio, 2017].

to standard control practices [Åström and Hägglund, 1995]. The PI controller is
more efficient at using the bandwidth allocated by the network manager com-
pared to the model from [Silvestre-Blanes, Almeida, Marau, and Pedreiras, 2011].
The combination of time-triggered bandwidth allocation and camera adaptation
using PI controller is efficient in bandwidth allocation and its utilization by the
cameras.

6.4 Event-triggered Manager
The event-triggered manager is designed to be more efficient compared to the
time-triggered manager. It is only triggered when the absolute error in the cam-

114

6 Experimental Results

eras exceeds τthr .
Figure 8 shows the event-triggered manager triggered at different thresholds.

Both cameras are initialized in the network simultaneously at time 0. Camera 1
captures a scene that contains a large number of artifacts and thus requires a
larger allocation of the bandwidth. Camera 2 captures a simple scene with fewer
movements and artifacts requiring a comparatively smaller bandwidth alloca-
tion. The manager allocates a larger amount of bandwidth to camera 1 and lower
amount of bandwidth to camera 2 as seen in the figure. Thus, selecting the value
of τthr becomes a crucial design choice to optimize performance of the camera
surveillance network.

6.5 Choice of Triggering Threshold, τthr

The cost function chosen in the paper is defined as shown in Equation 6.5, where
man_i nt is the number of manager interventions and dr op1, dr op2 and dr op3
are the number of dropped frames of camera 1,2 and 3 respectively.

cost = 1 ·man_i nt +10 ·
∑

(dr op1+dr op2+dr op3)

Figure 9 shows the cost for the camera network with various triggering thresh-
olds τthr . The plot shows the results of 1 hour long experiments performed 10
times independently. The cost is large for both low and high values of τthr . For
low values of τthr , the cost is high due to the continuous reconfiguration of
the network accumulating costs for both manager interventions and dropped
frames.

Lower values of τthr lead to frequent network reconfigurations by the net-
work manager. Small disturbances in the the camera scenes invoke manager in-
terventions and lead to frame drops during network reconfigurations. Higher val-
ues of τthr increase costs and variance. There are fewer network reconfigurations
even during large disturbances in scenes captured by the cameras. This places
more emphasis on the cameras to regulate their bandwidth usage, causing large
number of frame drops. For τthr = [0.3,0.6], the cost is lower compared to other
values of τthr . These values indicate a good trade-off between high costs due to
frequent interventions and high costs due to dropped frames.

Figure 10 shows the trend of number of manager interventions for increas-
ing values of τthr . It shows a 5 point smoothed average of the number of man-
ager interventions. The number of manager interventions reduces as τthr in-
creases as there are fewer network re-configurations and the manager is not in-
voked for small disturbances in the camera images. Higher values of τthr lead to
fewer manager interventions with no network reconfigurations even during large
changes in camera scenes.

Figure 11 shows a 5 point average of the number of dropped frames versus
threshold τthr . The number of dropped frames increases for higher values of
τthr due to lower number of manager interventions placing emphasis on quicker
camera adaptations. These results show that the tuning of the cost function is

115

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme ...

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

·106

Threshold

To
ta

lc
os

t

Figure 9. Total cost box plot for 10 1-hour long executions traces

non-trivial and can be varied by choosing the appropriate weights depending
upon the behavior of the camera network.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

Triggering Threshold τthr

M
an

ag
er

In
te

rv
en

tio
ns

Figure 10. Manager Interventions

7. Related Work

Video transmission using self-adaptive cameras have been investigated in sce-
narios where images are transmitted over the internet or local area networks with
focus on image compression [Vandalore, Feng, Jain, and Fahmy, 2001; Com-
munication, 2004; Rinner and Wolf, 2008; Wang, Chen, Huang, Subramonian,
Lu, and Gill, 2008; Toka, Lajtha, Hosszu, Formanek, Géhberger, and Tapolcai,
2017; Zhang, Chowdhery, Bahl, Jamieson, and Banerjee, 2015]. Research on video
transmission has led to transmission protocols such as RTP, RTSP, SIP and im-
provements upon them which measure key network parameters, such as band-
width usage, packet loss and round-trip delays. These help to cope with network

116

7 Related Work

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.8

0.9

1

1.1

·105

Triggering Threshold τthr

D
ro

pp
ed

Fr
am

es

Figure 11. Dropped Frames

load conditions, controlling the load submitted to the network [Veeraraghavan
and Weber, 2008] or using traffic prioritization [Cao, Nguyen, and Nguyen, 2013].
Research into image compression led to standards to reduce bandwidth utiliza-
tion like MJPEG, JPEG2000, MPEG-4, H.264, MPEG-H and H.265 that remove re-
dundant information in sequence of frames.

Some research domains impose limitations on the acceptable delays in the
system. for eg. augmented reality [Razavi, Fleury, and Ghanbari, 2008], industrial
supervised multimedia control [Rinner and Wolf, 2008], multimedia embedded
systems [Ramos, Panigrahi, and Dey, 2007], automated inspection [Kumar, 2008]
and vehicle navigation [Lima and Victorino, 2016]. Video surveillance is simi-
lar. Image compression is frequently preferred to video compression. This is due
to lower latency incurred and low memory and computing requirements during
image compression compared to video compression. The variability that occurs
during compression complicates fitting the compressed image to the instanta-
neous network conditions. This has motivated substantial research into adap-
tive techniques [Rinner and Wolf, 2008; Ramos, Panigrahi, and Dey, 2007; Wang,
Chen, Huang, Subramonian, Lu, and Gill, 2008]. These works focus mainly on the
adaptation of streams to what the network provides. Not on the scheduling on the
network. A way of achieving this network reservation is through the use of chan-
nels. This is addressed in [Silvestre-Blanes, Almeida, Marau, and Pedreiras, 2011]
which addressed the problem using adaptive network channels using a global
network manager that tracks camera bandwidth usage. Using control theory for
quality adaptation used in the paper is similar to [Wang, Chen, Huang, Subramo-
nian, Lu, and Gill, 2008]. Our work adds to the camera adaptation by implement-
ing a network bandwidth distribution strategy. Also explored in this paper is the
use of classical and statistical model checking to verify desirable properties.

Although better performance can be obtained using domain knowledge to
optimise bandwidth allocation [Toka, Lajtha, Hosszu, Formanek, Géhberger, and
Tapolcai, 2017], this paper assumes no such knowledge. Also investigated is the

117

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme ...

usage of cameras that transmit images using wireless networks [Zhang, Chowd-
hery, Bahl, Jamieson, and Banerjee, 2015] which highlights the need for adapta-
tion. In this case it increases the amount of processing at the node. Compared to
the work, this paper also provides formal guarantees on the system obtained via
model checking.

Model checking has been applied to analyse complex system in recent
times. [Hamman, Hopkinson, and Fadul, 2017; Yüksel, Zhu, Nielson, Huang, and
Nielson, 2012] show the application of model checking to smart grids using dif-
ferent model checking tools. Model checking has also been used for finding er-
rors in cloud applications [Tian, Zhang, Zhou, and Zhong, 2016].

This paper uses PRISM [Kwiatkowska, Norman, and Parker, 2011] for the
camera network analysis. Using the support available for probabilistic models
and statistical model checking, PRISM has been used for verification of a wide-
variety of systems. For e.g. randomised distributed algorithms [Kwiatkowska,
Norman, and Segala, 2001], software with probabilistic transitions [Katten-
belt, Kwiatkowska, Norman, and Parker, 2009], designs for applications us-
ing nanotechnology [Norman, Parker, Kwiatkowska, and Shukla, 2005], com-
munication protocols [Duflot, Kwiatkowska, Norman, and Parker, 2006], self-
adaptive software [Calinescu, Ghezzi, Kwiatkowska, and Mirandola, 2012], se-
curity [Basagiannis, Katsaros, Pombortsis, and Alexiou, 2009] and anonymous
protocols [Shmatikov, 2002].

PMC has been applied to verify properties of a video streaming system in [Na-
gaoka, Ito, Okano, and Kusumoto, 2011]. In this work, high-fidelity simulations
have been abstracted into probabilistic higher-level models. PMC has also been
used in verification of safety and timeliness properties in air traffic control sys-
tems [Hanh and Van Hung, 2007]. Contrary to all the mentioned papers, this pa-
per uses PMC to verify a class of properties that is typically related with control-
theoretical guarantees.

8. Conclusion

Model checking has shown great promise in verification of complex systems.
Compared to testing, model checking is more exhaustive and robust. The draw-
back with model checking is state space explosion and translation of relevant
properties of the system into formal language. The work in this paper addresses
both of these concerns.

We applied model checking to a camera surveillance network with two inde-
pendent strategies for bandwidth adaptation. We built two models of the adap-
tive cameras in the network, a linear model from [Seetanadi, Camara, Almeida,
Årzén, and Maggio, 2017] that did not consider disturbances during image en-
coding, and a second model that incorporated disturbances using probabilistic
transitions in the model. Application of classical model checking techniques al-
lowed for more informed choice of control parameters and triggering thresholds
for the camera models with and without disturbances. The camera model con-

118

References

sisting of probabilistic disturbances led to state-space explosion due to memory
issues. We showed that using SMC, the state-space explosion can be mitigated
by performing property verification of complex models at the expense of re-
laxed bounds. Although the obtained bounds are not as robust as classical model
checking, we obtained useful information on system performance and parame-
ter selection. Finally, we evaluated the effect of different triggering thresholds on
the number of manager interventions and dropped frames.

References

Andova, S., H. Hermanns, and J.-P. Katoen (2003). “Discrete-time rewards model-
checked”. In: 1st International Workshop Formal Modeling and Analysis of
Timed Systems. DOI: 10.1007/978-3-540-40903-8_8.

Åström, K. J. and T. Hägglund (1995). PID Controllers: Theory, Design, and Tuning.
2nd ed. Instrument Society of America, Research Triangle Park, NC.

Basagiannis, S., P. Katsaros, A. Pombortsis, and N. Alexiou (2009). “Probabilistic
model checking for the quantification of dos security threats”. Computers &
Security 28:6, pp. 450–465. ISSN: 0167-4048.

Calinescu, R., C. Ghezzi, M. Kwiatkowska, and R. Mirandola (2012). “Self-adaptive
software needs quantitative verification at runtime”. Commun. ACM 55:9,
pp. 69–77. ISSN: 0001-0782.

Cao, D. T., T. H. Nguyen, and L. G. Nguyen (2013). “Improving the video trans-
mission quality over ip network”. In: 2013 Fifth International Conference on
Ubiquitous and Future Networks (ICUFN). DOI: 10.1109/ICUFN.2013.6614884.

Communication, A. (2004). White paper: digital video compression: review of the
methodologies and standards to use for video transmission and storage.

David, A., K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen (2015). “Up-
paal smc tutorial”. International Journal on Software Tools for Technology
Transfer 17:4, pp. 397–415. DOI: 10.1007/s10009-014-0361-y.

David, A., K. G. Larsen, A. Legay, M. Mikučionis, and Z. Wang (2011). “Time for
statistical model checking of real-time systems”. In: Computer Aided Verifi-
cation. Vol. 6806. LNCS. Springer, pp. 349–355. ISBN: 978-3-642-22110-1. DOI:
10.1007/978-3-642-22110-1_27.

Ding, W. and B. Liu (1996). “Rate control of mpeg video coding and recording by
rate-quantization modeling”. IEEE Transactions on Circuits and Systems for
Video Technology 6:1, pp. 12–20. DOI: 10.1109/76.486416.

Duflot, M., M. Kwiatkowska, G. Norman, and D. Parker (2006). “A formal analysis
of bluetooth device discovery”. International Journal on Software Tools for
Technology Transfer 8:6, pp. 621–632.

119

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme ...

Edpalm, V., A. Martins, K.-E. Årzén, and M. Maggio (2018). “Camera Networks
Dimensioning and Scheduling with Quasi Worst-Case Transmission Time”.
In: 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Vol. 106.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many, 17:1–17:22. ISBN: 978-3-95977-075-0.

Edpalm, V., A. Martins, M. Maggio, and K.-E. Årzén (2018). H.264 Video Frame Size
Estimation. Technical Reports TFRT-7654. Department of Automatic Control,
Lund Institute of Technology, Lund University.

Larsen, K. G., P. Pettersson, and W. Yi (1995). “Model-checking for real-time sys-
tems”. In: Proc. of Fundamentals of Computation Theory. Vol. 965. LNCS,
pp. 62–88. DOI: 10.1007/3-540-60249-6_41.

Hamman, S. T., K. M. Hopkinson, and J. E. Fadul (2017). “A model checking ap-
proach to testing the reliability of smart grid protection systems”. IEEE Trans-
actions on Power Delivery 32:6, pp. 2408–2415. DOI: 10 . 1109 / TPWRD . 2016 .
2635480.

Hanh, T. and D. Van Hung (2007). Verification of an Air-Traffic Control System
with Probabilistic Real-time Model-checking. Tech. rep. UNU-IIST United Na-
tions University International Institute for Software Technology.

Heo, J. and T. Abdelzaher (2009). “Adaptguard: guarding adaptive systems from
instability”. In: 6th ACM International Conference on Autonomic Computing.
DOI: 10.1145/1555228.1555256.

Holzmann, G. (2003). Spin Model Checker, the: Primer and Reference Manual.
First. Addison-Wesley Professional. ISBN: 0321228626.

Kattenbelt, M., M. Kwiatkowska, G. Norman, and D. Parker (2009). “Abstraction
refinement for probabilistic software”. In: Verification, Model Checking, and
Abstract Interpretation. Berlin, Heidelberg, pp. 182–197.

Kumar, A. (2008). “Computer-vision-based fabric defect detection: a survey”.
IEEE Transactions on Industrial Electronics 55:1, pp. 348–363. DOI: 10.1109/
TIE.1930.896476.

Kwiatkowska, M., G. Norman, and D. Parker (2011). “PRISM 4.0: verification of
probabilistic real-time systems”. In: Proc. 23rd International Conference on
Computer Aided Verification (CAV’11). Vol. 6806. LNCS, pp. 585–591.

Kwiatkowska, M. Z., G. Norman, and R. Segala (2001). “Automated verification of
a randomized distributed consensus protocol using cadence smv and prism”.
In: Proceedings of the 13th International Conference on Computer Aided Veri-
fication. CAV ’01. London, UK, UK, pp. 194–206. ISBN: 3-540-42345-1.

Lima, D. A. de and A. C. Victorino (2016). “A hybrid controller for vision-based
navigation of autonomous vehicles in urban environments”. IEEE Transac-
tions on Intelligent Transportation Systems 17:8, pp. 2310–2323. DOI: 10.1109/
TITS.2016.2519329.

Maggio, M., E. Bini, G. Chasparis, and K.-E. Årzén (2013). “A game-theoretic re-
source manager for rt applications”. In: Euromicro Conference on Real-Time
Systems. DOI: 10.1109/ECRTS.2013.17.

120

References

Nagaoka, T., A. Ito, K. Okano, and S. Kusumoto (2011). “Qos analysis of real-
time distributed systems based on hybrid analysis of probabilistic model
checking technique and simulation”. Transactions on Information and Sys-
tems E94.D:5. DOI: 10.1587/transinf.E94.D.958.

Norman, G., D. Parker, M. Kwiatkowska, and S. Shukla (2005). “Evaluating the
reliability of nand multiplexing with prism”. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 24:10, pp. 1629–1637. ISSN:
0278-0070.

Ramos, N., D. Panigrahi, and S. Dey (2007). “Dynamic adaptation policies to im-
prove quality of service of real-time multimedia applications in ieee 802.11e
wlan networks”. Wirel. Netw. 13:4, pp. 511–535. DOI: 10.1007/s11276- 006-
9203-5.

Razavi, R., M. Fleury, and M. Ghanbari (2008). “Low-delay video control in a per-
sonal area network for augmented reality”. IET Image Processing 2:3. DOI: 10.
1049/iet-ipr:20070183.

Rinner, B. and W. Wolf (2008). “An introduction to distributed smart cameras”.
Proceedings of the IEEE 96:10. DOI: 10.1109/JPROC.2008.928742.

Seetanadi, G. N., J. Camara, L. Almeida, K.-E. Årzén, and M. Maggio (2017).
“Event-driven bandwidth allocation with formal guarantees for camera net-
works”. In: RTSS, Real-Time Systems Symposium. Paris, France. DOI: 10.1109/
RTSS.2017.00030.

Seetanadi, G. N., L. Oliveira, L. Almeida, K.-E. Arzen, and M. Maggio (2017).
“Game-theoretic network bandwidth distribution for self-adaptive cameras”.
In: 15th International Workshop on Real-Time Networks. DOI: 10 . 1145 /
3267419.3267424.

Shmatikov, V. (2002). “Probabilistic analysis of anonymity”. In: Proceedings 15th
IEEE Computer Security Foundations Workshop. CSFW-15, pp. 119–128.

Silvestre-Blanes, J., L. Almeida, R. Marau, and P. Pedreiras (2011). “Online qos
management for multimedia real-time transmission in industrial networks”.
IEEE Transactions on Industrial Electronics 58:3. DOI: 10 . 1109 / TIE . 2010 .
2049711.

Tian, T., Y. Zhang, Q. Zhou, and P. Zhong (2016). “Modelx: using model check-
ing to find design errors of cloud applications”. In: 2016 IEEE International
Conference on Computer and Information Technology (CIT), pp. 607–610. DOI:
10.1109/CIT.2016.66.

Toka, L., A. Lajtha, É. Hosszu, B. Formanek, D. Géhberger, and J. Tapolcai (2017).
“A resource-aware and time-critical IoT framework”. In: IEEE International
Conference on Computer Communications INFOCOM. DOI: 10.1109/INFOCOM.
2017.8057143.

Valmari, A. (1998). “The state explosion problem”. In: Lectures on Petri Nets I: Ba-
sic Models: Advances in Petri Nets. Springer, pp. 429–528. DOI: 10.1007/3-540-
65306-6_21.

121

Paper III. Control-Based Event-Driven Bandwidth Allocation Scheme ...

Vandalore, B., W.-c. Feng, R. Jain, and S. Fahmy (2001). “A survey of application
layer techniques for adaptive streaming of multimedia”. Real-Time Imaging
7:3. DOI: 10.1006/rtim.2001.0224.

Veeraraghavan, V. and S. Weber (2008). “Fundamental tradeoffs in distributed
algorithms for rate adaptive multimedia streams”. Comput. Netw. 52:6,
pp. 1238–1251. DOI: 10.1016/j.comnet.2008.01.012.

Wang, X., M. Chen, H. M. Huang, V. Subramonian, C. Lu, and C. D. Gill (2008).
“Control-based adaptive middleware for real-time image transmission over
bandwidth-constrained networks”. IEEE Transactions on Parallel and Dis-
tributed Systems 19:6. DOI: 10.1109/TPDS.2008.41.

Yüksel, E., H. Zhu, H. R. Nielson, H. Huang, and F. Nielson (2012). “Modelling
and analysis of smart grid: a stochastic model checking case study”. In: 2012
Sixth International Symposium on Theoretical Aspects of Software Engineer-
ing, pp. 25–32. DOI: 10.1109/TASE.2012.44.

Zhang, T., A. Chowdhery, P. (Bahl, K. Jamieson, and S. Banerjee (2015). “The de-
sign and implementation of a wireless video surveillance system”. In: Pro-
ceedings of the 21st Annual International Conference on Mobile Computing
and Networking, pp. 426–438. DOI: 10.1145/2789168.2790123.

122

Paper IV

Model Checking a Self-Adaptive Camera
Network with Physical Disturbances

Gautham Nayak Seetanadi Karl-Erik Årzén Martina Maggio

Abstract

The paper describes the design and verification of a self-adaptive system,
composed of multiple smart cameras connected to a monitoring station,
that determines the allocation of network bandwidth to the cameras. The
design of such a system poses significant challenges, since multiple con-
trol strategies are active in the system simultaneously. In fact, the cameras
adjust the quality of their streams to the available bandwidth, that is at the
same time allocated by the monitoring station. Model checking has proven
successful to verify properties of this complex system, when the effect of ac-
tions happening in the physical environment was neglected. Extending the
verification models to include disturbances from the physical environment
is however nontrival due to the state explosion problem. In this paper we
show a comparison between the previously developed deterministic model
and two alternatives for disturbance handling: a probabilistic and a non-
deterministic model. We verify properties for the three models, discovering
that the nondeterministic model scales better when the number of cameras
increase and is more representative of the dynamic physical environment.
We then focus on the nondeterministic model and study, using stochastic
games, the behavior of the system when the players (cameras and network
manager) collaborate or compete to reach their own objectives.

©2019 IEEE. Originally published in IEEE International Conference on Auto-
nomic Computing (ICAC), Umeå, Sweden, June 2019. Reprinted with permission.
The article has been reformatted to fit the current layout.

123

Paper IV. Model Checking a Self-Adaptive Camera Network with ...

1. Introduction

This paper discusses the problem of bandwidth allocation for a self-adaptive
video-surveillance system, composed of cameras, connected to a monitoring sta-
tion. There are two main aspects that should be taken into account: the cyber
part of the problem (the resource distribution), and the physical part (the scene
captured by the cameras). The characteristics of the problem call for dynamic
resource allocation, which is well studied in autonomic computing. We would
like to have guarantees on the behavior of the final solution, hence we resort to
model checking, which allows us to formally analyze and prove properties on the
complex adaptation scheme.

On the cameras side, adaptivity is needed to match a given bandwidth and
storage space. On the monitoring side, varying the amount of bandwidth given
to each camera is the key to fulfill dynamic time-varying requirements, like the
need for having better images for an indoor area during the day and for the out-
door parking lot during night. Furthermore, scenes can be easier or harder to
record. Each frame is processed and encoded, trying to compress it as much
as possible, while retaining all the information contained in the original image.
This means that each part of the image is either encoded as a new block or as
some shifted block with respect to other blocks in previous frames, with small
modifications. In fact, the encoded frame size, using a movement-based encoder
(like MPEG), depends on many different factors, including (among others) na-
ture, lighting conditions, and the amount of movement detected and encoded
in the scene [Edpalm, Martins, Årzén, and Maggio, 2018]. Even when images are
transmitted as simple JPEG frames, the encoded scene makes a difference in the
image sizes [Seetanadi, Cámara, Almeida, Årzén, and Maggio, 2017]. This moti-
vates the need to include some considerations about the physics in the network
bandwidth distribution protocols. However, due to the unpredictable and ever-
changing nature of the scene to be encoded, we argue that these considerations
should be indirect and come from measurements, rather than prior knowledge.
This paper describes the synthesis and verification of a network bandwidth dis-
tribution scheme, that reacts to changes in the physical environment without
prior knowledge of its characteristics.

Bandwidth distribution requires mechanisms to be in place for multiple
nodes to be allocated a certain amount of the network bandwidth with non-
violation guarantees [Almeida et al., 2007]. Transmission protocols, like the Flexi-
ble Time Triggered for Switched Ethernet (FTT-SE) [Pedreiras and Almeida, 2003],
guarantee the non-violation of the assigned bandwidth. In a recent paper [See-
tanadi, Cámara, Almeida, Årzén, and Maggio, 2017], we designed and imple-
mented a scheme for bandwidth allocation and camera adaptation that decou-
ples the two inherent adaptation dimensions: (i) bandwidth distribution, and (ii)
adaptation of encoding parameters. The encoding parameters are used to adjust
the frame sizes and trade the quality of the resulting stream for its compression.

It is well known that multiple control policies can negatively impact the per-
formance of the system [Heo and Abdelzaher, 2009], so we needed formal guar-

124

2 System Overview

antees that this would not happen in this case. We therefore resorted to model
checking, and verified properties like the transmission of frames [Seetanadi, Cá-
mara, Almeida, Årzén, and Maggio, 2017]. A model checker ensures that the
bandwidth allocation protocol allows cameras to transmit their frames (of a given
size). If frame sizes were known (or computable), this would be enough to en-
sure the transmission of the video streams. However, due to the changes in the
recorded physical scenes, this assumption does not hold.

The changes in frame sizes due to the physical world can be seen as a stochas-
tic disturbance — some element that randomly affects the scene and is reflected
in the encoding. We tried to apply model checking, including a stochastic distur-
bance in our model. In so doing, we came across the state space explosion prob-
lem [Clarke, Klieber, Nováček, and Zuliani, 2012]. This paper discusses the prob-
lem we encountered and how we changed our model to capture the stochastic
disturbance and retain some ability to verify properties of our video-surveillance
scheme. Specifically, we make the following contributions:

• We incorporated disturbances in both a probabilistic and a stochastic
model, expanding on [Seetanadi, Cámara, Almeida, Årzén, and Maggio,
2017].

• We compared the probabilistic and the stochastic model exposing their
tradeoffs (capturing real-life behaviour versus the computational com-
plexity of the verification process).

• We described, formally defined, and verified interesting properties of a
self-adaptive camera network.

• We compared the system performance in the case of co-cooperative
versus non-cooperative behaviors using PRISM-games [Chen, Forejt,
Kwiatkowska, Parker, and Simaitis, 2013].

The remainder of this paper is organized as follows. Section 2 states what are
the requirements for the video-surveillance system and specifies the model for
our system’s components, i.e, cameras and bandwidth (network) manager. Sec-
tion 3 gives some background about model checking, stochastic games, and the
properties that can be verified for our system. We compare cooperative and non-
cooperative schemes, highlighting their difference. Section 4 compares the previ-
ously devised and the proposed model, describes the state space explosion prob-
lem and the results obtained with cooperative and non-cooperative strategies.
Section 5 gives an overview of related work and Section 6 concludes the paper.

2. System Overview

The system is composed of a monitoring station and a set of cameras that are
connected to it via Ethernet networking, a standard setup for a video-surveillance
system. The left part of Figure 1 shows an example of such a system. A monitor

125

Paper IV. Model Checking a Self-Adaptive Camera Network with ...

and network manager M collects images from n cameras (five in the figure), the
i -th one being identified by the letter ci . The monitor is in charge of assigning
the network bandwidth as a fraction of the total bandwidth H, a parameter of
the system, e.g., H= 4[Mb/s].

c1 c2 c3 c4 c5

M
b = {b1, . . .b5}

time

schedule τM

τMb2(1) τMb2(2)

Figure 1. System Overview

Generally speaking, the network manager assigns a vector b. Each element
of this vector b represents the percentage of bandwidth that the corresponding
camera can use. This means that the network manager chooses each element bi
such that

∑n
i=1 bi = 1 and tries to maximize the quality of the camera streams. For

the resource allocation, we use the algorithm proposed in [Maggio, Bini, Chas-
paris, and Årzén, 2013] adapted to network bandwidth in [Seetanadi, Cámara,
Almeida, Årzén, and Maggio, 2017], because it guarantees properties like starva-
tion avoidance and fairness among the different streams.

The right side of Figure 1 shows a schedule example. The time is divided into
manager periods τM, each of them corresponding to the transmission of a single
frame from all the cameras. The manager partitions each period giving some time
to each of the cameras. For example, camera c2 is allowed to transmit in the first
network manager period for a chunk of time τMb2(1) and in the second one for
a time τMb2(2). During the time allocated to its slot, c2 can use the full network
bandwidth, therefore effectively being able to transmit a frame of size up to τM ·
b2(k) ·H[Mb]. In the example shown in the figure, the network manager decides
to increment the percentage of time allocated to c2, which gets more bandwidth
in the second transmission slot with respect to the first one. If a camera does not
complete the transmission of a frame during its slot, then the frame is dropped.
Similarly, only a given camera is able to transmit during its slot, and if the slot is
not fully utilized the corresponding time is wasted.

To fulfill the bandwidth requirements, for each frame w , the i -th camera ad-
justs the quality of the video stream qi ,w according to a very simple control strat-
egy, resembling the TCP congestion window approach [Varma, 2015]. The video
stream quality is a parameter that corresponds roughly to the percentage of in-
formation that is retained from the original image. Given the implementation of
the video encoding, the quality value belongs to the interval 1 to 100, but in our
system we do not allow a quality lower than 15, to ensure we preserve some infor-
mation from the original frame. The congestion window algorithm increases and

126

3 Verification and Model Checking

decreases the quality as required. Specifically, if the quality for the current frame
resulted in a succesful transmission, the quality is increased slowly, incrementing
it by 1. If the current frame is not transmitted correctly due to lack of bandwidth,
the quality is halved. For other problems (e.g queue management, voice over IP),
this simple algorithm has been proven successful [Hellerstein, Diao, Parekh, and
Tilbury, 2005; Varma, 2015].

Depending on the make and model, each camera has a maximum frame size,
which we indicate with si ,max. Denoting with si ,w the size of frame w produced
by camera i , we use the following linear relationship to model the frame size in
its most general form.

si ,w = 0.01 ·qi ,w · si ,max +δsi ,w (4.1)

The calculated frame size is then saturated between pre-determined values
of minimum and maximum allowable frame sizes as shown in (4.2).

si ,w = max{si ,min,min{si ,max, s∗i ,w }}. (4.2)

Here, the factor 0.01 has the effect of correctly scaling the quality value. δsi ,w
is a disturbance acting on the frame size, that depends on the scene that is
recorded. In previous work [Seetanadi, Cámara, Almeida, Årzén, and Maggio,
2017], we modeled the system using this equation successfully, but we set the
disturbance to zero, to enable model checking and avoid the state space explo-
sion problem. In this paper we investigate how to handle the disturbance so that
model checking is still able to give us some guarantees about the system behav-
ior.

3. Verification and Model Checking

This section introduces Markov Decision Processes (MDPs) and their extension
to Stochastic Multi-Player Games (SMGs), both of which are used to model the
camera network behavior including disturbances. Both the formalisms are sup-
ported by the PRISM model checker [Kwiatkowska, Norman, and Parker, 2011],
which we use to conduct our study. The section first introduces the relevant con-
cepts and then describes their application to the context of our problem. We
compare three different models: the deterministic one without disturbances in-
troduced in [Seetanadi, Cámara, Almeida, Årzén, and Maggio, 2017], and two
different ways of handling disturbances: a probabilistic and a non-deterministic
model. We then discuss the properties that we verify, corresponding to guaran-
tees on the camera network behavior.

3.1 Basic Concepts
Markov Decision Processes (MDPs): A MDP is a tuple M = {S, s, A,Pr }, where S is
a finite set of states, s ∈ S is the initial state. A is a finite set of actions, Pr : S×A → S
is a probabilistic (possibly partial) transition function mapping state-action pairs

127

Paper IV. Model Checking a Self-Adaptive Camera Network with ...

to probability distributions over S. — MDPs describe the evolution of a system
when this depends both on the action taken and on the current state the system
is in. MDPs are the prefereed method to model discrete-time systems that exhibit
both nondeterministic and probabilistic behavior [Clarke, Henzinger, Veith, and
Bloem, 2018]. We use MDPs to design the deterministic, probabilistic, and non-
deterministic versions of our camera network models. Also, using the same for-
malism to define the three models allows us to compare them effectively.

Stochastic Multi-Player Games (SMGs): A SMG is a tuple
G = {π,S, (Sπ,Sp), s, A,Pr,L}, where π is a finite set of players. S is a finite set of
states, partitioned into player states Sπ and probabilistic states Sp . s is the set of
initial states (one for each player). A is a finite set of actions, Pr : S × A → S is a
probabilistic (possibly partial) transition function mapping state-action pairs to
probability distributions over S. L is an action labeling function used to synchro-
nize transitions happening in the space of different players. — SMGs extend MDPs
distinguishing between several types of non-deterministic choices [Kwiatkowska,
2016]. Each choice corresponds to an action performed by a different player. In
this paper, we use SMGs to evaluate the concept of competitive vs collaborative
players in the camera network, i.e., to evaluate what happens if the cameras co-
operate with the manager towards a common objective or if they try to maximize
only their own reward.

Probabilistic vs Nondeterministic: In the model checking terminology, a prob-
abilistic model is a model that includes some transition probability. From any
state, the system can envolve according to different transitions, satisfying a given
probability distribution. For example, from state s1, taking the action a does not
change the state with a probability of 0.05, imply transitioning to state s2 with a
probability of 0.45 and drives the system to state s3 with a probability of 0.5. In
a nondeterministic model, there is no predetermined probability distribution for
the transitions. From state s1, taking the action a can lead to three alternatives:
staying in s1, transition to s2, or transition to s3. The probabilities of taking one
of the the two transitions is not specified.

3.2 Modeling the Problem
We here describe three ways of modeling the camera network behavior using
MDPs.

Network Manager In all the three models, the network manager behaves in the
same way. The manager is implemented as a module in PRISM, as shown in List-
ing 4.1 and the corresponding MDP representation is shown in Figure 2. In the
code, rm is used to keep track of the network manager state. The state rm_init
indicates the initialization phase for the network manager. The state rm_calc_bw
corresponds to the state when the network manager is computing the new vector
b and then the subsequent bandwidth assignment. The state rm_alloc_bw indi-
cates that the the allocation is being performed (within the period). The state
rm_wait corresponds to the state when the manager is waiting to be invoked.

128

3 Verification and Model Checking

1 formula update_bw = ... // update bandwidth of all cameras
2 module NetworkManager
3 [] (rm = rm_init) -> 1 : (rm' = rm_calc_bw); // initialization
4 [end] (rm = rm_end) -> 1 : (rm' = rm_end); // self-absorbing
5 [man_inter] (rm = rm_calc_bw) & (!end)-> 1 : (rm' = rm_alloc_bw) &
6 (bw' = update_bw); // bw_allocated: allocating bandwidth to camera and

waiting,
7 end if reached maximum frames
8 [bw_allocated] (rm = rm_alloc_bw) & (frames < max_frames) & (!end) -> 1 :

(rm' = rm_wait) & (frames' = frames + 1);
9 [bw_allocated] (rm = rm_alloc_bw) & (frames >= max_frames) & (!end) -> 1 :

(end' = true) & (rm' = rm_end); // final
10 // last_cam_sent: check if recalculation is needed/requested or not and

switch to corresponding state
11 [last_cam_sent] (rm = rm_wait) & (want_rm) & (!end) -> 1 : (rm' =

rm_calc_bw); // recalculation
12 [last_cam_sent] (rm = rm_wait) & (!want_rm) & (!end)-> 1 : (rm' =

rm_alloc_bw); // no recalculation
13 endmodule

Listing 4.1. Network Manager, PRISM Code

Finally, rm_end denotes the end of the execution (when the preset maximum
number of frames for the verification procedure is reached). The labels indicate
the transition names, so that other modules can synchronize their transisitions.
Specifically, [man_inter] indicates that the network manager is intervening to re-
allocate bandwidth. It has computed the bandwidth and transitions to the state
in which it allocates it. The figure gives a visual representation of the same con-
cepts. States are represented as circles and transitions from one state to another
are represented by directional arrows. PRISM allows for synchronization of mul-
tiple modules using labels, which are indicated using square brackets. The black
circle in the rm_end state represents the fact that the state is a self-absorbing state.
Listing 4.1 contains two [bw_allocated] transitions, to distinguish between the
end state rm_end and the wait state rm_wait.The guards of the two transitions are
different, therefore there is no non-determinism in the manager MDP — it is al-
ways clear, depending on the state of the system, which transition is going to be
taken.

Camera – Deterministic Model The first model we introduce for the behavior of
the cameras is a completely deterministic model, constructed similarly to the one
presented in [Seetanadi, Cámara, Almeida, Årzén, and Maggio, 2017]. This model
is our reference for comparison. It does not model the disturbances, which is the
feature we want to introduce in this paper. The model consists of one network
manager module as shown in Figure 2 and Listing 4.1 and n copies of a single
camera model, depending on the number of cameras in the network. Listing 4.2

129

Paper IV. Model Checking a Self-Adaptive Camera Network with ...

rm_init

rm_calc_bw

rm_alloc_bw

rm_wait

rm_end

[man_inter]

[bw_allocated]

[last_cam_sent]

[last_cam_sent]

[bw_allocated]

[end]

Figure 2. Network Manager, MDP Representation

cam_init

cam_calc_fr

cam_wait

[bw_allocated]

[- or last_cam_sent]

[bw_allocated]

Figure 3. Camera Deterministic Model

shows the PRISM code and Figure 3 shows the state space diagram of a single
camera, when modeled in the deterministic way.

The camera stays in the initial state cam_init until the [bw_allocated] transi-
tion is taken by the network manager. When the network manager computes the
bandwidth allocation for the cameras, the camera can take the transition that
moves it into the computation of the framesize of the currently captured image.
The formula update_q in the PRISM code is here used as a compact notation for
the computation of the next quality level qi ,w according to the congestion win-
dow algorithm. The formula framesize is used as a compact way of describing
the computation of the next framesize defined in Equation (4.1), with δsi ,w set to
zero. The camera then transitions to the cam_wait state, where it waits for all the
cameras to finish their transmission. The last camera module has a labelled tran-
sition [last_cam_sent] to the wait state (all the other cameras have no label for
this transition), which allows us to synchronize with the network manager’s ac-
tions. The behavior is repeated until a maximum number of frames is transmitted
by each camera in the network, specified as a parameter at the model checking
level.

Camera – Probabilistic Model The first alternative that we propose to include
disturbances with respect to the deterministic behavior is the use of a probabilis-
tic model. In general, probabilities are a good tool to encode elements like hard-
ware failures. We can include probabilisties in our model as shown in Figure 4
and in Listing 4.3. The (deterministic) network manager code is unchanged. All
the stochastics resides in the capturing of the image. We would like to include the
disturbance δsi ,w introduced in [Seetanadi, Cámara, Almeida, Årzén, and Mag-
gio, 2017] – and shown in Equation (4.1). With respect to prior work, however, it
has been shown that the disturbance acting on the frame size would affect the

130

3 Verification and Model Checking

1 formula framesize = ... // compute frame size from equation (4.1)
2 formula update_q = ... // update the quality
3

4 module DeterministicCamera
5 // init: synchronization with manager on bandwidth allocation
6 [bw_allocated] (cam = cam_init) -> 1 : (cam' = cam_calc_fr);
7 // entering computation of frame size, unlabeled transition for all the

cameras
8 // except the last, labeled to indicate the end of the scheduling round
9 [- or last_cam_sent] (cam = cam_calc_fr) -> 1 : (cam' = cam_wait) &

10 (q' = update_q) & (s’= framesize);
11 // return to computation after all the cameras have sent cycling
12 // until the end of the allocation by the manager
13 [bw_allocated] (cam = cam_wait) -> 1 : (cam' = cam_calc_fr);
14 endmodule

Listing 4.2. Camera Deterministic Model, PRISM Code

1 formula framesize = ... // compute frame size from equation (4.3)
2 formula framesize_disturbance = ... // with disturbance
3 formula update_q = ... // update the quality
4

5 module ProbabilisticCamera
6 // init: synchronization with manager on bandwidth allocation
7 [bw_allocated] (cam = cam_init) -> 1 : (cam' = cam_calc_fr);
8 // entering computation of frame size, probabilistic
9 [- or last_cam_sent] (cam = cam_calc_fr) ->

10 0.7 : (cam' = cam_wait) & (q' = update_q) & (s’= framesize) +
11 0.3 : (cam' = cam_wait) & (q' = update_q) & (s’= framesize_disturbance);
12 // return to computation after all the cameras have sent
13 [bw_allocated] (cam = cam_wait) -> 1 : (cam' = cam_calc_fr);
14 endmodule

Listing 4.3. Camera Probabilistic Model, PRISM Code

camera quality as a multiplicative term [Edpalm, Martins, Årzén, and Maggio,
2018]. Rather than modeling the disturbance as shown in [Seetanadi, Cámara,
Almeida, Årzén, and Maggio, 2017], we introduce a term capturing unexpected
quality variation δqi ,w (which is used for example to model different light condi-
tions or encoding capabilities).

Compared to the deterministic version, the transition that links the
cam_calc_fr state to the cam_wait can be taken with two different effects. Once
the bandwidth is determined, different paths can be taken, modeling a stochas-

131

Paper IV. Model Checking a Self-Adaptive Camera Network with ...

cam_init

cam_calc_fr

cam_wait

[bw_allocated]

[- or last_cam_sent]
0.3: s’ = framesize_disturbance

[- or last_cam_sent]
0.7: s’ = framesize

[bw_allocated]

Figure 4. Camera Probabilistic Model

cam_init

cam_calc_fr

cam_wait

[bw_allocated]

[- or last_cam_sent]

[bw_allocated]

(a) Camera

env_wait

env_calc_dist

[bw_allocated]

(b) Environment

Figure 5. Camera Nondeterministic Model

tic disturbance. In 70% of the cases there is no disturbance. On the contrary, in
the remaining 30% of the cases, the computation of the frame size is carried out
according to a different formula, that includes the additional term δqi ,w . More
precisely, we use the following formula:

si ,w =
{

(0.7) 0.01 ·qi ,w · si ,max
(0.3) 0.01 · (qi ,w +δqi ,w) · si ,max

(4.3)

The first line in Equation (4.3) is assigned a probability of 0.7. This captures
the behavior of the camera when it is operating in its normal conditions. In this
state, the relationship between the quality qi ,w and the frame size si ,w is lin-
ear and there is no disturbance. On the contrary, the second line is assigned a
probability of 0.3 and captures the behavior when a disturbance occurs. Using
a static multiplicative disturbance (additive on the quality, δqi ,w), we generate
frame sizes of higher values for the same input quality qi ,w . The probabilities
can be tuned to model varying behaviors in the real world and other alternative
paths can be added to the model. The specific values used for the disturbance
terms can be obtained via profiling as specified in [Edpalm, Martins, Årzén, and
Maggio, 2018], and the values we used were found using the testbed developed
for [Seetanadi, Cámara, Almeida, Årzén, and Maggio, 2017].

Clearly, the probabilistic choice added increases the complexity of the model
and the number of states that it contains, which the model checker has to deal
with. Experimental results on the scalability of the probabilistic model are de-
scribed in Section 4.1.

Camera – Nondeterministic Model Here we present an alternative to the prob-
abilistic model for including a disturbance: a nondeterministic model. Nonde-
terminism is present in the vast majority of cyber-physical systems. Often, these
systems are composed of multiple possible outcomes, with dependencies from

132

3 Verification and Model Checking

1 formula framesize_disturbance = ... // from equation (4.4)
2 formula update_q = ... // update the quality
3

4 module NondeterministicCamera
5 [bw_allocated] (cam = cam_init) -> 1 : (cam' = cam_calc_fr);
6 [- or last_cam_sent] (cam = cam_calc_fr) -> 1 : (cam' = cam_wait) &
7 (q' = update_q) & (s’= framesize_disturbance); // with disturbance
8 [bw_allocated] (cam = cam_wait) -> 1 : (cam' = cam_calc_fr);
9 endmodule

10

11 module Environment
12 // generate a new disturbance as a nondeterministic choice between a set of

values, and move to wait state
13 [bw_allocated] (env = env_wait) -> 1 : (env' = env_calc_dist) &
14 (dist' = new_dist);
15 [] (env = env_calc_dist) -> 1 : (env' = env_wait);
16 endmodule

Listing 4.4. Camera Nondeterministic Model, PRISM Code

other entities (in our case from the physical environment). The MDP representa-
tion of model is presented in Figure 5, and its PRISM code is shown in Listing 4.4.
The network manager is unchanged and the camera model is the same as the
deterministic one, with the only exception of the frame size computation, that
occurs according to the formula that includes the disturbance.

si ,w = 0.01 · (qi ,w +δqi ,w) · si ,max (4.4)

We use Equation (4.4) to model the stochasticity of the image capture. The equa-
tion is the same as the second line in Equation (4.3), used in the probabilistic
model. The difference is that for each w frame of i camera, we can introduce a
random value for δqi ,w (which we choose to be between -20 and 20, using our
implementation to find representative values for the most common scenes). We
specify alternative paths with each of these paths corresponding to a disturbance
vector with an amount of disturbance to each of the cameras (e.g., for three cam-
eras we could select the disturbance vector< δq1,1 = 10,δq2,1 =−5,δq3,1 = 0 > for
the first frame, and then the vector < δq1,2 = −10,δq2,1 = 5,δq3,1 = −5 > for the
second frame). This models the randomness in the physical environment rep-
resenting a random amount of noise affecting the captured image. One of the
paths here is < δq1,1 = 0,δq2,1 = 0,δq3,1 = 0 >. This corresponds to the steady
state behavior of the system when there are no disturbances (similarly to the de-
terministic model).

The value of δqi ,w is determined using another module (named Environment)
as shown in the PRISM listing. The Environment module is synchronized using
the same labels as the manager and the camera module. The environment acts

133

Paper IV. Model Checking a Self-Adaptive Camera Network with ...

for every frame collected by the cameras and can select among nondeterministic
alternatives for the disturbances, including zeros (to resemble the deterministic
behavior).

The inclusion of another module greatly increases the number of states of
the model, which poses significant limitations for the model checker. The state
explosion problem is discussed in Section 4.1, that includes verification results.

3.3 Stochastic Games
PRISM-Games [Chen, Forejt, Kwiatkowska, Parker, and Simaitis, 2013] extends
PRISM incorporating the verification of competitive and collaborative behavior
with SMGs for nondeterministic models. Games are modeled turn-based where
the players of SMGs are in control of choices that are nondeterministic. Using
PRISM-Games we can investigate the behavior of our camera network and net-
work manager when the different entities collaborate with one another to reach
a common goal, or when they each have a separate goal and are only concerned
with that one.

In our system, there are naturally n + 1 players. The first n players are the
cameras. Each of them wants to maximize the number of frames transmitted cor-
rectly (possibly with a weight depending on the quality — the higher the quality,
the better). The last player is the network manager, who wants to maximize the
utilized bandwidth allocated to the cameras. In a collaborative framework, the
manager would allocate the bandwidth fairly to all the cameras, and the cameras
would use the allocated bandwidth minimizing the effect of the stochastic dis-
turbance. In a competitive framework, the manager would only try to maximize
its own benefit and each camera would do the same, irrespective of the others’
objective functions.

PRISM-Games allows to declare only two players, either collaborating or
competing with one another. This is however not a limitation in this case, since
all the objective functions for the n cameras do not depend on each another and
maximizing one does not change the value of the others. We can therefore declare
one player as the manager and one player as the set of cameras and compare the
collaborative versus competitive game, where they pursue their own objectives.
Our results for this comparison are discussed in Section 4.3.

3.4 Properties
This section covers the different properties that we can verify on our system.

Models developed in PRISM can be augmented with rewards: real values as-
sociated with certain states or transitions of the model. Listing 4.5 shows the re-
wards constructed. Reward "rm_calls" awards a reward of 1 whenever the tran-
sition corresponding to [man_inter] is taken. Similarly rewards "cam_fr_dropped"
and "cam_fr_sent" rewards 1 when a camera drops or sends a frame respectively.
Finally reward "cost" is a combination of values, penalizing each dropped frames
by 10 and each manager intervention by 1.

Listing 4.6 shows the properties that we use to evaluate the three different
MDP models: the deterministic one presented in Section 3.2, the probabilistic

134

3 Verification and Model Checking

1 rewards "rm_calls"
2 [man_inter] true : 1; // +1 when manager intervenes
3 endrewards
4 rewards "frame_dropped"
5 [] cam = cam_fr_drop : 1; // +1 with every dropped frame
6 endrewards
7 rewards "frame_sent"
8 [] cam = cam_fr_sent : 1; // +1 with every sent frame
9 endrewards

10 rewards "cost"
11 [man_inter] true : 1; // +1 when manager intervenes
12 [] cam = cam_fr_drop : 10; // +10 with every dropped frame
13 endrewards

Listing 4.5. Reward Structures

1 R{"rm_calls"}max =? [F end] // MDP-1: Maximum interventions
2 R{"rm_calls"}min =? [F end] // MDP-2: Minimum interventions
3 R{"frames_dropped"}max =? [F end] // MDP-3 Maximum dropped
4 R{"frames_dropped"}min =? [F end] // MDP-4: Minimum dropped
5 R{"frames_sent"}max =? [F end] // MDP-5: Maximum frames sent
6 R{"frames_sent"}min =? [F end] // MDP-6: minimum frames sent
7 R{"cost"}min=? [F end] // MDP-7: Minimum operational cost

Listing 4.6. Properties of MDP models

one presented in Section 3.2, and the nondeterministic one discussed in Sec-
tion 3.2.The identifier R indicates a reward of the specified type. Rewards are used
in PRISM to encode quantitative verification. The term reward indicates a posi-
tive quantity, but can be used to quantify costs as well [Kwiatkowska, Norman,
and Parker, 2011]. For example, R{"rm_calls"}max in Property MDP-1 indicates
the maximum value of the reward associated with the (number of) network man-
ager calls. The identifier [F end] indicates that the reward is calcualted when the
end state is reached. The end state is reached when a preset number of frames are
sent by the cameras.

Properties MDP-1 and MDP-2 are used to track the reward "rm_calls" which
is incremented every time the manager changes the bandwidth allocation. Sim-
ilarly the frames sent and dropped are rewarded in properties MDP-3, MDP-4
and MDP-5, MDP-6 respectively. Finally, property MDP-7 tracks the operational
cost for the system. Denoting with di the number of dropped frames for camera
i and with mc the number of manager calls, the cost is defined as mc +10 ·∑n

1 di ,
which means it considers every dropped frame contribution to the cost 10 and
every manager call contribution to the cost 1. We designed this cost to be multi-

135

Paper IV. Model Checking a Self-Adaptive Camera Network with ...

objective, as we believe that skipping the transmission of frames incurs informa-
tion loss, but at the same time we would like to avoid frequent manager interven-
tions. The trade-off can be set to different values (for example, manager interven-
tion could be penalized more than dropped frames in steady state). Section 4.1
describes our results.

Similarly, Listing 4.7 shows the properties that we use to evaluate the cooper-
ative vs competitive behavior of the system using SMGs. The properties of List-
ing 4.6 are augmented to indicate the dominant player the property refers to.
This is either the manager, the camera, or both (in the cooperative scenario). The
prepended label, delimited with «», indicates the player who maximizes or min-
imizes the current objective. Section 4.3 describes the results we obtained for
these properties.

4. Results

This section presents our verification results. First, we analyze the scalability of
the three proposed models. Then we discuss the two settings of cooperating enti-
ties versus competing ones (i.e., we show the results obtained when the cameras
and the manager collaborates to reach an objective and when they pursue the
objective on their own).

We wrote the code for the deterministic, probabilistic, and nondeterminis-
tic models using the PRISM language and its model checker. We use the explicit
engine for model checking, since it is the only engine that handles SMGs. This
means that the model checker only uses explicit-state data structures, storing
models as sparse matrices. The explicit engine is also a good fit for our require-
ments, since our models have a very large state space, but only a fraction of the
states is actually reachable.

We selected a maximum number of 10 frames for our model and a set H
to 4Mb/s, which resembled the experimental setup used in [Seetanadi, Cámara,
Almeida, Årzén, and Maggio, 2017]. The other parameters (e.g., the period of the
resource manager) were set according to the previous experiments [Seetanadi,
Cámara, Almeida, Årzén, and Maggio, 2017]1. The models were built on a com-
puter with 128GB of RAM, that was allocated to PRISM. This is necessary to build
large models for model checking.

4.1 Scalability
Here, we evaluate how the three proposed models scale with the number of cam-
eras, i.e., with the size of the problem. Table 1 shows the number of states for the
PRISM models for an increasing number of cameras n and Figure 6 shows a visual
representation of the same numbers (notice the y-axis is logaritmic scaled). As ex-
pected from the discussion in [Seetanadi, Cámara, Almeida, Årzén, and Maggio,

1 The code for the experiments is publicly available at: https://
github.com/gauthamnayaks/camnetverification/tree/master/icac19

136

4 Results

Table 1. Scalability Analysis: State Space Growth

n Deterministic Probabilistic Nondeterministic

2 111 404 6908
3 277 246790 18190
4 771 11996 43915
5 2245 70652 148776
6 6651 – 491603
7 19833 – 1555671
8 59328 – 4786617

2 3 4 5 6 7 8
102

104

106

Number of cameras

N
um

be
r

of
st

at
es

(lo
ga

ri
tm

ic
)

Deterministic Probabilistic Nondeterministic

Figure 6. Scalability Analysis: State Space Growth Plot

2017], the deterministic model scales exponentially with the number of cameras
in the system. The same is true for the other models, although the model size
greatly increases when the model includes the effect of disturbances (with a sim-
ilar growth rate). Notice that increasing the number of frames used for the evalu-
ation would result in larger models, having the same growth characteristics.

We were able to build the probabilistic model only for up to five cameras.
On the contrary, we were able to build and verify the nondeterministic model
for up to eight cameras in the system. Even though the nondeterministic model
has a larger number of states with respect to the probabilistic one, we noticed
that the probabilistic model is interestingly difficult to build. Also, in the case
of three cameras, the resulting probabilistic model has a large number of states.
We initially attributed this to a parameter conflict (a particularly difficult set of
parameters, that could cause larger fluctuations, i.e., the weights used in the net-
work manager multiplied with the update step would result in not changing the
bandwidth correctly and needing a lot of refinement). However, despite a deeper
exploration, we were not able to find the parameters that create the conflict. The
only insight that we have on the problem is that PRISM handles the involved vari-
ables as integer numbers. This could create problems in the initial step (and po-
tentially in subsequent ones), precisely in the 3 cameras state, since allocating
(equally) the 100% bandwidth to three cameras results in a 1% unutilized band-

137

Paper IV. Model Checking a Self-Adaptive Camera Network with ...

2 4 6 8
6

8

10
M

an
ag

er
In

te
rv

en
tio

ns

Deterministic Probabilistic
max Nondeterministic min Nondeterministic

2 4 6 8
0

10

20

Fr
am

es
D

ro
pp

ed

2 4 6 8
20

40

60

Number of Cameras

Fr
am

es
Se

nt

2 4 6 8

40

60

80

Number of Cameras

M
in

im
um

Co
st

Figure 7. Property verification for Deterministic, Probabilistic, and Nondeter-
ministic Model

width.

4.2 Property verification
In this section, we compare the results we obtain when we verify the properties
described in Section 3.4 (Listing 4.6). The results are shown in Figure 7. The x-axis
represents the number of cameras in the model, n. To provide a comparison, we
use a maximum number of 8 cameras (but only 5 in the probabilistic case since
that is the biggest model we could have). The y-axis shows the numbers obtained
for the properties. Specifically, we show the maximum and minimum number of
manager interventions in the top-left plot, the maximum and minimum num-
ber of dropped frames in the top-right plot, the maximum and minimum num-
ber of sent frames in the bottom-left corner, and the minimum operational cost
in the bottom-right corner. For the deterministic case, the maximum and mini-
mum numbers always coincide, since there is no disturbance in the model and
there is no uncertain path. This is the same even in the probabilistic case as the
probabilities are resolved deterministically.

Manager Interventions: The number of interventions of the resource man-
ager is upper bounded by 10, for our example. In the probabilistic model, the
worst case is computed preserving the probability distribution (specified as hav-
ing a disturbance 30% of the times and not having any in 70% of the cases), which
explains the difference in the worst case for the number of interventions. In fact,
if a disturbance is present in the first few frames, the camera controller more ag-
gressively regulates the quality, therefore not invoking the network manager as
much. The most interesting information obtained from the figure, however, is

138

4 Results

the confidence band given by the difference between the maximum and mini-
mum number of interventions in the nondeterministic case. The nondetermin-
istic model still captures the worst case, but also allows us to determine that a
specific disturbance configuration could lead to a better outcome (i.e., it could
lead to the network manager intervening less). This means that in some cases, the
presence of different stochastic disturbances occurring in the scenes recorded al-
lows the system to converge to a satisfactory quality set and bandwidth allocation
quicker than expected.

Frames Dropped: A similar behavior can be observed for the dropped frames.
The deterministic model drops the least amount of frames, since it does not re-
quire continuous adaptation to handle disturbances. The best case (minimum
number of dropped frames) for the nondeterministic model coincides with the
deterministic model. This shows that our model is accurate as the disturbances
cause the drop in frames. The band between the minimum and maximum values
for the nondeterministic model (more or less between 8 and 24 dropped frames
in total for 8 cameras) gives us useful information, allowing us to qualify the po-
tential system behavior and how disruptive disturbances can be. As system man-
ufacturers, we can then wonder if we need to tighten our bandwidth require-
ments (including more monitors or increasing the network bandwidth) or if we
can be satisfied with the maximum frame loss that we verify could happen. The
probabilistic model shows a peak for the model with three cameras, which seems
to be related to the anomaly with the number of states (and contributes to our
parameter interference hypothesis).

Frames Sent: The graph that depicts the number of sent frames also illus-
trates the effect of disturbances. Again the best case scenario (maximum sent
frames) is the same for the deterministic and nondeterministic model. This
means that the best case scenario is here achieved when no disturbance is
present. The presence of disturbances causes a different minimum frames sent in
the nondeterministic model. The nondeterministic model shows that it captures
better the interplay between the physical dynamics, compared to its probabilistic
counterpart. In fact, the probabilistic counterpart forces the probability distribu-
tion to respect the 30% and 70% rule also in the best case, not capturing strange
circumstances in which this distribution — only empirically found — may not be
respected.

Minimum Cost: The final graph shows the minimum cost (where the cost is
computed according to the formula introduced in Section 3.4, penalizing frame
drops and manager interventions). The nondeterministic model shows a poten-
tially lower cost, due to its ability to capture the more realistic behavior of the
camera system and corner cases (in this case, the circumstances in which the dis-
turbance is actually helpful with respect to the bandwidth allocation and leads to
faster convergence).

4.3 Collaborative vs. Competitive
This section provides a deeper analysis of the nondeterministic model presented
in Section 3.2 (as it offers a realistic representation of the disturbance and better

139

Paper IV. Model Checking a Self-Adaptive Camera Network with ...

2 4 6 8
6

8

10
M

an
ag

er
In

te
rv

en
tio

ns

Manager Cameras Collaboration (Manager + Cameras)

2 4 6 8
0

10

20

Fr
am

es
D

ro
pp

ed

2 4 6 8

20
40
60

Number of Cameras

Fr
am

es
Se

nt

2 4 6 8

100

200

Number of Cameras

M
in

im
um

Co
st

Figure 8. Cooperative vs. Competitive Optimization

scalability properties). We define the problem as a Stochastic Game, as shown
in Section 3.3. We use PRISM-Games [Chen, Forejt, Kwiatkowska, Parker, and
Simaitis, 2013] to compare the system’s behavior when the objective is to min-
imize or maximize a property (among the ones defined in Section 3.4, Listing 4.7
— i.e., either minimizing the number of manager interventions, or minimizing
the number of dropped frames, or maximizing the number of frames sent, or
minimizing the cost, defined as a linear combination of the number of man-
ager interventions and the dropped frames, and specifically as mc + 10 ·∑n

1 di ,
where mc is the number of manager intervention and di is the number of frames
dropped by the i -th camera).

Figure 8 shows our results. As in the previous results, the x-axis encodes the
number of cameras, and on the y-axis we represent the values obtained for the
property we are evaluating. The dotted line with square markers shows the results
obtained when the manager is the only player trying to optimize the property.
The dashed line with triangle markers shows the value obtained when the player
representing the set of cameras is trying to optimize for the property on its own.
Finally, the solid lines with circles represent the results of the collaborative game
setting.

Manager Interventions: The leftmost plot in the top line shows the achiev-
able results in terms of minimization of manager interventions. If the manager is
the only player in charge of the optimization, it can achieve a lower number of
interventions (penalizing other aspects of the system). On the contrary, if the de-
cision is collaboratively taken by players or taken only by the cameras, the (worst
case) number of interventions cannot be minimized.

Frames Dropped: The network manager alone is not able to minimize the

140

5 Related Work

(worst case) on the number of frames dropped. However, both when the cameras
are in charge of the decisions and in the collaborative version, the number of
frames dropped can be lowered compared to the only action of the manager.

Frames Sent: The plot of the number of frames sent is probably the most
interesting one, and fully reveals the nature of the trade-off between the deci-
sion makers. When the number of camera grows, if the manager is the only one
in charge of the decision, the (best case) number of frames sent is lower then if
there is collaboration or if the cameras are in charge of the decision. The figure
also reveals that the cameras alone are able to take better decisions that lead to
sending more frames, rather than the collaborative decision. This shows that the
problem is indeed very complex and the interplay between the different control
strategies (at the camera level and at the network manager level) is difficult to
design. The players can exploit the different aspects of the problem to obtain a
less fair (a larger distance from the collaborative) result.

Minimum Cost: Finally. the minimum cost that can be achieved is the same
when the cameras are deciding and when there is collaboration, and higher if the
network manager is the only decision maker.

5. Related Work

This section discusses related research. The paper deals with different modeling
and verification techniques for a self-adaptive camera network. We classify the
related work in two categories. First, we discuss work related to our problem: self-
adaptive camera networks. Then, we describe work related to the application of
model checking to complex systems.

Self-adaptive video transmission has been given some attention in the
past [Vandalore, Feng, Jain, and Fahmy, 2001; Communication, 2004; Rinner
and Wolf, 2008; Wang, Chen, Huang, Subramonian, Lu, and Gill, 2008; Toka,
Lajtha, Hosszu, Formanek, Géhberger, and Tapolcai, 2017; Zhang, Chowdhery,
Bahl, Jamieson, and Banerjee, 2015; Cao, Nguyen, and Nguyen, 2013], leading
to alternative protocols and improvements. They typically explore alternative
encoding of redundant information within a sequence of frames, paving the way
for standards such as MJPEG, JPEG200, MPEG-H and H.265. Specifically, self-
adaptive cameras adapt their streams to provisions from the network [Rinner
and Wolf, 2008; Ramos, Panigrahi, and Dey, 2007; Wang, Chen, Huang, Sub-
ramonian, Lu, and Gill, 2008], without considering network scheduling. In the
scheduling domain, [Silvestre-Blanes, Almeida, Marau, and Pedreiras, 2011] uses
adaptive network channels, supervised by a global network manager, to track
the effective bandwidth used by the cameras, but do not include any camera
stream adaptation. Our network is more complicated due to the interplay of the
two characteristics and their (possibly) conflicting objectives (e.g., maximizing
the quality of the streams and minimizing allocation changes). Our previous
paper [Seetanadi, Cámara, Almeida, Årzén, and Maggio, 2017] does combine
the adaptation strategy for the cameras and the bandwidth allocation, verifying

141

Paper IV. Model Checking a Self-Adaptive Camera Network with ...

properties of the overall system in absence of disturbances. In this work, we im-
prove on previous results including disturbance management strategy and the
relationship with the physical environment the cameras record.

There has also been work done on temporal logic verification using simula-
tion [Fainekos, Girard, and Pappas, 2006]. This work deals with verification of a
continuous dynamical system using a finite number of trajectories. In our case,
we model the camera network as a discrete system and verify the system as op-
posed to its evolution.

We employ model checking [Clarke, Henzinger, Veith, and Bloem, 2018] to
verify desirable properties of the complex system composed of cameras and net-
work manager. We used the PRISM model checker [Kwiatkowska, Norman, and
Parker, 2011]. In the literature, PRISM has been used for the verification of prop-
erties of a wide-variety of systems [Kwiatkowska, 2016], among which we find:
randomized distributed algorithms [Kwiatkowska, Norman, and Segala, 2001],
probabilistic software [Kattenbelt, Kwiatkowska, Norman, and Parker, 2009],
nontechnology designs [Norman, Parker, Kwiatkowska, and Shukla, 2005], com-
munication protocols [Duflot, Kwiatkowska, Norman, and Parker, 2006], self-
adaptive software [Calinescu, Ghezzi, Kwiatkowska, and Mirandola, 2012], secu-
rity [Basagiannis, Katsaros, Pombortsis, and Alexiou, 2009], anonymous proto-
cols [Shmatikov, 2002]. Specifically, we use Probabilistic Model Checking (PMC).
PMC was instrumental in the verification of properties of a video streaming ser-
vice in [Nagaoka, Ito, Okano, and Kusumoto, 2011]. In this work, high-fidelity
simulations are abstracted into probabilistic higher-level models for analysis.
PMC is also employed for verification of safety and timeliness properties in air
traffic control systems [Hanh and Van Hung, 2007]. In contrast with these works,
we study bounded disturbances and focused on the cooperation or competi-
tion of different entities in the network, using stochastic games. For this, sev-
eral models exist, like concurrent games [Shapley, 1953; Chatterjee and Ibsen-
Jensen, 2015], and partial-observing games [Chatterjee, Doyen, Nain, and Vardi,
2014; Chatterjee and Doyen, 2012]. We modeled our system as a turn-based
game [Condon, 1992].

There also exist various case studies done to evaluate different control and
networked systems. Some of them are microgrid management system, deci-
sion making for sensor networks, reputation protocol for user-centeric net-
works [Simaitis, 2014], UAV mission planning [Feng, Wiltsche, Humphrey, and
Topcu, 2015], pan-tilt zoom cameras [Ozay, Topcu, Murray, and Wongpiromsarn,
2011], aircraft power distribution [Basset, Kwiatkowska, Topcu, and Wiltsche,
2015] and self-adaptive architectures [Cámara, Garlan, Schmerl, and Pandey,
2015]. These work focused on strategy synthesis, whereas we concentrate on the
verification of properties and reward/cost optimization.

There has also been some work on stochastic analysis of automotive sys-
tems [Zeng, Natale, Giusto, and Sangiovanni-Vincentelli, 2009]. This work fo-
cused more on the timing analysis which we do not pursue in our work.

142

6 Conclusion

6. Conclusion

This work focuses on the use of model checking in cyber-physical systems. In
particular, we have selected one problem, the verification of properties of a band-
width allocation scheme for self adaptive cameras, and we studied the inter-
play between the cyber and the physical part of the system. The changes in the
scenes the cameras record induce disturbances and uncertainty. This physical el-
ement interacts with the cameras adaptation strategy and the network manager
bandwidth allocation policy. We used model checking to verify properties of the
closed-loop system (the system in which all camera controllers and the network
bandwidth allocation are active simultaneously) in the presence of disturbances.

We incurred into the scalability problem, and we discovered that — for this
specific problem — a nondeterministic model is far more scalable and represen-
tative than a probabilistic model. We wrote our models to be as scalable as possi-
ble, containing as few labels and synchronization points as possible and trying to
reduce the number of resulting states. We also made sure to represent the system
as realistically as possible. As a result, we were able to verify models up to 8 cam-
eras with nondeterministic transitions. We used these models to study the differ-
ence between collaboration and competition, and what happens when players
are greedy. As a result, we unveiled interesting trade-offs that are inherent in any
adaptive bandwidth allocation system.

References

Almeida, L. et al. (2007). “Online qos adaptation with the flexible time-triggered
(FTT) communication paradigm”. In: Insup Lee Joseph Y-T. Leung, S. H. S.
(Ed.). Handbook of Real-Time and Embedded Systems. CRC Press.

Basagiannis, S., P. Katsaros, A. Pombortsis, and N. Alexiou (2009). “Probabilistic
model checking for the quantification of dos security threats”. Computers &
Security 28:6, pp. 450–465. ISSN: 0167-4048.

Basset, N., M. Kwiatkowska, U. Topcu, and C. Wiltsche (2015). “Strategy syn-
thesis for stochastic games with multiple long-run objectives”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Berlin, Heidelberg,
pp. 256–271.

Calinescu, R., C. Ghezzi, M. Kwiatkowska, and R. Mirandola (2012). “Self-adaptive
software needs quantitative verification at runtime”. Commun. ACM 55:9,
pp. 69–77. ISSN: 0001-0782.

Cámara, J., D. Garlan, B. Schmerl, and A. Pandey (2015). “Optimal planning for
architecture-based self-adaptation via model checking of stochastic games”.
In: Proceedings of the 30th Annual ACM Symposium on Applied Computing.
SAC ’15. Salamanca, Spain, pp. 428–435. ISBN: 978-1-4503-3196-8.

Cao, D. T., T. H. Nguyen, and L. G. Nguyen (2013). “Improving the video trans-
mission quality over ip network”. In: 2013 Fifth International Conference on
Ubiquitous and Future Networks (ICUFN). DOI: 10.1109/ICUFN.2013.6614884.

143

Paper IV. Model Checking a Self-Adaptive Camera Network with ...

Chatterjee, K. and L. Doyen (2012). “Partial-observation stochastic games: how
to win when belief fails”. In: 2012 27th Annual IEEE Symposium on Logic in
Computer Science, pp. 175–184.

Chatterjee, K., L. Doyen, S. Nain, and M. Y. Vardi (2014). “The complexity of
partial-observation stochastic parity games with finite-memory strategies”.
In: Foundations of Software Science and Computation Structures. Berlin, Hei-
delberg, pp. 242–257.

Chatterjee, K. and R. Ibsen-Jensen (2015). “Qualitative analysis of concurrent
mean-payoff games”. Inf. Comput. 242:C, pp. 2–24. ISSN: 0890-5401.

Chen, T., V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis (2013). “PRISM-
games: a model checker for stochastic multi-player games”. In: Proc. 19th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’13). Vol. 7795. LNCS, pp. 185–191.

Clarke, E. M., T. A. Henzinger, H. Veith, and R. Bloem, (Eds.) (2018). Handbook of
Model Checking. Springer. ISBN: 978-3-319-10574-1.

Clarke, E. M., W. Klieber, M. Nováček, and P. Zuliani (2012). “Model checking
and the state explosion problem”. In: Tools for Practical Software Verification:
LASER, International Summer School 2011, Elba Island, Italy, Revised Tutorial
Lectures. Berlin, Heidelberg, pp. 1–30.

Communication, A. (2004). White paper: digital video compression: review of the
methodologies and standards to use for video transmission and storage.

Condon, A. (1992). “The complexity of stochastic games”. Information and Com-
putation 96:2, pp. 203–224. ISSN: 0890-5401.

Duflot, M., M. Kwiatkowska, G. Norman, and D. Parker (2006). “A formal analysis
of bluetooth device discovery”. International Journal on Software Tools for
Technology Transfer 8:6, pp. 621–632.

Edpalm, V., A. Martins, K.-E. Årzén, and M. Maggio (2018). “Camera Networks
Dimensioning and Scheduling with Quasi Worst-Case Transmission Time”.
In: 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Vol. 106.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many, 17:1–17:22. ISBN: 978-3-95977-075-0.

Fainekos, G. E., A. Girard, and G. J. Pappas (2006). “Temporal logic verification
using simulation”. In: Formal Modeling and Analysis of Timed Systems. Berlin,
Heidelberg, pp. 171–186.

Feng, L., C. Wiltsche, L. Humphrey, and U. Topcu (2015). “Controller synthesis
for autonomous systems interacting with human operators”. In: Proceedings
of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems. IC-
CPS ’15. Seattle, Washington, pp. 70–79. ISBN: 978-1-4503-3455-6.

Hanh, T. and D. Van Hung (2007). Verification of an Air-Traffic Control System
with Probabilistic Real-time Model-checking. Tech. rep. UNU-IIST United Na-
tions University International Institute for Software Technology.

144

References

Hellerstein, J. L., Y. Diao, S. Parekh, and D. M. Tilbury (2005). “Control engineer-
ing for computing systems - industry experience and research challenges”.
IEEE Control Systems Magazine 25:6, pp. 56–68. ISSN: 1066-033X.

Heo, J. and T. Abdelzaher (2009). “Adaptguard: guarding adaptive systems from
instability”. In: Proceedings of the 6th International Conference on Autonomic
Computing. ICAC ’09. ACM, Barcelona, Spain, pp. 77–86. ISBN: 978-1-60558-
564-2. DOI: 10.1145/1555228.1555256. URL: http://doi.acm.org/10.1145/
1555228.1555256.

Kattenbelt, M., M. Kwiatkowska, G. Norman, and D. Parker (2009). “Abstraction
refinement for probabilistic software”. In: Verification, Model Checking, and
Abstract Interpretation. Berlin, Heidelberg, pp. 182–197.

Kwiatkowska, M., G. Norman, and D. Parker (2011). “PRISM 4.0: verification of
probabilistic real-time systems”. In: Proc. 23rd International Conference on
Computer Aided Verification (CAV’11). Vol. 6806. LNCS, pp. 585–591.

Kwiatkowska, M. (2016). “Model checking and strategy synthesis for stochastic
games: from theory to practice”. In: Proc. 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016).

Kwiatkowska, M. Z., G. Norman, and R. Segala (2001). “Automated verification of
a randomized distributed consensus protocol using cadence smv and prism”.
In: Proceedings of the 13th International Conference on Computer Aided Veri-
fication. CAV ’01. London, UK, UK, pp. 194–206. ISBN: 3-540-42345-1.

Maggio, M., E. Bini, G. Chasparis, and K.-E. Årzén (2013). “A game-theoretic re-
source manager for rt applications”. In: Euromicro Conference on Real-Time
Systems. DOI: 10.1109/ECRTS.2013.17.

Nagaoka, T., A. Ito, K. Okano, and S. Kusumoto (2011). “Qos analysis of real-
time distributed systems based on hybrid analysis of probabilistic model
checking technique and simulation”. Transactions on Information and Sys-
tems E94.D:5. DOI: 10.1587/transinf.E94.D.958.

Norman, G., D. Parker, M. Kwiatkowska, and S. Shukla (2005). “Evaluating the
reliability of nand multiplexing with prism”. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 24:10, pp. 1629–1637. ISSN:
0278-0070.

Ozay, N., U. Topcu, R. M. Murray, and T. Wongpiromsarn (2011). “Distributed
synthesis of control protocols for smart camera networks”. In: 2011 IEEE/ACM
Second International Conference on Cyber-Physical Systems, pp. 45–54.

Pedreiras, P. and L. Almeida (2003). “The flexible time-triggered (FTT) paradigm:
an approach to qos management in distributed real-time systems”. In: Pro-
ceedings International Parallel and Distributed Processing Symposium. DOI:
10.1109/IPDPS.2003.1213243.

Ramos, N., D. Panigrahi, and S. Dey (2007). “Dynamic adaptation policies to im-
prove quality of service of real-time multimedia applications in ieee 802.11e
wlan networks”. Wirel. Netw. 13:4, pp. 511–535. DOI: 10.1007/s11276- 006-
9203-5.

145

Paper IV. Model Checking a Self-Adaptive Camera Network with ...

Rinner, B. and W. Wolf (2008). “An introduction to distributed smart cameras”.
Proceedings of the IEEE 96:10. DOI: 10.1109/JPROC.2008.928742.

Seetanadi, G. N., J. Cámara, L. Almeida, K.-E. Årzén, and M. Maggio (2017).
“Event-driven bandwidth allocation with formal guarantees for camera net-
works”. In: 2017 IEEE Real-Time Systems Symposium, RTSS 2017, Paris,
France, December 5-8, 2017, pp. 243–254.

Shapley, L. S. (1953). “Stochastic games”. Proceedings of the National Academy of
Sciences 39:10, pp. 1095–1100. ISSN: 0027-8424.

Shmatikov, V. (2002). “Probabilistic analysis of anonymity”. In: Proceedings 15th
IEEE Computer Security Foundations Workshop. CSFW-15, pp. 119–128.

Silvestre-Blanes, J., L. Almeida, R. Marau, and P. Pedreiras (2011). “Online qos
management for multimedia real-time transmission in industrial networks”.
IEEE Transactions on Industrial Electronics 58:3. DOI: 10 . 1109 / TIE . 2010 .
2049711.

Simaitis, A. (2014). Automatic Verification of Competitive Stochastic Systems. De-
partment of Computer Science, University of Oxford.

Toka, L., A. Lajtha, É. Hosszu, B. Formanek, D. Géhberger, and J. Tapolcai (2017).
“A resource-aware and time-critical IoT framework”. In: IEEE International
Conference on Computer Communications INFOCOM. DOI: 10.1109/INFOCOM.
2017.8057143.

Vandalore, B., W.-c. Feng, R. Jain, and S. Fahmy (2001). “A survey of application
layer techniques for adaptive streaming of multimedia”. Real-Time Imaging
7:3. DOI: 10.1006/rtim.2001.0224.

Varma, S. (2015). Internet Congestion Control. 1st. San Francisco, CA, USA. ISBN:
0128035838, 9780128035832.

Wang, X., M. Chen, H. M. Huang, V. Subramonian, C. Lu, and C. D. Gill (2008).
“Control-based adaptive middleware for real-time image transmission over
bandwidth-constrained networks”. IEEE Transactions on Parallel and Dis-
tributed Systems 19:6. DOI: 10.1109/TPDS.2008.41.

Zeng, H., M. D. Natale, P. Giusto, and A. Sangiovanni-Vincentelli (2009). “Stochas-
tic analysis of can-based real-time automotive systems”. IEEE Transactions
on Industrial Informatics 5:4, pp. 388–401. ISSN: 1551-3203.

Zhang, T., A. Chowdhery, P. (Bahl, K. Jamieson, and S. Banerjee (2015). “The de-
sign and implementation of a wireless video surveillance system”. In: Pro-
ceedings of the 21st Annual International Conference on Mobile Computing
and Networking, pp. 426–438. DOI: 10.1145/2789168.2790123.

146

References

1 // SMG-1 Maximum interventions, decision maker: manager
2 <<manager>> R{"rm_calls"}max =? [F end]
3 // SMG-2 Minimum interventions, decision maker: manager
4 <<manager>> R{"rm_calls"}min =? [F end]
5 // SMG-3 Maximum interventions, decision maker: cameras
6 <<cameras>> R{"rm_calls"}max =? [F end]
7 // SMG-3 Minimum interventions, decision maker: cameras
8 <<cameras>> R{"rm_calls"}min =? [F end]
9 // SMG-5 Maximum interventions, cooperative

10 <<manager, cameras>> R{"rm_calls"}max =? [F end]
11 // SMG-6 Minimum interventions, cooperative
12 <<manager, cameras>> R{"rm_calls"}min =? [F end]
13 // SMG-7 Maximum frames dropped, manager
14 <<manager>> R{"frames_dropped"}max =? [F end]
15 // SMG-8 Minimum frames dropped, manager
16 <<manager>> R{"frames_dropped"}min =? [F end]
17 // SMG-9 Maximum frames dropped, cameras
18 <<cameras>> R{"frames_dropped"}max =? [F end]
19 // SMG-9 Minimum frames dropped, cameras
20 <<cameras>> R{"frames_dropped"}min =? [F end]
21 // SMG-11 Maximum frames dropped, cooperative
22 <<manager, cameras>> R{"frames_dropped"}max =? [F end]
23 // SMG-12 Maximum frames dropped, cooperative
24 <<manager, cameras>> R{"frames_dropped"}min =? [F end]
25 // SMG-13 Maximum frames sent, manager
26 <<manager>> R{"frames_sent"}max =? [F end]
27 // SMG-14 Minimum frames sent, manager
28 <<manager>> R{"frames_sent"}min =? [F end]
29 // SMG-15 Maximum frames sent, cameras
30 <<cameras>> R{"frames_sent"}max =? [F end]
31 // SMG-16 Minimum frames sent, cameras
32 <<cameras>> R{"frames_sent"}min =? [F end]
33 // SMG-17 Maximum frames sent, cooperative
34 <<manager, cameras>> R{"frames_sent"}max =? [F end]
35 // SMG-18 Minimum frames sent, cooperative
36 <<manager, cameras>> R{"frames_sent"}min =? [F end]
37 // SMG-19 Minimum operational cost, manager
38 <<manager>> R{"cost"}min =? [F end]
39 // SMG-20 Minimum operational cost, cameras
40 <<cameras>> R{"cost"}min =? [F end]
41 // SMG-21 Minimum operational cost, cooperative
42 <<manager, cameras>> R{"cost"}min =? [F end]

Listing 4.7. Properties of SMG models

147

Paper V

Adaptive Routing with Guaranteed Delay
Bounds using Safe Reinforcement Learning

Gautham Nayak Seetanadi Karl-Erik Årzén Martina Maggio

Abstract

Time-critical networks require strict delay bounds on the transmission
time of packets from source to destination. Routes for transmissions are usu-
ally statically determined, using knowledge about worst-case transmission
times between nodes. This is generally a conservative method, that guaran-
tees transmission times but does not provide any optimization for the typical
case. In real networks, the typical delays vary from those considered during
static route planning. The challenge in such a scenario is to minimize the
total delay from a source to a destination node, while adhering to the timing
constraints. For known typical and worst-case delays, an algorithm was pre-
sented to (statically) determine the policy to be followed during the packet
transmission in terms of edge choices. In this paper we relax the assumption
of knowing the typical delay, and we assume only worst-case bounds are
available. We present a reinforcement learning solution to obtain optimal
routing paths from a source to a destination when the typical transmission
time is stochastic and unknown. Our reinforcement learning policy is based
on the observation of the state-space during each packet transmission and
on adaptation for future packets to congestion and unpredictable circum-
stances in the network. We ensure that our policy only makes safe routing
decisions, thus never violating pre-determined timing constraints. We con-
duct experiments to evaluate the routing in a congested network and in a
network where the typical delays have a large variance. Finally, we analyze
the application of the algorithm to large randomly generated networks.

©2020 ACM. Originally published in 2020 International Conference on Real-Time
Networks and Systems (RTNS), Paris, France, June 2020. Reprinted with permis-
sion. The article has been reformatted to fit the current layout.

149

Paper V. Adaptive Routing ... Safe Reinforcement Learning

1. Introduction

This paper describes an application of reinforcement learning to the problem of
routing in networks where each edge can be represented by a very conservative
upper bound on the delay to traverse it, but the typical delay experienced when
traversing edges can differ from its upper bound.

Context. A recent paper [Baruah, 2018] introduced the problem of determining
routes in graphs in which the delays across edges are characterized by both con-
servative upper bounds and typical values. The problem solved in the paper is
to determine a route that from an initial source node i traverses edges of the
graph and reaches a destination node t minimizing the delay under typical cir-
cumstances and preserving guarantees of not exceeding a total budget for the
transmission, denoted with DF . Compared to static routing, in which a decision
on the entire route that the transmitted packet should follow, is taken prior to
setting out from the source, the paper introduces adaptive routing, in which the
decision on which edge to traverse next in the graph is taken online, based on
information about the elapsed transmission time. Adaptive routing is in general
capable of achieving smaller typical delays compared to static routing. This is be-
cause adaptive routing uses knowledge of the delay that was experienced across
already traversed edges to aid future decisions.

The adaptive routing technique presented in [Baruah, 2018] is based on the
construction of tables that at each vertex determine which outgoing edge should
be taken for intervals of experienced delays. In the presented solution, these ta-
bles are built once and then the complexity of selecting the outgoing edge from
the current vertex only depends on the number of rows that each of these tables
has, which in turn depends on the topology of the network and on the number of
potential time intervals.

In our work, we use safe reinforcement learning to combine optimal path
finding with safe state-space exploration. This reduces the size of the tables
stored at each vertex. The de-centralized approach allows each vertex to make
routing decisions irrespective of the future delays while respecting end-to-end
delay constraints.

Notation. In the remainder of this paper, we use the following notation. We con-
sider a graph G , where the vertices represent nodes and the edges represent a
direct path between two nodes. We denote with V the set of vertices, and with E
the set of edges of G . We use the notation e : (x → y) to indicate edge e, connect-
ing node x with node y . Each edge is characterized by two numbers, a worst-case
transmission time cW

x y and a typical experienced delay cT
x y , dropping the arrow for

simplicity. We use cx y t to denote the minimum worst case delay from the node x
to the destination t when choosing edge (x → y).

Problem Statement. Our problem is to determine a policy to route messages
from a source vertex i ∈ V to a destination vertex t ∈ V , to minimize (typical)
transmission time for the message, and ensure that the total delay experienced

150

2 Algorithm

by the message, τ does not exceed a specified final deadline value, DF , τ ≤ DF .
We aim at solving this problem in a de-centralised way despite changes in the
typical experienced delays that can happen during run-time.

Contribution. In this paper, we argue that estimates of typical delays are unlikely
to be available prior to exploration of the network behavior and these typical de-
lays are in general time-varying. To address this problem in adaptive network,
we develop an algorithm based on reinforcement learning (RL) to automatically
(and safely) perform adaptive routing. The complexity of computing the outgo-
ing edge for each vertex only depends on the number of outgoing edges from the
vertex. In general, this does not exceed the complexity of the adaptive routing
technique proposed in [Baruah, 2018], where tables could have repeated entries
(the same outgoing edge can be selected for different intervals of experienced
delay).

Our proposal automatically adjusts to events happening in the network (like a
link suddenly becoming less reliable or congested). In this paper we show that the
policy identified by the reinforcement learning algorithm exposes stochastic con-
vergence to the optimal policy identified by the algorithm presented in [Baruah,
2018] when typical delays are experienced. We also show that when typical delays
are represented by probability distributions the policy learns to take the variance
of the delays into account. Finally we show that our algorithm works to minimize
transmission times even in large networks.

Compared to [Baruah, 2018], we show that our work has low computational
and storage complexity while improving network adaptation to time-varying typ-
ical delays. Compared to classical reinforcement learning (RL), our work guar-
antees safety bounds. We show that with proper domain knowledge, powerful
reinforcement learning techniques can be used for time critical real-time appli-
cations.

Paper Organization. The remainder of this paper is organized as follows. In Sec-
tion 2 we present our algorithm, explaining the necessary background on rein-
forcement learning techniques and our choices. Section 3 discusses an exper-
imental evaluation showing the shortcomings of previous contributions when
typical delays are not fixed and how our algorithm overcomes them. We also show
that the identified policy in our case stochastically converges to the optimal rout-
ing technique proposed in [Baruah, 2018]. Section 4 discusses related work and
Section 5 concludes the paper.

2. Algorithm

As in previous work [Baruah, 2018], we distinguish between a pre-processing
phase and a run-time phase. The pre-processing phase is used for the definition
of the safe bounds, i.e., to ensure that information about the worst-case paths
is propagated to each node. The run-time phase is used for the execution of the
reinforcement learning algorithm [Sutton and Barto, 2018]. During run-time the

151

Paper V. Adaptive Routing ... Safe Reinforcement Learning

system explores safe routes in order to build and update a policy that determines
the best action to take depending on the currently experienced packet delay.

2.1 Pre-processing phase
The aim of the pre-processing phase is to determine the possible worst-case
delays experienced by a packet in the network. More precisely, given an edge
e : (x → y), we need to compute a safe bound for the worst-case delay to the
destination t experienced by a packet that exits x via e. This can be done simply
by determining the minimum worst-case delay to the destination from vertex
y , cy t , and then adding the worst-case delay of the edge e, cW

x y . Assuming that
the worst-case delays are positive numbers, we can simply use Dijkstra’s shortest
path algorithm [Dijkstra, 1959; Mehlhorn and Sanders, 2008] to determine these
values. This gives us the delay bound for which transmission can be guaranteed
for each edge.

Figure 1 shows an example1 of a network and the corresponding generated
state space S . On the top left side, we show the network and the delays over each
edge. The typical delays, cT

x y are denoted in blue and the the worst-case delays,

cW
x y are shown in red. Below that we show the network computed by the applica-

tion of the Dijkstra’s shortest path algorithm for each edge. The worst-case delay
to the destination t over each edge, cx y t is shown in green. On the right side, we
show the state space. For clarity, the figure does not display the edges between
nodes. The state space is explored in detail in the following subsection.

We argue that this pre-processing phase is necessary regardless of the choice
of run-time algorithm, to determine safe bounds for the network and avoid
choosing an edge that may lead to violation of the worst-case delay constraint.

2.2 Run-time phase
During the run-time phase, a policy to select a path to send a packet from ori-
gin i to destination t is determined. This is accomplished using reinforcement
learning. In particular, we model our problem using a Markov Decision Process
(MDP).

An MDP is a 4-tuple (S ,A,P,R), whereS is a set of finite states,A is a set of ac-
tions, P : (s, a, s′) → {p ∈R | 0 ≤ p ≤ 1} is a function that encodes the probability of
transitioning from state s to state s′ as a result of an action a, and R : (s, a, s′) →N

is a function that encodes the reward received when the choice of action a deter-
mines a transition from state s to state s′. We use actions to encode the selection
of an outgoing edge from a vertex.

State Space. In our state, we encode both the current vertex we are in and the
elapsed time from the beginning of the packet transmission (in time units). The
set of possible statesS is then the Cartesian product between the set of verticesV
and the set of natural numbers that are less than the deadline D . Denoting with

1 The example is based on the presentation of [Baruah, 2018], where it was used to illustrate the
problem.

152

2 Algorithm

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

i

x y

z

t

20

20

10

25

10

30

15

i0

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

i13

i14

i15

i16

i17

i18

i19

i20

i21

i22

i23

i24

i25

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16

y17

y18

y19

y20

y21

y22

y23

y24

y25

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

z16

z17

z18

z19

z20

z21

z22

z23

z24

z25

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

t21

t22

t23

t24

t25

Figure 1. Example of graph and corresponding state space for the reinforcement
learning problem formulation.

N the set of integer values that satisfy the deadline constraint, i.e., N = {n ∈ N |
0 ≤ n ≤ D} then the set of possible states is

S =V ×N = {(v,n) | v ∈V ∧n ∈ N }.

We use the compact notation vn to denote the state (v,n).
In the graph from figure 1, the initial source node i is connected to the des-

tination node t with an edge having typical transmission time 12 (in blue) and
worst-case transmission time 25 (in red). Alternatively, node i is connected to

153

Paper V. Adaptive Routing ... Safe Reinforcement Learning

node x with a typical transmission time of 4 time units and a maximum delay of
10 time units. The maximum admissible delay DF is 25 time units.

On top of the state space, we want to enforce the constraint that we only ex-
plore safe paths, i.e., paths that cannot lead to a violation of the worst-case trans-
mission time requirement DF . For example, in node x choosing the edge (x → t)
leads us to the destination node in 10 time units in the worst case, choosing the
edge (x → y) leads us to the destination in 20 time units in the worst case, and
choosing (x → z) has a worst case delay of 30 time units. Therefore, it is not safe
in the example to be in state x20, as there is no path to the destination that allows
us to certainly reach t in less than DF time units. We mark the unsafe states in
red.

Finally, not all the nodes of the state spaceS are reachable. For example, node
t0 is clearly not reachable as there is no way to cross the path from the source
node to the destination node in zero time. However, node t1 is potentially reach-
able from the source when the edge (i → t) is chosen, if the experienced delay
is one time unit. Furthermore, we assume that the packets are not stalled, which
means for example that node i1 is not reachable. We mark the unreachable nodes
with orange in Figure 1.

There are still some edges that we should eliminate among the choices. For
example, if we are in state x10, with DF = 25, we need to impede the choice of the
edge (x → y), as the worst case delay for the single possible path is higher than
the 15 time units that are left. We do this by limiting the actions that the policy
can choose in each state.

Reinforcement Learning. Once we limit the set of possible actions to ensure we
will meet the worst case deadline, we use a reinforcement learning policy to de-
cide which outgoing edge – action a ∈ A – to take from a state s = vn . Generally
speaking, decisions based on reinforcement learning are constructed using feed-
back to reward successful actions taken to explore the state space [Sutton and
Barto, 2018]. This decision making process, or policy, leads to a formal definition
of the value of being in the current state and how to select the action that is taken
in each state. The goal of this decision making process is to take optimal actions
so as to maximize the reward obtained. Using the reinforcement learning termi-
nology, we denote the transmission of a message from source to destination with
the word episode. We also define the reward received in each state as the total
amount of time saved while traversing the path to the destination. This reward is
calculated at the end of each episode and then propagated to the other nodes.

TD Learning. A popular reinforcement algorithm is the Temporal-Difference
(TD) learning [Sutton and Barto, 2018] algorithm. TD learning gained popular-
ity in TD-Gammon, a program that learned to play backgammon at the level of
expert human players [Tesauro, 1995].

It is a model-free learning method which learns by sampling the environment
and determines an estimate of how good it is for the algorithm to perform an ac-
tion from a state, i.e., a value function taking action a in state s, usually identi-
fied as Q(s, a). This learning method is coupled with an exploration algorithm,

154

2 Algorithm

which in our case is the ε-greedy algorithm. Similar to Monte-Carlo (MC) meth-
ods, TD learning samples the environment and learns from it, by updating the
value function. While MC methods update the value Q(s) of each state s in the
current episode at the conclusion of the episode, TD learning adjusts its estimate
to match later predictions about the future before the final outcome is known.

Using MC would be impractical for our algorithm as it would generate a lot
of messages in the network to transmit reward information at the conclusion of
the message transmission. On the contrary, the one step TD algorithm allows us
to make routing decision and value iteration based only on Q(s, a) and Q(s′, a′),
i.e., the Q-value for the current and next state. The next state Q-value can be ap-
pended to the acknowledgement of the reception of a message, therefore making
this choice practical from an implementation standpoint. The value update pol-
icy is computed as

Q(s, a) =Q(s, a)+α · (R+max(γQ(s′, a′))−Q(s, a)) (4.1)

where s and s′ are the current and next states respectively, a′ is the action with
the highest Q-value for state s′,α is the learning rate with which we overwrite old
information with new, R is the reward obtained during the transition from state
s to state s′, and γ is the discount factor that captures uncertainty of Q(s′, a′).

Exploration Policy. ε-greedy exploration ensures that the system chooses the
edge that was identified as best for the transmission of most packets while at
the same time exploring other edges in search of a path that has a higher reward.
The ε-greedy policy chooses one action from the vector of feasible actions A.
Specifically this action a is either the one that has the maximum value of Q(s, a)
or a random action that explores the state space. The policy explores the state
space with a probability ε and take the action with the maximum estimated re-
ward with a probability of (1−ε). In principle, ε is chosen to be a small number,
such that most of the time the policy exploits knowledge about the current state.
The continuous exploration of the state space, ensures (in a probabilistic sense)
the detection of paths with higher rewards and resilience to changes.

In order to guarantee that the total transmission time never violates the set
deadline DF , we modify the ε-greedy policy to perform safe reinforcement learn-
ing. Safe reinforcement learning is the process of learning actions that maxi-
mize the rewards while ensuring reasonable system performance and/or respect
safety constraint [García and Fernández, 2015]. Safe reinforcement learning can
be broadly divided into two categories:

• Modified Optimization Criterion: In this case, the concept of risk is intro-
duced into the optimization process. The policy is determined with explicit
knowledge about the risk involved in taking specific actions.

• Safe Exploration Process: In this second case, the exploration process is
modified to avoid exploratory actions that could have harmful conse-
quences. This is the alternative taken in this work, where we impede certain
actions from being taken.

155

Paper V. Adaptive Routing ... Safe Reinforcement Learning

In previous work, this knowledge has been used mostly in scenarios where a hu-
man teacher demonstrates a safe path [Driessens and Džeroski, 2004; Smart and
Kaelbling, 2000]. In this paper, the modified ε-greedy policy ensures a safe explo-
ration process through incorporating external knowledge obtained in the pre-
processing phase. The exploration policy then allows for small explorations that
deviate from the optimal policy.

A popular variation of this exploration algorithm is the decaying ε-greedy.
The decaying algorithm reduces ε, thus minimizing the exploration during rout-
ing of later packets. This reduces the delay over the network as most of the explo-
ration is required during the transmission of the first few packets. Once the value
of most of state action pairs Q(s, a) of the MDP are known, the need for explo-
ration reduces. Tuning the decay function according to the size of the network is
considered out of scope of this paper.

The paper investigates both exploration policies in Section 3. We use the de-
caying ε-greedy policy in Experiment 3.1 as a static network is considered. In the
following experiments, we use the non-decay ε-greedy due to probabilistic dis-
tributions of delays and dynamic networks with congestion.

2.3 Algorithm
Algorithms 4, 5 and 6 show the pseudo-code of our algorithm. Algorithm 4 is exe-
cuted globally to obtain worst-case transmission times ci t during network initial-
ization and reconfiguration(node addition or removal). Algorithm 5 executed at
the node can either be run globally or at a local level depending upon the network
configuration. Monte-Carlo methods require knowledge of the entire state-space
and thus are practical for small networks. Algorithm 5 describes one step TD-
learning making routing decision and value iteration based only on Q(s, a) and
Q(s′, a′), i.e., the Q-value for the current and next state allowing for distributed
decision making.

Consider the routing problem from source i to destination t . As described
above, the algorithm is split into pre-processing and run-time phases. The pre-
processing phase calculates the shortest path to the destination using Dijkstra’s
algorithm [Dijkstra, 1959]. The minimum worst case transmission time ci t to the
destination t over the edge (i → x) is obtained by adding the worst case transmis-
sion time over the edge cW

i x and the minimum worst case transmission time cxt

from v to destination t over all outgoing edges of x. The values of all state-action
pairs are initialized to 0.

Algorithm 5 is run at each node u when a packet arrives. If u = source node,
the deadline Du = DF is set to the final deadline. For the other nodes, the dead-
line is determined online. For each edge (u → v) from u, if cuv t > Du , the
edge is infeasible and P (u|v) = 0. This ensures that deadlines are never violated.
From the feasible edges (F), the edge that corresponds to the action with max-
imum value, v such that Q(u, v∗) = max(Q(u, v ∈ F)) has the highest probabil-
ity P (u|v∗) = (1− ε). The remaining feasible edges are assigned P (u|v \ {v∗}) =
ε/(size(F −1)). The next node is decided according to the probability P . The ac-
tual transmission time over the edge is δux . This is subtracted from the dead-

156

2 Algorithm

Algorithm 4 Pre-Processing:

1: for each node u do
2: for each edge (u → v) do
3: // Delay bounds as described in Section 2.1
4: cuv t = cW

uv + min(cv_t)
5: // Initialise the Q values to 0
6: Q(u, v) = 0

line for the node Du to obtain Dx , the deadline for the next node x. No reward
is awarded in the middle of the episode and the value of the state action pair,
Q(u, v) is calculated using (4.1).

The reward R after each edge traversal is obtained as shown in Algorithm 6.
If v 6= t , the destination is not reached and the episode continues by taking the
node v as the current node. If v = t , the episode is complete. The reward, R is
calculated as R = DF −δi t where DF is the pre-determined deadline and δi t is
the total transmission delay over the whole path from source i to destination t .

The back-propagation of calculated reward is inherent in the value iteration
as shown in Equation 4.1. As seen, the value iteration is dependent on the max-
imum Q-value of the next node. This can be sent to the sending node after each
successful packet transmission depending on the protocol used. For example,
If Transmission control protocol (TCP) is used, the acknowledgement messages
could be extended to include the Q-value. In our implementation, we simply
transmit the value back to the origin node.

2.4 An Example Episode
Using the same example as above with deadline DF = 25, we begin the episode at
node i . The feasible available edges are [(i → x), (i → t)] as they both satisfy the
constraint ci t ≤ Di where Di is the deadline at node i . As this is the first episode,
there exists no information of the value of the two edges. Both edges have the
same probability and one of them is chosen at random. If the edge chosen is
(i → x) and the observed transmission time is δi x = 4 then the new deadline Dx
is Di −δi x = 21. The feasible edges from node x are [(x → y), (x → t)]. The value
of the state action pair Q(i , x) is calculated using Equation (4.1). As the value at
the next node x is 0 due to no prior information, another random selection of
the edge is made. If (x → t) is traversed with δxt = 8, the destination node is
reached and the episode is terminated. The reward for the state is calculated as
R = DF −δi t where δi t is the total transmission time of the packet. During the
following transmissions, the algorithm makes use of this state-action value func-
tion to make a more informed decision. As we use ε-greedy algorithm for explo-
ration, all state-action pairs are eventually explored and their value is calculated.
This combination of TD learning and safe exploration leads to small transmis-
sion times while respecting time constraints.

157

Paper V. Adaptive Routing ... Safe Reinforcement Learning

Algorithm 5 Node Logic (u)

1: for Every packet do
2: if u = source node i then
3: Du = DF // Initialise the deadline
4: δi t = 0 // Initialise total delay for packet = 0

5: for each edge (u → v) do
6: if cuv t > Du then // Edge is infeasible
7: P (u|v) = 0
8: else if Q(u, v) = max(Q(u, a ∈ A)) then
9: P (u|v) = (1−ε)

10: else
11: P (u|v) = ε/(si ze(F −1))

12: Choose edge (u → v) with P
13: Observe δuv

14: δi t += δuv

15: Dv = Du −δuv

16: R = Environment Reward Function(v,δi t)
17: Q(u, v) = Value iteration from Equation (4.1)
18: if v = t then
19: DONE

Algorithm 6 Environment Reward Function(v,δi t)

1: Assigns the reward at the end of transmission
2: if v = t then
3: R = DF −δi t

4: else
5: R = 0

3. Evaluation

In this section, we will discuss the behavior and performance of the algorithm
presented in Section 2, by applying it to the example shown in Figure 1 in differ-
ent network conditions and to large-scale networks.

We build the network using Python and the NetworkX [Hagberg, Schult,
and Swart, 2008] package. NetworkX allows us to build Directed Acyclic Graphs
(DAGs) and to provide information about nodes and edges of those DAGs. In
building the example of Figure 1, we annotate the graph using for each edge
(x → y) the worst case delay as a weight. We also include the typical delay cT

x y
for each edge as an annotation in the graph, but we hide this information from
the algorithm and only use it to determine the edge traversing time. The pre-
processing phase calculates the worst case delay from each node to the destina-
tion. This initial phase is executed once during the creation of the network. Once
the network is created, our reinforcement algorithm is executed for every packet.

158

3 Evaluation

Table 1. Optimal Path for Different Deadlines

DF Optimal Path Delays [Baruah, 2018] Average Delays (1000 episodes)

15 Infeasible - -
20 {i,x,t} 14 14
25 {i,x,y,t} 10 10.24
30 {i,x,y,t} 10 10.22
35 {i,x,z,t} 6 6.64
40 {i,x,z,t} 6 6.55

The experiment presented in Section 3.1 shows a comparison between the
results obtained with our algorithm and the optimal choices. It highlights that
the transmission times experienced using our algorithm converge to the optimal
numbers obtained with the technique presented in [Baruah, 2018].

However, the algorithm presented in [Baruah, 2018] does not adapt to online
changes. We show how our algorithm behaves in this case in the experiment pre-
sented in Section 3.2. In this case, a link gets congested, and its traversal time
then becomes equal to the worst case. We show how our algorithm is able to dy-
namically adapt and converge to a new optimal policy.

However, the real contribution of this paper is shown when edge traversal
times are unknown and vary over time. We show this in the experiments pre-
sented in Section 3.3. For the rest of the experiments, we assume that the edges
traversal times behave according to a given probability distribution. This is simi-
lar to a real network where the delay for a packet is varied at every time instance.
In particular, we investigate both a truncated normal distribution and a uniform
distribution. With truncated normal distribution we mean a probability distribu-
tion that is a normal distribution, but is cut at zero (to avoid negative traversal
times) and at the worst case traversal times (to ensure that the constraint is sat-
isfied).

Finally the experiment presented in Section 3.5 shows the scalability of our
algorithm and how it behaves when applied to an networks with an increased
number of nodes.

3.1 Experiment 1: Convergence to the Optimal Route
To check that our reinforcement algorithm identifies the optimal route from the
source to the destination node, we compare the length of optimal path deter-
mined by the RL algorithm after 1000 episodes, with the traversal time of the op-
timal path computed using the algorithm from [Baruah, 2018]. Both algorithms
are applied to the network shown in Figure 1.

The delays for traversing an edge are set to the typical delays, thus giving us
the possibility to verify convergence in nominal conditions. For the RL, the delay
to traverse an edge becomes available only after the destination node of the edge
is reached.

159

Paper V. Adaptive Routing ... Safe Reinforcement Learning

Table 1 shows the results we obtained for different values of DF . When DF =
15, it is impossible to find a solution that guarantees the worst case transmission
delay, and both our algorithm and the optimal one presented in [Baruah, 2018]
are able to identify that using Dijkstra’s algorithm on the worst case transmission
times. For the other deadlines, we show the delays obtained with the optimal
algorithm and the average delay obtained in 1000 transmissions using our algo-
rithm. In all cases, the delays experienced by packets using algorithm are very
close to the optimal delays. The slight variations are due to the exploration that
is built in our algorithm, and specifically to the exploring nature of the ε-greedy
policy. For all the values of DF and in all episodes, the deadline is never violated.

Figure 2(a) shows the evolution of the transmission delays as the number of
packets sent increases. Rapid routing[Baruah, 2018] and safe RL converge to the
same path and experience the similar transmission times. Classical RL is consis-
tently able to have low transmission times at the expense of taking unsafe paths.
This causes deadline violations in networks with varying transmission times are
seen in section 3.4.

Except for DF = 20, in all the other plots there is an initial exploration phase,
in which the safe RL algorithm is exploring alternative routes, to find the opti-
mal path. There is no exploration when D = 20 as the only feasible path in the
network is (i → x → t). Therefore the total path delay is always equal to 14. As
mentioned before, the algorithm explores new routes with a probability that de-
cays over time, which shows how the algorithm settles for a given route in the
static case.

3.2 Experiment 2: Adaptation to Edge Congestion
In Experiment 2 we analyze the capability of the algorithm to adapt to new cir-
cumstances. In this specific case, we see how the algorithm reacts to the conges-
tion of one of the edges. In the network we used before, we artificially introduce
congestion on the edge (i → x). The delay δi x to traverse this edge increases from
4 to 10 time units, after the transmission of 40 packets. For the rest of the experi-
ment, this edge remains congested.

Figure 2(b) shows the transmission times for different deadlines DF . Due to
the congestion, there is a need to adapt.

Both classical and safe RL adapt to the congestion and take a different path
to the destination. For DF = 20, classical RL again chooses a path that violates
safety guarantees. Rapid Routing is at a disadvantage as the routing tables gener-
ated in the pre-processing stage are not sufficient to ensure adaptation. The de-
lay increases (see the values the algorithm converges to compared to the values
shown in Figure 2) and the optimal path changes. The congested edge is the first
edge traversed for all previously determined optimal paths, therefore the algo-
rithm has to determine if there is a better path using exploration. Eventually, the
rewards are propagated and the algorithm adapts. In all cases except for DF = 20,
the algorithm converges to the path (i → t) with a total delay of 12. In the case of
DF = 20, the only feasible path is (i → x → t) and the total transmission time on
the path increases from 14 to 20 due to the experienced congestion.

160

3 Evaluation

0
10
20
30
40

Deadline DF = 20

Classical RL Rapid Routing[1] Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

Tr
an

sm
is

si
on

Ti
m

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 200 400
0

10
20
30
40

Packet / Episode No.

Deadline DF = 40

(a) No Variance

Deadline DF = 20

Deadline DF = 25

Deadline DF = 30

Deadline DF = 35

0 200 400
Packet / Episode No.

Deadline DF = 40

(b) Congested Network

Figure 2. Smoothed Total Delay for Experiments 3.1 and 3.2.

161

Paper V. Adaptive Routing ... Safe Reinforcement Learning

0
10
20
30
40

DF = 20 DF = 25

Variance = 1

DF = 30 DF = 35 DF = 40

0
10
20
30
40 Variance = 2

0
10
20
30
40

Tr
an

sm
is

si
on

Ti
m

e

Variance = 3

0
10
20
30
40 Variance = 4

0 1000
0

10
20
30
40

0 10000 1000
Packet / Episode No.

Variance = 5

0 10000 1000

Figure 3. Transmission Time with Truncated Normally Distributed Edge
Traversing Times.

The ability to adapt to current conditions is one of the motivations for using
our algorithm rather than a static adaptive choice.

3.3 Experiment 3: Probabilistic Traversal Times
In this section, we discuss the convergence of our algorithm when the delay times
for transmitting over the edges (x → y) are random variables δx y drawn from
probability distributions. In this experiment we model the typical delay times
using truncated normal and uniform distributions. Figure 3 shows the total path
delays when the traversal time for an edge is distributed as a truncated normal
distribution with mean value cT

x y and different variance values. Each column in
the figure shows a different value of DF and each row a different variance, from
1 to 5. We denote the used probability distribution as truncated normal, because
we cut the probability distribution below 0 and above the worst case cW

x y to ensure

162

3 Evaluation

Table 2. Average Delays(1000 Episodes) in Experiments 3.1, 3.2, and 3.3

DF
No

Variance
Congested

Network
Truncated

Normal Distribution
Uniform Distribution

around cT
Uniform

Distribution [0,cW]

20 14.00 19.76 [12.80, 12.26, 12.02] [13, 12.6, 12.49] 9.14
25 10.30 12.42 [9.15, 10.20 ,10.63] [13.01, 12.69, 12.49] 9.84
30 10.27 12.17 [8.92, 10.01, 10.23] [8.89, 9.04, 10.62] 10.28
35 06.94 12.42 [5.81, 7.15, 8.60] [5.51, 5.95, 6.95] 9.98
40 06.84 12.32 [6.08, 6.945, 8.556] [5.59, 5.81, 6.42] 10.12

that the traversal times respect the constraints of our problem (0 ≤ δx y ≤C W
x y).

As the variance increases, the total delay also increases on average, as ex-
pected. One take away message is the deadline DF is never violated, showing
that the algorithm behaves correctly. Also, when the variance increases, different
paths are explored as the Q values for the nodes tend to be closer to one another
– rather than experiencing one best path, the variance blurs the differences be-
tween the paths and makes it more important and rewarding to distribute pack-
ets on different edges. In particular, looking at the case with DF = 35, the case
with variance 1 and 2 converges (primarily) to one specific path. The case with
variance 3 and 4 explore different paths and reach different conclusions on the
optimality of the chosen policy. The case with variance 5 tends to converge to a
different optimal policy. This seems to suggest that the presence of high vari-
ance is another reason to use an adaptive policy rather than an optimal pre-
determined choice.

Similarly Figure 4 shows the results we obtain when δx y is drawn from a uni-
form distribution. Specifically, for each edge (x → y), (0 ≤ δx y ≤ cW

x y) is enforced
and the extremes of the uniform distribution are chosen to be centered about the
typical delay value with a varying interval length. Similar to the truncated normal
distribution case, the network adapts and our algorithm ensures that the dead-
lines are never violated. Compared to the truncated normally distributed case,
the uniform distribution seems to have a better effect on finding optimal routes
and sticking to these routes.

3.4 Experiment 4: Uniformly Distributed Worst Case Traversal Times
We perform an experiment with a uniform distribution in which we select the ex-
tremes of the distribution as 0 and the worst case transmission delay (completely
disregarding the information about the typical transmission time). In this case,
the interval length creates much more variation in the typical traversal times.
The results for this run are shown in Figure 5.

We compare the transmission times obtained using our safe reinforcement
learning approach to the ones using classical RL and the rapid routing algo-
rithm from [Baruah, 2018]. Classical RL algorithms are only concerned with max-
imizing the obtained reward, thus lead to deadline violations as seen in the fig-
ure. The violations occur due to the exploration of unsafe edges. The algorithm
from[Baruah, 2018] does not violate deadlines but the typical transmission times

163

Paper V. Adaptive Routing ... Safe Reinforcement Learning

0
10
20
30
40

DF = 20 DF = 25

Variance = 1

DF = 30 DF = 35 DF = 40

0
10
20
30
40 Variance = 2

0
10
20
30
40

Tr
an

sm
is

si
on

Ti
m

e

Variance = 3

0
10
20
30
40 Variance = 4

0 1000
0

10
20
30
40

0 10000 1000
Packet / Episode No.

Variance = 5

0 10000 1000

Figure 4. Transmission Time with Uniformly Distributed Edge Traversing Times.

are higher compared to our safe reinforcement learning approach. This is be-
cause the routing tables are built only once during network creation. The routing
is not adaptive to the changing environment and routes messages according to
the pre-built routing tables. One way of compensating would be to rebuild the
routing tables for [Baruah, 2018] for every packet. This would be highly compute
intensive and impractical as seen in experiment 3.5

Our algorithm is shown to work in meeting the deadlines DF and also discov-
ering new potential paths as the traversal times over the initial links in the path
vary. Table 2 summarizes the delays experienced in the network for the three al-
gorithms.

3.5 Experiment 5: Large Networks
In this last set of experiments we investigate the scalability of our algorithm. We
create random networks, with a large number of nodes n. We ensure the network

164

3 Evaluation

0
10
20
30
40

Classical RL
Deadline DF = 20
Rapid Routing [1] Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

Tr
an

sm
is

si
on

Ti
m

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 500 10000
20
40

0 500 1000
Packet / Episode No.

Deadline DF = 40

0 500 1000

Figure 5. Transmission Time with Uniformly Distributed Edge Traversing Times
for Large Intervals.

includes one edge (0 → 1) from node 0, the initial node, and one edge (n −2 →
n−1) that reaches the final node n−1. We randomize all the other edges present in
the network. We only add edges from a node with a lower index node to a higher
one while ensuring no loops are created in the networks. Generally the networks
generated consist of nodes with a large number of outgoing edges.

For every edge in the network, (x → y), we randomly extract a value for the
typical delay cT

x y ∈ (0,10] and for the worst case delay cW
x y ∈ [10,30]. We ensure

that there exists a path from every node x to the destination node n. Networks
that do not satisfy the condition are discarded.

The pre-processing phase is applied as described in Section 2 to all networks
to get the shortest guaranteed total delay to the destination node n. The deadline
for the randomly generated networks is chosen to be the 1.2 · ci t from the initial

165

Paper V. Adaptive Routing ... Safe Reinforcement Learning

Table 3. Average Delays(1000 Episodes) in Section 3.4

DF Classical RL Rapid Routing Safe RL

20 10.32 9.609 9.135
25 10.19 11.98 9.841
30 10.10 14.10 10.283
35 10.23 16.43 9.99
40 9.98 18.593 10.193

node i to the destination node t .
Figure 6 shows the average delay time and the deadline set for increasing

number of nodes in the randomly generated network. We send 1000 packets over
the network from source to destination and record the total delay. The algorithm
works well finding paths to the destination minimizing total delays while ensur-
ing no deadline violations, even for large networks. Classical RL has higher trans-
mission times generally because of the large number of outgoing edges from each
node and deadlines are violated during exploration. Rapid routing [Baruah, 2018]
has low transmission times due to the routing tables built in the pre-processing
stage. However this method has very high computational complexity and the
routing tables have to be recalculated for every change in δ.

Figure 7 shows the computational time for the transmission of 1000 packets
over the networks. We compare the performance of classical RL and rapid rout-
ing algorithm from [Baruah, 2018] with our safe reinforcement learning. Classical
RL is the least computationally complex as it has no pre-processing stage. Our
safe learning approach is a magnitude less computationally intense compared to
rapid routing. In safe RL the pre-processing has to be only run once during net-
work creation. In case of node addition, the recalculation is minimal. Compara-
tively, rapid routing has large routing tables have to be constructed and evaluated
as described in [Baruah, 2018].

4. Related Work

In this section, we discuss prior research related to our work.
The problem of optimal paths in a stochastic network has been studied pre-

viously in [Polychronopoulos, 1992], [Loui, 1983], and [Bertsekas and Tsitsiklis,
1991]. These prior works consider the stochastic and dynamic shortest distance
problems in a weighted network and minimize a cost function to obtain the opti-
mal path. The weights in this case can be considered to be equal to the delays in
the network. Our work builds on these by guaranteeing an upper bound on the
delay while minimizing the weight. We also assume no prior knowledge on the
distributions and also take into account the dynamic nature of real networks.

Networking systems are of great interest for the application of machine learn-
ing algorithms [Peshkin and Savova, 2007]. Actor-critic method [Tong and Brown,

166

4 Related Work

0
20
40
60
80

100
Conventional Learning

Average Delay (smoothed) Deadline (smoothed)

0
20
40
60
80

100

Tr
an

sm
is

si
on

Ti
m

e Rapid Routing

Average Delay (smoothed) Deadline (smoothed)

0 50 100 150 200 250 300 350 400 450 500
0

20
40
60
80

100

Number of Nodes in the Network

Safe Reinforcement Learning

Average Delay (smoothed) Deadline (smoothed)

Figure 6. Delays for increasing nodes in network.

2002] and value function methods based on gain scheduling method [Carlström,
2000] have investing in depth on using modern computing advances for better
adaptive routing. Similar to these works, we also use reinforcement learning but
perform safe exploration to respect delay constraints.

Using external knowledge for safe reinforcement learning is a popular
method as it enhances learning by using prior information (derived from human
supervisor or otherwise) and prohibits exploration of unsafe paths. This can be
broadly distinguished into three methods [García and Fernández, 2015]. Provid-
ing initial knowledge can mitigate exploration problems using bootstrapping as
shown in [Driessens and Džeroski, 2004]. A similar methodology of restricting ex-
ploration space is to have a finite set of demonstrations to discover the state space.
These methods have been applied mainly to physical systems as shown in [Tang,
Singh, Goehausen, and Abbeel, 2010] and [Abbeel, Coates, and Ng, 2010]. Finally
Providing advice uses a teacher to assist during the learning process. This can ei-
ther be a teacher offering advice when the learner considers necessary as shown
in [A. Clouse and E. Utgoff, 1992] and [Garcia and Fernandez, 2014]. Similarly,
the teacher can offer advice whenever it deems necessary as shown in [Vidal,

167

Paper V. Adaptive Routing ... Safe Reinforcement Learning

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

Number of Nodes in the Network

Ti
m

e[
s]

Classical RL
Rapid Routing[1]

Safe RL

Figure 7. Computational times for increasing the number of nodes in the net-
work.

Rodríguez, González, and Regueiro, 2013], [Thomaz and Breazeal, 2006]. These
methods are not very effective in our problem as we consider a decentralized
approach with each node making independent decisions.

5. Conclusion

In this paper we have applied reinforcement learning to the problem of rout-
ing over real-time networks. To guarantee packet transmission within a pre-
determined timing constraint, we augment the exploration of the state-space to
only explore paths that are safe. This allows for small delays over the network.
The constant evaluation of the state-space and exploration of new paths make
the algorithm resilient to changes in the network due to, e.g., congestion, link
failures. This also allows us to route packets over new paths which might not be
realized to be safe in the case of static routing. The decentralized approach used
here allows each node to make routing decisions based only on the current ob-
served packet delay and the value function of the next node reducing the amount
of information needed at each node.

We verified the stochastic convergence of the algorithm to the optimal path
and performed experiments to verify the resilience of the reinforcement learn-
ing algorithm. Compared to classical RL we show that our algorithm is robust
and never violates set deadlines. While compared to previous research, our algo-
rithm is shown to be more adaptive to transmission time variations while having
reduced computational complexity.

168

References

References

A. Clouse, J. and P. E. Utgoff (1992). “A teaching method for reinforcement learn-
ing”. In: Proceedings of the Ninth International Conference on Machine Learn-
ing, pp. 92–110. DOI: 10.1016/B978-1-55860-247-2.50017-6.

Abbeel, P., A. Coates, and A. Y. Ng (2010). “Autonomous helicopter aerobatics
through apprenticeship learning”. Int. J. Rob. Res. 29:13, pp. 1608–1639. DOI:
10.1177/0278364910371999.

Baruah, S. (2018). “Rapid routing with guaranteed delay bounds”. In: 2018 IEEE
Real-Time Systems Symposium (RTSS). Nashville, TN, USA. DOI: 10.1109/RTSS.
2018.00012.

Bertsekas, D. P. and J. N. Tsitsiklis (1991). “An analysis of stochastic shortest path
problems”. Math. Oper. Res. 16:3, pp. 580–595. DOI: 10.1287/moor.16.3.580.

Carlström, J. (2000). “Decomposition of reinforcement learning for admission
control of self-similar call arrival processes”. In: Proceedings of the 13th Inter-
national Conference on Neural Information Processing Systems. NIPS’00. MIT
Press, Denver, CO, pp. 989–995. URL: http://dl.acm.org/citation.cfm?id=
3008751.3008895.

Dijkstra, E. W. (1959). “A note on two problems in connexion with graphs”. Nu-
merische Mathematik 1:1, pp. 269–271. DOI: 10.1007/BF01386390.

Driessens, K. and S. Džeroski (2004). “Integrating guidance into relational rein-
forcement learning”. Machine Learning 57:3, pp. 271–304. DOI: 10.1023/B:
MACH.0000039779.47329.3a.

Garcia, J. and F. Fernandez (2014). “Safe exploration of state and action spaces in
reinforcement learning”. CoRR abs/1402.0560. arXiv: 1402.0560. URL: http:
//arxiv.org/abs/1402.0560.

García, J. and F. Fernández (2015). “A comprehensive survey on safe reinforce-
ment learning”. Journal on Machine Learning Research 16:42, pp. 1437–1480.
URL: http://jmlr.org/papers/v16/garcia15a.html.

Hagberg, A. A., D. A. Schult, and P. J. Swart (2008). “Exploring network structure,
dynamics, and function using networkx”. In: Varoquaux, G. et al. (Eds.). Pro-
ceedings of the 7th Python in Science Conference. Pasadena, CA USA, pp. 11–
15. URL: https://www.researchgate.net/publication/236407765_Exploring_
Network_Structure_Dynamics_and_Function_Using_NetworkX.

Loui, R. P. (1983). “Optimal paths in graphs with stochastic or multidimensional
weights”. Commun. ACM 26:9, pp. 670–676. DOI: 10.1145/358172.358406.

Mehlhorn, K. and P. Sanders (2008). Algorithms and Data Structures: The Basic
Toolbox. 1st ed. Springer. ISBN: 9783540779773.

Peshkin, L. and V. Savova (2007). “Reinforcement learning for adaptive routing”.
CoRR abs/cs/0703138. arXiv: cs/0703138. URL: http://arxiv.org/abs/cs/
0703138.

169

Paper V. Adaptive Routing ... Safe Reinforcement Learning

Polychronopoulos, G. H. (1992). Stochastic and Dynamic Shortest Distance Prob-
lems. PhD thesis. Massachusetts Institute of Technology, Cambridge, MA,
USA.

Smart, W. D. and L. P. Kaelbling (2000). “Practical reinforcement learning in con-
tinuous spaces”. In: Proceedings of the Seventeenth International Conference
on Machine Learning. ICML ’00, pp. 903–910. URL: http : / / dl . acm . org /
citation.cfm?id=645529.657958.

Sutton, R. S. and A. G. Barto (2018). Reinforcement learning: An Introduc-
tion. Adaptive computation and machine learning. MIT Press. ISBN:
9780262039246.

Tang, J., A. Singh, N. Goehausen, and P. Abbeel (2010). “Parameterized maneuver
learning for autonomous helicopter flight”. In: 2010 IEEE International Con-
ference on Robotics and Automation, pp. 1142–1148. DOI: 10.1109/ROBOT.2010.
5509832.

Tesauro, G. (1995). “Temporal difference learning and td-gammon”. Commun.
ACM 38:3, pp. 58–68. DOI: 10.1145/203330.203343.

Thomaz, A. L. and C. Breazeal (2006). “Reinforcement learning with human
teachers: evidence of feedback and guidance with implications for learning
performance”. In: Proceedings of the 21st National Conference on Artificial In-
telligence - Volume 1. AAAI’06. Boston, Massachusetts, pp. 1000–1005. ISBN:
978-1-57735-281-5. URL: http : / / dl . acm . org / citation . cfm ? id = 1597538 .
1597696.

Tong, H. and T. X. Brown (2002). “Reinforcement learning for call admission con-
trol and routing under quality of service constraints in multimedia networks”.
Machine Learning 49:2, pp. 111–139. DOI: 10.1023/A:1017924227920.

Vidal, P. Q., R. I. Rodríguez, M. Á. R. González, and C. V. Regueiro (2013). “Learning
on real robots from experience and simple user feedback”. Journal of Physical
Agents 7:1, pp. 57–65. DOI: 10.14198/JoPha.2013.7.1.08.

A. Routing Path analysis

This appendix contains more experiments that analyse the paths taken by the
algorithm.

Figure 8 shows the best path determined by the algorithm and the path taken
during the transmission of packets through the network for different deadlines
and for increasing uniform variance.

The first column shows the best and chosen paths when DF = 20. For low vari-
ances, the only possible path is {i , x, t }. This ensures that the deadline is not vio-
lated. For higher variances in the transmission times, new paths are available for
transmission of the packets. For Variance = 4, new path {i , x, y, t } is feasible and
is explored around packet number 200. The algorithm determines that this is the
best path ({cT

x y + cT
y t } / cT

xt) for transmission. Even though the algorithm discov-
ers a better path, it is not always feasible due to the variance in the transmission

170

A Routing Path analysis

0
1
2
3

Best Path DF = 20
Chosen path

Best Path DF = 25
Chosen path

Variance = 1

Best Path DF = 30
Chosen path

Best Path DF = 35
Chosen path

Best Path DF = 40
Chosen path

0
1
2
3

Variance = 2

0
1
2
3

Pa
th

Ta
ke

n
0

=
[i

�
t]

,1
=

[i
�

x
�

t]
,2

=
[i

�
x
�

y
�

t]
,3

=
[i

�
x
�

z
�

t]

Variance = 3

0
1
2
3

Variance = 4

0 500 1000
0
1
2
3

0 500 1000 0 500 1000
Packet / Episode No.

Variance = 5

0 500 1000 0 500 1000

Figure 8. Best Path and Chosen Path with Uniformly Distributed Edge Traversing
Times.

171

Paper V. Adaptive Routing ... Safe Reinforcement Learning

Table 4. Algorithm Properties Comparison

Classical RL Rapid Routing[1] Safe RL

Safety Guarantees No Yes Yes

Pre-Processing Stage No
Need to be run

for every δ change
Run only during

structural changes
Exploration ε-greedy - Safe ε-greedy

Routing Based on probabilities Routing table dependent Based on probabilities

Storage at each node
One Q-value for

each outgoing edge
Static tables

One Q-value for
each outgoing edge

times. The path (x → y) is only feasible if (i → t) is traversed with δi t = 02, as this
guarantees that the deadline will not be violated if (x → y) is traversed (cxt = 20).
A similar phenomenon is observed when DF = 30, enabling the traversal of the
path {i , x, z, t } leading to small transmission times for most packets.

In all cases, higher variance increases the uncertainty in path selection while
making it possible to explore new paths that could potentially lead to shorter
delays. This highlights the need for a dynamic routing strategy in real networks.

B. Algorithm Comparisons

Table 4 shows general characteristics of safe RL compared to the previous works.
Comparing the three algorithms shows some similarities but also the major areas
in which the algirthms differ.

2 δ= 0, is not feasible in real networks. We enable 0 transmission times here for ease of explanation

172

Paper VI

Adaptive Routing for Real-Time Networks
with Dynamic Deadlines using Safe

Reinforcement Learning

Gautham Nayak Seetanadi

Abstract

A great influx of available computing resources has given rise to a large num-
ber of smart devices in everyday life. These smart devices perform a vari-
ety of tasks from sensing to computation while communicating with each
other to solve complex problems. This combination of devices are increas-
ingly used for time-critical real-time applications and require guarantees on
their end-to-end communication delays to ensure system correctness. We
consider a large network of interconnected nodes with the goal of reaching
a destination node t , from a given source node i , while ensuring that the
total delay is less than a pre-determined deadline DF . Each node in the net-
work is an independent computational node that decides the outgoing edge.
Each edge in the network is characterized by two types of delays. A worst case
upper bound delay that is never violated between successive transmissions,
and a typical delay that captures the current load of the network. This dual-
delay model captures the behavior of networks with time-varying while also
require end-to-end guarantees.

In this paper, we transmit packets through the dual-delay network from
source i to destination t using safe reinforcement learning (RL). Our rein-
forcement learning based packet routing policy uses a pre-processing algo-
rithm to ensure packet transmission only over safe paths. We build on our
previous work by proposing algorithms for safe network topography changes
through node additions and deletions. We evaluate the performance of our
safe RL algorithm on two different networks with varying deadlines by com-
paring the performance of our algorithm with classical RL based routing and
previous work on dynamic routing. We also discuss the viability of the dif-
ferent routing algorithms and their application to different network condi-
tions.

Conference Manuscript under Review.

173

Paper VI. Adaptive Routing for Real-Time Networks with ...

1. Introduction

Internet-of-Things(IoT) devices and applications are dependent on reliable and
timely data transmission. This is essential with increased use of edge devices for
latency sensitive real-time applications [Shi, Cao, Zhang, Li, and Xu, 2016]. Edge
devices perform sensing and transmit information to a more capable computa-
tion center in a timely fashion. This time-criticality is important especially for
robots and control computations performed in the cloud. Thus real-time net-
works require robust guarantees on end-to-end transmission times of packets
under varying network load in the presence of multiple paths for data transmis-
sion.

Recent papers [Baruah, 2018], [Nayak Seetanadi, Årzén, and Maggio, 2020]
represent real-time networks as a collection of nodes and edges. The nodes/edge
devices in the network have minimal computational capability and decide the
outgoing edge for transmission on arrival of a packet. The delays over each link
vary over time as the nodes are mobile 1.

The edges in network are thus characterized with two types of delays:

• cW : Worst case delays obtained by performing worst case timing analysis
of the edge.

• cT ∈ (0,cW]: Typical delays that vary depending on the current network
load.

This dual-delay model captures the behavior of a variety of IoT networks.
Consider for example an autonomous car that has to navigate between various
points of interest in traffic. Worst case delays, cW are used to provide end-to-end
delays on navigation time of the car. These worst case guarantees do not con-
sider the current traffic conditions leading to conservative delays. Similarly, An
edge device has to transmit a compute heavy job to a server with the choice of
multiple paths to the destination. The job timing guarantees are given consid-
ering links that have better cW leading to conservative transmission times. We
consider packet transmission as the goal for the rest of the paper for simplicity.

The problem is to travel from a specified source node i to a specified des-
tination node t in the network represented by the two-delay model. The cho-
sen path minimizes typical delays while guaranteeing that the end-to-end trans-
mission time δi t is lower than the pre-specified end-to-end deadline DF . Such
network optimization can be achieved by either using static or dynamic routing.
Static routing involves making decisions on the entire path of transmission at the
source whereas dynamic routing makes decisions at each node considering pre-
vious delays encountered. Dynamic routing is shown to be the optimal choice for
routing even with the drawback of higher computational needs [Polychronopou-
los, 1992]. The high computational requirement is mitigated by advances in com-
pute capacity of edge nodes.

1 We assume connections never fail and are return worst case delays in extreme conditions.

174

1 Introduction

Previously, dynamic routing problem has been solved for real-time networks
though building dynamic routing tables at each node[Baruah, 2018]. This ap-
proach provides safety guarantees but the static routing tables do not adapt to
changes in typical delays over links. In our work, we relax the assumption that
typical delays are known a priori to transmission. Packets are routed through
the network using safe reinforcement learning. This is similar to the approach
in [Nayak Seetanadi, Årzén, and Maggio, 2020] where optimal paths are realized
through safe state-space exploration.

Contributions of the paper:

• In comparison to our previous work [Nayak Seetanadi, Årzén, and Maggio,
2020], we

– Give analytical safety guarantees on end to end delays for all packets

– Propose algorithms for safe node additions and deletions

– Adapt to variations in deadlines DF

• In comparison to the work done by authors in [Baruah, 2018], we

– Propose algorithms for safe node additions and deletions

– Adapt to variations in deadlines DF

– Adapt to variations in cT

1.1 Notation
We use the following notations for the remainder of the paper. We consider a
directed graph G = (N ,E) where nodes N are points of interest given in order as
(N1.....NnNN). The source and destination nodes are denoted as Ni and Nt
respectively for simplicity. Each link (Nn−1 → Nn) ∈ E between two nodes Nn−1
and Nn has the following properties,

• cT
(n−1)n : Typical delay

• cW
(n−1)n : Worst case delay

• c(n−1)nt : Minimum worst case delay to destination t from node Nn−1 guar-
anteed via edge (Nn−1 → Nn). This is obtained after pre-processing as ex-
plained in Section 3

Similarly min(cn_t) denotes the minimum guaranteeable worst case trans-
mission time to destination t over all outgoing links from node Nn . In addition to
this we denote the actual transmission time over the link (Nn−1 → Nn) as δ(n−1)n .
δi t denotes the total transmission time for the packet from source i to destina-
tion t . DF denotes the pre-determined final deadline for the packet and Dn de-
notes the deadline for each packet at node Nn .

We use transmission time and delay interchangeably through the paper.

175

Paper VI. Adaptive Routing for Real-Time Networks with ...

i

x y

z

t

w

4,10,20

3,10,20

3,10,10

12,25,25

10,10,10

2,15,30

2,15,15

1,10,20

1,10,10

Figure 1. Case study network as described in [Nayak Seetanadi, Årzén, and Mag-
gio, 2020] and presentation of [Baruah, 2018]

1.2 Outline of the paper
The remainder of the paper is organized as follows. In section 2 we present two
models of networks built to analyse our algorithm, giving an introduction to re-
inforcement learning techniques and state-space evolution. Section 3 presents
our algorithms for safe node addition and deletion. Section 4 provides analytical
safety guarantees on the behavior of our algorithm. Section 5 discusses an ex-
perimental evaluation comparing our algorithm to related work. Section 6 gives
a short discussion on implementation aspects of our algorithm. Section 7 dis-
cusses related work and Section 8 concludes the paper.

2. Model

In this section we describe the two different networks built to analyse our al-
gorithm. Next we give a short introduction to reinforcement learning and ex-
plain the exploration-exploitation trade-off. Then we describe the evolution of
the state space during exploration by reinforcement learning.

2.1 Network Models
Figure 1 shows an example network consisting of directed edges with typical de-
lays cT

(n−1)n denoted in blue and the worst case delays cW
(n−1)n denoted in red for

each edge (Nn−1 → Nn). The model was introduced by the authors during the

176

2 Model

i

1 2 3

4 5 6 7 8 9 10 11 12

13 14 15 37 38 39

t

Figure 2. Modified Tree Network

presentation of [Baruah, 2018] and used to compare routing algorithms in [Nayak
Seetanadi, Årzén, and Maggio, 2020]. The network is simple with few nodes but
it captures the decision uncertainty in dynamic routing. For large deadlines DF ,
links with a large difference in cT and cW (small cT and large cW) are ideal for
packet transmission due to large c__t to destination t . Similarly for small DF , links
with smaller difference are ideal. The presence of these different links leads to
complexity in routing decisions for varying packet deadlines.

Node w is a mobile node dynamically added to the network during experi-
ments to evaluate dynamic network configurations.

Figure 2 shows a modified tree network with multiple paths from source i to
destination t . The tree network is dense in nature with multiple possible paths
from each node ensuring there are no loops present. The large network is rep-
resentative of a complex network with multiple paths to destination. The edge
delays are chosen pseudo-randomly with either

• Low cT and high cW (cT ∈ [1,5], cW ∈ [10,15]). or

• Similar cT and cW (cT ∈ [10,20],cW ∈ [10,25] � cT ≤ cW).

177

Paper VI. Adaptive Routing for Real-Time Networks with ...

2.2 Markov Decision Process
The goal of efficient routing of packets from source i to destination t with mini-
mal delays is accomplished using reinforcement learning(RL) in this paper. Most
RL problems model their state-space using Markov Decision Processes (MDPs).
A MDP is defined as a 4-tuple (S ,A,Pa ,Ra) where S is the set of states, A is set
of actions, Pa : (s, a, s′) → {0 ≤ p ≤ 1} is the probability of choosing an action a
from state s resulting in the state s′, Ra is the instantaneous or delayed reward
obtained after performing action a.

A modified MDP for the safe routing problem is defined as a 4-tuple (s ∈S , a ∈
A,Pa ,Ra) where,

• s ∈S : State s belonging to the finite state space S. In the network model, we
encode the current node Nn and current deadline Dn as individual states
in the state-space. The set of possible states S is the Cartesian product be-
tween the set of adjacent nodes Nn+1 from node Nn , Vn,n+1 and the set of
integersZ less than the deadline DF . The set of possible states at each node
Nn is then given by,

Sn =Vn,n+1 ×DF = {(v,n)|v ∈Vn,n+1 ∧n ∈Z}

• a ∈A: Action a belonging to the finite action spaceA. For the routing prob-
lem, A are the outgoing edges from a node.

• Pa∈A : Probability of choosing an action, the outgoing edge a.

• Ra∈A : Reward obtained after action a. RL reward are either instantaneous,
to evaluate optimality of each edge, or obtained at the end of packet trans-
mission to evaluate optimality of the entire path. In this paper we have im-
plemented delayed reward assignment to minimize computation at nodes.

2.3 Reinforcement Learning
Safe RL has a smaller state-space compared to classical RL as unsafe states are
not explored. The constructed safe state-space is used to evaluate routing paths
with lower delays. RL is the learning technique mapping current system state to
actions, maximizing a reward. The learning agent is not programmed with par-
ticular actions to execute, it rather discovers the best action by performing them.
The RL agent performs multiple episodes to evaluate actions by starting over nu-
merous times. This is ideal for routing networks with the presence of constant
packet transmissions and changing network conditions.

In the routing network, the RL agent decides the outgoing edge from each
node in the network. This decision process is called policy and the continuous
evaluation of state-action pairs leads to optimization of the routing policy.

2.4 Policy
The policy dictates value iteration of the states in the system. The choice of policy
depends on various parameters of the routing problem such as, the time horizon

178

2 Model

for obtaining the, node computation power, node storage capacity and so on. In
our implementation we aim for minimal computation at each node and reward
calculation at the final node propagated to the other nodes using temporal dif-
ference(TD) learning.

TD learning has emerged as a popular RL algorithm owing to its success
with superhuman level performance in Backgammon, Chess and various Atari
games [Tesauro, 1995] [Badia et al., 2020]. TD learning updates it estimates with-
out waiting for packet to arrive at the destination leading to faster convergence.
We calculate the reward at the destination t to minimize computation and back
propagate the reward through value iteration. The value iteration function is
given by

Q(s, a) =Q(s, a)+α · (R+max(γQ(s′, a′))−Q(s, a)) (4.1)

where Q(s, a) is the value of being in state s and taking action a. R is the
reward obtained during the state transition and max(Q(s′, a′)) is the maximum
reward obtained previously from the next state s′.

Learning Rate,α α, Also called step-size determines the amount of old learning
overwritten. It is tuned depending of the probability of variations in the transmis-
sion times,δ. Ifα= 0, the node makes routing decisions depending only upon the
previous available information. Setting α = 1, overwrites old information com-
pletely.

Discount Factor, γ γ captures the uncertainty in future rewards obtained on
choosing action a. If γ = 0, the node is biased towards short term rewards mini-
mizing delays to the next edge. Small γ evaluates edge decisions without taking
into account the optimality of the whole path to destination. γ= 1 makes routing
decision based on the whole path chosen for packet transmission.

2.5 Exploration
ε-greedy exploration policy ensures that the system chooses the outgoing edge
for packet transmission from the vector of outgoing edges based on probabili-
ties. ε-greedy algorithm chooses the edge identified as the best edge for trans-
mission with a probability (1− ε). The policy explores other edges in search of a
path that returns higher rewards with a probability ε. The probability of choosing
an outgoing edge (n +1) ∈A from node Nn to Nn+1 for is given by the function

f (P) =
 0 if edge is unsafe

1−ε if best edge ∈F
ε/(si ze(F −1)) Otherwise

(4.2)

An edge (Nn → N(n+1)) is unsafe if cn(n+1)t > Dn . The best safe edge from a
node Nn is one with the corresponding maximum Q value. Q value, Q((n,Dn),n+
1) is the value that determines the optimality of choosing the edge (Nn → N(n+1))
from node Nn with deadline Dn . The other feasible edges are explored with prob-
ability ε.

179

Paper VI. Adaptive Routing for Real-Time Networks with ...

i,30

x, 26

y, 23

z, 24

w, 25

t, 18 t, 16t, 20t, 22t, 24

t
x

ty
z

w

t

t

t

Figure 3. State-space evolution with DF = 30 and δn(n+1) = cT
n(n+1). Dashed

lines show the state-space after node w addition.

Choosing a small ε ensures that known information is exploited for max-
imum reward whereas a large ε, explores newer paths in search of higher re-
ward. The choice between maximizing known rewards and exploring unknown
paths is known as the exploration-exploitation trade-off and is an inherent part
of reinforcement learning [Sutton and Barto, 2018] [Habib, Arafat, and Moh,
2019] [Tesauro, 1995].

2.6 Reduced State Space
Q-learning uses state-action pairs to evaluate the value of being in a current state
of the system. Each node consists of its own state-action pairs that are explored to
find routing paths that result in reduced packet delays. The states in our system
consist of both the current vertex and the time elapsed from packet transmission.
The set of possible states S at node n is the Cartesian product of Vn,n+1, the set
of outgoing vertices and N ≤ Dn , the set of Natural numbers less than or equal
to the deadline at the current node n. This modified formulation of the state-
space allows for decentralised state-space exploration in comparison to [Nayak
Seetanadi, Årzén, and Maggio, 2020].

Figure 3 shows the evolution of the state-space with DF = 30 and δn(n+1) =
cT

n(n+1) for the network from Figure 1. Each block in the figure shows states (n,Dn)

180

3 Algorithm

Algorithm 7 Pre-Processing:

1: for each node Nn do
2: for each edge (Nn → Nn+1) do
3: // Dijkstra’s weighted shortest path to destination t
4: cn(n+1)t = cW

n(n+1) + min(c(n+1)_t)

and each outgoing edge denotes the corresponding chosen edge N(n+1).
The different branches of the state-space are explored using Q-learning dur-

ing packet transmission. We denote each packet transmission as an episode and
each episode terminates when the destination node t is reached. RL uses con-
tinuous learning to evaluate the optimality of the transmission path. Each out-
going arrow in the state space shows the chosen edge and connects the current
state to the next state. For eg, Choosing edge t from state s = (i ,30) results in
state s′ = (t ,18) given cT

i t = 12 as seen in Figure 1. This constitutes one episode
of RL as the packet has reached the destination. The reward obtained for the
episode is R= DF −12 = 18. The action pair ((i ,30), t) is updated to the value 18.
The remaining state-space is built through exploration during subsequent packet
transmissions.

The new states of the system are explored dynamically after node addition
due to continuous exploration inherent to RL. In the figure, state (w,25) is ex-
plored from state (x,26) as cxw t > 26. The example state-space is relatively small
due to static transmission times. Variations in DF and δ result in a large state-
space. The safe state-space is subset of the largest state-space due to the pres-
ence of infeasible states and unsafe states that are not explored. For eg. When
DF = 20 and δ = cT , path (i → t) is always infeasible and never explored. Simi-
larly, (x → z → t) and (x → w) are also infeasible due to the restrictive deadline
resulting in a smaller state-space.

3. Algorithm

In this section we discuss the underlying algorithm for safe reinforcement learn-
ing. First, in section 3.1 we give a short introduction to the algorithm already
presented by the authors in [Nayak Seetanadi, Årzén, and Maggio, 2020]. Then
we augment their algorithm by including rules for node addition and deletion as
shown in section 3.2.

3.1 Routing algorithm from [Nayak Seetanadi, Årzén, and Maggio, 2020]
Our safe RL algorithm consists of a pre-processing algorithm to obtain safety
guarantees on packet delays to the destination. Algorithm 7 shows the pseudo-
code of the pre-processing algorithm. It is executed globally to obtain worst-
case transmission c(n−1)nt for each link (N(n−1) → Nn) during network initializa-
tion. The algorithm is based on Dijkstra’s shortest algorithm [Dijkstra, 1959] for
weighted graphs and has low complexity.

181

Paper VI. Adaptive Routing for Real-Time Networks with ...

Algorithm 8 Node Logic (Nn)

1: for Every packet do
2: if Nn = source node i then
3: Dn = DF // Initialise the deadline
4: δi t = 0 // Initialise total delay for packet = 0

5: for each edge (Nn → Nn+1) do
6: if cuv t > Du then // Edge is infeasible
7: P (n|n +1) = 0
8: else if Q((n,Dn),n +1) = max(Q((n,Dn),_) then

9: P (n|n +1) = (1−ε)
10: else
11: P (n|n +1) = ε/(si ze(F −1))

12: Choose edge (n → n +1) with P
13: Observe δn(n+1)

14: δi t += δn(n+1)

15: Dn +1 = Dn −δn(n+1)

16: R = Environment Reward Function(n,δn(n+1))
17: Q((n,Dn),n +1) = Value iteration from Equation (4.1)
18: if Nn+1 = t then
19: DONE

Algorithm 9 Environment Reward Function(Nn+1,δi t)

1: Assigns the reward at the end of transmission
2: if Nn+1 = t then
3: R = DF −δi t

4: else
5: R = 0

Algorithm 8 is executed at each node during the arrival of packet. If Nn =
source node, the deadline is set to Dn = DF , the final deadline. For the other
nodes in the network, the deadline is set online taking the time traversed into
account. The choice of outgoing edge is determined by the probability func-
tion from Equation 4.2 as shown in lines 6 to 11. The actual transmission time
encountered, δ over the edge is added to the total transmission time over the
path δi t . δ is also subtracted from the deadline at node Nn and forms the dead-
line for the next node Nn+1. The obtained reward is used to update the value
Q((n,Dn)n +1) of the state-action pair.

Algorithm 9 shows the reward R obtained after edge traversal. If the desti-
nation node t is not reached then RL episode continues. If the destination node
is reached, R is calculated as R = DF −δi t with DF is the final deadline for the
packet and δi t is the transmission time over the whole path from source i to des-
tination t . The reward is back-propagated inherently to all nodes though value

182

3 Algorithm

Algorithm 10 Node addition(Nn)

1: for all downstream links (Nn → Nn+1) do
2: cn(n+1)t = cW

n(n+1) +min(c(n+1)_t)

3: for all upstream links (Nn−1 → Nn) do
4: Minimum delay to destination(Nn−1) //Algorithm 11

iteration from Equation 4.1.

3.2 Node Addition
When a new node, Nn is added to the network, the links are added to the appro-
priate upstream(Nn−1 → Nn) and downstream nodes(Nn → Nn+1). Downstream
links are directed from the added node to the nodes already present. Upstream
links connect from the already present nodes to the newly added node. Typical
transmission times for safe edges in both directions of the added node Nn , cT

(n−1)n

and cT
n(n+1) are explored by the algorithm during packet transmission.

Worst case transmission times for downstream links, cW
n(n+1) over each link

are local knowledge to the added node Nn and are used in the calculation of
worst case times to destination cn(n+1)t . cW

(n−1)n for upstream links may impact
the worst case transmission time to destination of upstream nodes c(n+1)nt .

Algorithm 10 show the pseudocode for node addition. We calculate cn(n+1)t
for the downstream links with min(c(n+1)_t), the worst case guaranteeable time
to destination t . For the upstream links we similarly calculate c(n−1)nt for the up-
stream nodes using min(cn_t). We verify the shortest path to the destination for
the upstream node (Nn−1 as shown in Algorithm 11.

Algorithm 11 Minimum delay to destination(Nn)

1: old cn_t = cn_t

2: cn(n+1)t = cW
n(n+1) +min(c(n+1)_t)

3: if cn(n+1)t < old cn_t then // New delay to t
4: for All upstream links (Nn−1 → Nn) do
5: Min delay to destination(Nn−1)

3.3 Node z Deletion
Any node deletion when the node has the packet will lead to inevitable packet
loss and deadline violation. Algorithm 12 shows the pseudocode for deletion of
nodes assuming no packets are in transmission. We again differentiate between
downstream and upstream links as described in section 3.2. Downstream links
do not affect the performance of the algorithm and are safely deleted. Deletion
of upstream links (Nn−1 → Nn) affects minimum guarantees to the destination.
The value of c(n−1)_t is recalculated and propagated upstream to the appropriate
nodes.

183

Paper VI. Adaptive Routing for Real-Time Networks with ...

Algorithm 12 Node Deletion(Nn)

1: for all upstream links (Nn−1 → Nn) do
2: old c(n−1)_t = c(n−1)_t // Save value to check for optimality
3: P (n −1|n) = 0
4: Recalculate min(c(n−1)_t) without deleted link
5: if min(c(n−1)_t) > old c(n−1)_t then
6: Recalculate min(c(n−1)_t) for upstream nodes

4. Proof

4.1 Proof of Safety
Consider a chosen path from source to destination with V number of nodes in
the following order, N1....NV . Each link (Nn−1 → Nn) chosen during transmission
has the following transmission times,

• cT
(n−1)n : Typical transmission times.

• cW
(n−1)n : Worst case transmission time.

• c(n−1)nt : Worst case transmission time to destination.

Additionally we denote the actual transmission time over each link (Nn−1 →
Nn) to be δ(n−1)n . The deadline at each node Nn is denoted as Dn and the dead-
line at the beginning of each packet transmission at origin as DF . The deadline
at each node Nn is be given by,

D2 = D1 −δ12

D3 = D2 −δ23

.

.

DV−1 = DV−2 −δ(V−2)(V−1)

DV = DV−1 −δ(V−1)V (4.3)

Using the above equations, we can write the deadline at the final node NV as

DV = D1 − {δ12 +δ23 + ...+δ(V−1)V } (4.4)

where d1 is the deadline at the initial node, or the final deadline DF of the
packet.

DV = DF − {δ12 +δ23 + ...+δ(V−1)V } (4.5)

According to the model, we always assume that δ(n−1)n ≤ cW
(n−1)n holds for

each edge (Nn−1 → Nn). Thus equation 4.5 is rewritten as,

184

5 Experimental results

dV + {cW
12 + cW

23 ++ cW
(V−1)V } ≤ DF (4.6)

Consider the probabilistic Equation 4.2 that decides edge selection. An safe
edge is characterised as c(n−1)n ≤ d(n−1). Comparing this and Equation 4.3,

d1 ≥ cW
12 +min(c2_t)

d2 +δ21 ≥ cW
12 +min(c2_t)

d2 ≥ cW
12 +min(c2_t)−δ21

d2 ≥ min(c2_t) (4.7)

Thus the algorithm is safe at each node in addition to the overall safety as
shown above.

5. Experimental results

In this section we evaluate the performance of our algorithm by comparing our
work to Rapid Routing [Baruah, 2018], Classical RL [Sutton and Barto, 2018] and
Safe RL [Nayak Seetanadi, Årzén, and Maggio, 2020]. Experiments 1 to 4 are per-
formed on the network shown in Figure 1. Experiment 1 evaluates our algorithm
with static deadlines DF to emphasize the importance of algorithm for node ad-
ditions. Experiment 2,3 and 4 are performed with varying deadlines DF . Experi-
ments 5 and 6 are performed on the modified tree network from Figure 2 to show
the advantage of using our algorithm in large networks. Table 4 shows average
transmission times and number of deadline violations for all experiments.

We represent the networks using directed acyclic graphs (DAGs), built using
NetworkX package [Hagberg, Schult, and Swart, 2008] for python. Each link in
the network is encoded with the two delays cT and cW as weights. The typical
delay, cT is hidden from the algorithm and only realised through exploration.
The value of cn(n+1)t for each link (Nn → Nn+1) in the network is obtained with
the pre-processing algorithm.

5.1 Experiment 1
We transmit 1000 packets with DF ∈ {20,25,30,25,40} from source i to destina-
tion t to ensure safety and correctness of our algorithm. Figure 4 shows the total
path delay of packets for various deadlines. Node w is added to the network after
the transmission of 100 packets to supported algorithms(our work and classical
RL) as described in Algorithm 10. No deadlines are violated by any algorithms
due to constant delays over all links and constant deadlines. There are also no
deadline violations after the addition of node w .

185

Paper VI. Adaptive Routing for Real-Time Networks with ...

0
10
20
30
40

Deadline DF

Our work

Deadline DF = 20

Deadline DF

Rapid Routing

Deadline DF

Classical RL

Deadline DF

Our work (no node added)

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

Tr
an

sm
is

si
o

n
T

im
e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 1K
0

10
20
30
40

0 1K

Packet / Episode No.

Deadline DF = 40

0 1K 0 1K

Figure 4. Experiment 1: Transmission times with DF ∈ {20,25,30,25,40} and δ= cT

Rapid routing [Baruah, 2018] transmits packets through the network using
pre-built routing tables leading to lower total delays. The routing tables do not
require recalculation as the link delays are static. Algorithms based on RL obtain
actual link delays through exploration and thus have slower convergence. The ex-
ploration phase of RL based algorithms leads to higher delays for some transmit-
ted packets. However this exploration phase is crucial to ensure the algorithms
react to network changes.

When DF = 20, (i → x → t) is the only path with no safety violations. Most al-
gorithms transmit packet only through this path to guarantee safety at each node.
Classical RL does not provide any safety guarantees and converges to lower path
delays as it chooses unsafe path for transmissions. We also evaluate our algo-
rithm without node addition for delay comparison with Rapid Routing and Safe
RL, as the algorithms do not support dynamic network changes.

Table 1 shows Q-tables at the end of state-space exploration. The columns

186

5 Experimental results

20
30
40

ε= 0.001

20
30
40

ε= 0.01

20
30
40

ε= 0.05

20
30
40

R
ew

ar
d
R

ε= 0.1

20
30
40

ε= 0.5

0 100 200 300 400 500 600 700 800 900 1,000
20
30
40

ε= 1

Figure 5. Experiment 1: Rewards obtained for varying ε with DF = 40

represent the current node Nn and the rows represent the deadline Dn at the
node. Each cell forms the state-action pairs and the current system. The value
of each cell shows the action/next node Nn+1 that returns the most value for the
state-action pair. For eg. when DF = Di = 20, edge (i → x) returns the highest re-
ward (the best path when DF = 20 is (i → x → t)). The state-space in Experiment
1 is relatively small in size as DF and δ are constants.

Choice of ε ε dictates the rate of exploration of new paths and. The choice of
ε is dependent on the structure and behavior of the routing network. Figure 5
shows rewards obtained for varying values of ε for the network from Figure 1. We
evaluate our algorithm with DF = 40 to mark all paths as safe and set δ= cT .

Setting ε to a very small value leads to rewards with low variance with the
drawback of lower dynamicity. On the other hand, large values of ε lead to con-
vergence problems due to too many exploring paths. We choose ε= 0.1 to mini-
mize transmission times ensuring that new paths are regularly explored.

5.2 Experiment 2
In Experiment 2, we set random deadlines with DF ∈ [20,40] for each packet
transmission. We transmit 10000 packets over the network from Figure 1 for full
state-space exploration. We set δn−1,n = cT

n−1,n ensuring that this information

187

Paper VI. Adaptive Routing for Real-Time Networks with ...

Table 1. Q-value tables after state-space exploration in Experiment 1

Time Rem i x y z w
16 - t - - -
18 - - t - -
20 x - - - t
21 - w - - -
23 - - t - -
25 x - - - t
26 - w - - -
28 - - t - -
29 - - - t -
30 x - - - t
31 - w - - -
33 - - t - -
34 - - - t -
35 x - - - t
36 - w - - -
40 x - - - -

is unknown to the algorithm and is realised through exploration. We also set
α = γ = 1 as δ and the rewards obtained are deterministic. Figure 6 shows total
transmission time, δi t for the first 1000 random deadlines. Our algorithm never
violates deadlines for any of the packets. If DF = constant for all packets, this
information can be exploited to reduce the size of routing table as seen in the
previous experiment.

Table 2 shows the Q-values of a fully explored state-space after Experiment 2
before the addition of the additional node. The state-space is larger compared to
the state-space of Experiment 1. Each node in the network encounters a larger
number of deadlines due to random deadlines and needs more packet transmis-
sions to fully explore the state-space. Table 3 shows the change in state-space
after the addition of node w to the network and transmission of additional pack-
ets. The algorithm explores the new paths and allocates a higher reward to path
(i → x → w → t) (as cT

x y > cT
xz > cT

xw).

5.3 Experiment 3
Figure 6 shows the typical transmission times for 1000 packets when δ =U (cT),
uniform distribution with variance = 5 in network 1. There are no deadline viola-
tions by our algorithm and leads to low delays. Table 4 shows the average delays
for all routing algorithms. Rapid Routing has higher delays as it relies on pre-
built routing tables and is unable to adapt to varying cT . This can be mitigated
by rerunning the pre-processing algorithm but is computationally heavy [Nayak
Seetanadi, Årzén, and Maggio, 2020]. The three RL based algorithms have lower

188

5 Experimental results

0
10
20
30
40

Our Work

Deadline DF Total transmission time δi t

Our Work

0
10
20
30
40

Rapid Routing Rapid Routing

0
10
20
30
40

Tr
an

sm
is

si
o

n
T

im
e

Safe RL Safe RL

0 200 400 600 800 1,000
0

10
20
30
40

Classical RL

0 200 400 600 800 1,000

Classical RL

Figure 6. Experiment 2: Transmission times with DF ∈ [20,40] and δ = cT (left)
Experiment 3: Transmission times with DF ∈ [20,40] and δ = U (cT), variance =
5(right)

transmission times and adapt dynamically to network variations. Classical RL has
14 deadline violations from the transmission of 10000 packets as thus is not suit-
able for providing safety guarantees.

5.4 Experiment 4
Experiment 4 evaluates the performance of all algorithms under stress. We set
δn−1,n ∈ (0,cW

n−1,n], a uniform distribution with extremes of the distribution as 0
and the worst case transmission time. The choice of interval length creates large
variations in actual traversal times δ. The transmission times of first 1000 pack-
ets are shown in Figure 7. We compare transmission times for the different algo-
rithms. Classical RL algorithms are only concerned with maximizing rewards and
lead to 144 deadline violations at the end of 10000 packet transmissions. Safe RL
has lower average transmission times due to the smaller state-space compared
to our work. This smaller state-space leads to faster convergence and better ef-
ficiency in networks will small number of nodes. Rapid Routing has the highest
average transmission times highlighting the drawback of using static tables for

189

Paper VI. Adaptive Routing for Real-Time Networks with ...

Table 2. Q-value tables after state-space exploration in Experiment 2 before ad-
dition of node w

Time Rem i x y z w
16 - t - - -
17 - t t - -
18 - t t - -
19 - t t - -
20 x y t - -
21 x y t - -
22 x y t - -
23 x y t - -
24 x y t - -
25 x y t - -
26 x y t - -
27 x y t - -
28 x y t t -
29 x y t t -
30 x z t t -
31 x z t t -
32 x z t t -
33 x z t t -
34 x z - t -
35 x z - - -
36 x z - - -
37 x - - - -
38 x - - - -
39 x - - - -
40 x - - - -

routing.

5.5 Experiment 5
Experiments 1 to 4 showed that our algorithm performs relatively well compared
to the state of the art algorithms. The drawback of our algorithm is slow con-
vergence due to the large state-space to be explored. The experiments showed a
large state space is not required to efficiently route packets through the example
network shown in Figure 1.

To analyse algorithm performance on large networks we route packets from
source i to destination t in the modified tree network shown in 2 for experiments
5 and 6. We use Dijkstra’s shortest path algorithm [Dijkstra, 1959] to calculate the
shortest guaranteeable time to destination t . We set random deadlines such that
DF ∈ [1.2∗ shortest path,2∗ shortest path].

190

5 Experimental results

Table 3. Q-value tables after state-space exploration in Experiment 2 after addi-
tion of node w

Time Rem i x y z w
16 - t - - -
17 - t t - -
18 - t t - -
19 - t t - t
20 x w t - t
21 x w t - t
22 x w t - t
23 x w t - t
24 x w t - t
25 x w t - t
26 x w t - t
27 x w t - t
28 x w t t t
29 x w t t t
30 x w t t t
31 x w t t t
32 x w t t t
33 x w t t t
34 x w - t t
35 x w - - t
36 x w - - -
37 x - - - -
38 x - - - -
39 x - - - -
40 x - - - -

We analyse packet delays and rewards obtained with δ(n−1)n = cT
(n−1)n for

50000 packets. Figure 8 shows packet transmission times of the first 10000 pack-
ets. Our algorithm has high transmission times initially during state-space explo-
ration then the algorithm convergences to the optimal path during later trans-
missions. Safe RL has faster convergence due to the smaller state space. The aver-
age delays for safe RL is higher compared to our algorithm due to varying DF . The
large number of paths to t cause very high initial transmission times in classical
RL leading to deadline violations. Rapid routing has equal transmission times for
all packets due choice of deadline DF . The small interval of deadlines leads to
static efficient path being chosen.

Figure 9 shows the convergence of maximum rewards obtained for the three
RL based algorithms. The convergence rate is directly related to the size of the
state-space of the algorithm. Safe RL has the fastest convergence as its state-

191

Paper VI. Adaptive Routing for Real-Time Networks with ...

Table 4. Average transmission times and Deadline Misses

E
xp

er
im

en
t

R
ap

id
R

o
u

ti
n

g
C

la
ss

ic
al

R
L

Sa
fe

-R
L

M
o

d
ifi

ed
Sa

fe
-R

L
M

o
d

ifi
ed

Sa
fe

-R
L

(N
o

n
o

d
e

ad
d

)
(E

p
si

o
d

es
)

A
vg

T
X

T
im

es
A

vg
T

X
T

im
es

A
vg

T
X

T
im

es
A

vg
T

X
T

im
es

A
vg

T
X

T
im

es
E

xp
1(

D
F
=

40
)

(1
00

00
)

10
.0

00
0

7.
93

28
10

.5
70

6
8.

70
68

10
.0

33
6

E
xp

2
(1

00
00

)
10

.1
44

0
10

.8
25

7
10

.6
41

6
10

.9
49

9
-

E
xp

3
(1

00
00

)
12

.9
91

7
11

.3
52

9
10

.6
84

6
11

.0
05

4
-

E
xp

4
(1

00
00

)
15

.1
52

0
13

.3
52

9
10

.6
63

6
11

.0
05

4
-

E
xp

5
(5

00
00

)
11

.0
00

0
17

.6
76

3
18

.2
82

6
17

.5
67

2
-

E
xp

6
(5

00
00

)
22

.1
17

2
18

.2
93

5
19

.6
92

6
18

.3
64

4
-

(E
p

si
o

d
es

)
D

F
M

is
se

s
D

F
M

is
se

s
D

F
M

is
se

s
D

F
M

is
se

s
D

F
M

is
se

s
E

xp
1(

D
F
=

40
)

(1
00

00
)

0
0

0
0

0
E

xp
2

(1
00

00
)

0
0

0
0

-
E

xp
3

(1
00

00
)

0
14

0
0

-
E

xp
4

(1
00

00
)

0
12

2
0

0
-

E
xp

5
(5

00
00

)
0

22
0

0
-

E
xp

6
(5

00
00

)
0

42
0

0
-

192

5 Experimental results

0
10
20
30
40

Our Work

Deadline DF Total transmission time δi t

0
10
20
30
40

Rapid Routing

0
10
20
30
40

Tr
an

sm
is

si
o

n
T

im
e

Safe RL

0 100 200 300 400 500 600 700 800 900 1,000
0

10
20
30
40

Classical RL

Figure 7. Experiment 4: Transmission times with DF ∈ [20,40] and δ ∈ (0,cW]

space is small compared to our algorithm. Classical RL is slow to converge as
it explores all paths in the network disregarding safety.

5.6 Experiment 6
In Experiment 6, we set δ ∈ (0,cW

(n−1)n] and simulate the system under very high
load for 50000 packets. The other parameters are set the same as in the previous
experiment.

Figure 8 shows the transmission times for varying deadlines. Rapid Rout-
ing has very high average transmission times due to the pre-built routing tables
but has no deadline violations. Classical RL has the lowest average transmission
times but suffers from deadline violations. Our algorithm performs better than
Safe RL as our state-space captures more information about the current state of
the system. The better performance comes at a cost of larger state-space leading
to slower convergence to the optimal path as seen in Figure 9. This is a necessary
trade off as real-time networks have packets with varying deadlines in a dynamic
environment.

193

Paper VI. Adaptive Routing for Real-Time Networks with ...

0

50

100
Our Work

Deadline DF Total Transmission Time δi t

Our Work

0

50

100
Rapid Routing Rapid Routing

0

50

100

Tr
an

sm
is

si
o

n
T

im
e

Safe RL Safe RL

0 10000
0

50

100
Classical RL

0 10000

Classical RL

Figure 8. Experiment 5: transmission times for modified tree network with δ =
cT (left). Experiment 6: Transmission times for modified tree network with δ ∈
(0,cW](right)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
70

80

90

100
Experiment 6

Exp5 Our work Exp6 Our work Exp5 Safe RL
Exp6 Safe RL Exp5 Classical RL Exp6 Classical RL

Figure 9. Maximum Rewards obtained over time

194

6 Discussion

6. Discussion

In this section we discuss some of the aspects of practical implementation of our
algorithm. Then we explore how the different algorithms analysed are suitable to
different real-time networks.

6.1 Implementation Aspects
Variations in cW Even with robust worst case timing analysis, it might not be
feasible to guarantee cW for each link. Changes in cW

(n−1)n can be adapted by run-
ning Algorithm 10 at Nn treating the variation as a node addition. We assume that
no packets were transmitted during the algorithm to guarantee safety.

Presence of loops Deadlines cannot be guaranteed in the presence of loops in
the network. This is due to the possibility of transmitting packets over a section
of path multiple times during path exploration. Loop removal is widely studied
in SDN literature and can be similarly applied in conjunction with our algorithm.

Multiple sources and Bi-directional links In our current work, we use a single
source node. The work can be extended to multiple source nodes as the rout-
ing decisions are only based on current node and remaining time. In case of bi-
directional edges, two routing tables would be needed (one for each direction).

Multiple packets In the presence of multiple packets over a link (Nn−1 → Nn)
the value of cT

(n−1)n increases. Our algorithm guarantees safety as the model guar-

antees δ(n−1)n ≤ cW
(n−1)n .

6.2 Choice of Algorithm
The choice of algorithm for packet routing is very dependent on the network pa-
rameters as seen from the result section. The size of the network, variance in pa-
rameters and number of parameters all play a major role in the choice of the
algorithm.

Rapid Routing [Baruah, 2018] Rapid routing is suitable for routing packets
through a static real-time networks with moderate variance in cW in links com-
paratively. It has most of complexity in the pre-processing algorithm. The pre-
processing algorithm is run only once in a static network with δ = cT and rout-
ing is based on the constructed routing table. Variations in cT would make Rapid
Routing suboptimal. For optimality, the pre-processing has to execute again lead-
ing to large computational time [Nayak Seetanadi, Årzén, and Maggio, 2020].
Large variations in cW between the different links leads to the construction of
large routing tables at each node.

Classical RL [Sutton and Barto, 2018] Classical has low computational and is
analysed extensively for packet routing. Classical RL is however unsuitable for
real time networks as unsafe edges are chosen during exploration leading to
deadline violations.

195

Paper VI. Adaptive Routing for Real-Time Networks with ...

Table 5. Comparision of the different routing algorithms

R
ap

id
R

o
u

ti
n

g
[B

ar
u

ah
,2

01
8]

C
la

ss
ic

al
R

L
[S

u
tt

o
n

an
d

B
ar

to
,2

01
8]

Sa
fe

-R
L

[N
ay

ak
Se

et
an

ad
i,

Å
rz

én
,a

n
d

M
ag

gi
o

,2
02

0]

R
o

u
ti

n
g

Ta
b

le
B

u
il

tw
it

h
p

re
-p

ro
ce

ss
in

g
B

u
il

tw
it

h
ex

p
lo

ra
ti

o
n

B
u

il
tw

it
h

ex
p

lo
ra

ti
o

n

St
at

e
Sp

ac
e

-
C

u
rr

en
tn

o
d

e,
T

im
e

re
m

ai
n

in
g

C
u

rr
en

tn
o

d
e

N
o

d
e

ad
d

it
io

n
an

d
d

el
et

io
n

R
er

u
n

p
re

-p
ro

ce
ss

in
g

Ye
s

N
o

A
d

ap
tt

o
cT

ch
an

ge
s

R
er

u
n

p
re

-p
ro

ce
ss

in
g

D
yn

am
ic

,
th

ro
u

gh
ex

p
lo

ra
ti

o
n

D
yn

am
ic

,
th

ro
u

gh
ex

p
lo

ra
ti

o
n

Sa
fe

ty
G

u
ar

an
te

es
Ye

s
N

o
St

o
ch

as
ti

c
co

n
ve

rg
en

ce

196

7 Related work

Safe RL [Nayak Seetanadi, Årzén, and Maggio, 2020] Safe RL is most efficient
for real-time networks that either have a small number of nodes or large net-
works with static deadlines. It has the advantage of small state-space size due to
its choice of state leading to faster convergence of the algorithm.

Our Work Our work has the drawback of slow convergence due to the large
state-space that is explored initially during network creation. On the other hand
our algorithm performs better with more packets transmitted with different val-
ues of DF . The algorithm also performs well in networks with variance in the
different parameters of the network, which is expected in real-networks. Com-
pared to the other algorithm, we also support safe node additions and deletions
dynamically in the network.

Table 5 summarizes the different algorithms explored in the paper.

7. Related work

In this section we will discuss some prior research related to our work. The most
recent algorithms [Nayak Seetanadi, Årzén, and Maggio, 2020], [Baruah, 2018]
most related to the work presented in this paper is analysed in Section 5.

Previous research can widely be divided into three categories

• Optimal path finding in graphs with two or more cost function

• Reinforcement learning based routing methods

• Safe reinforcement learning methods

Shortest path problems are among the most widely studied problems in
network optimization [Bertsekas, 1991], [Ahuja, Magnanti, and Orlin, 1988]
and [Schrijver, 2003]. However these algorithms consider a single cost min-
imization and are suitable for worst case timing analysis. The problem of
determining paths with multiple cost functions has been studied as bicrite-
ria [Hansen, 1980], [Hamacher, Ruzika, and Tjandra, 2006] and multigraph
[Martins, 1984], [Loui, 1983] cost optimization. These multiple cost shortest-
path algorithm use interdependent costs where it is not possible to decrease
some cost at the expense of others. This is not applicable to our problem of
edges with two independent costs.

Dynamic routing in reinforcement learning has been a popular research area
due to the large number of packet transmissions facilitating learning. See [Habib,
Arafat, and Moh, 2019] and [Al-Rawi, Ng, and Yau, 2013] for surveys on routing
using reinforcement learning. RL based routing do not provide guarantees on
delays which leads to deadline violations during exploration.

Reinforcement learning based methods provide safety mainly using two
methods. Using modified optimization criteria [Davidson and Schmidt, 1992]
and [Ozan, Baskan, Haldenbilen, and Ceylan, 2015], the concept of risk is intro-
duced into the optimization process. The learning policy is then updated consid-
ering this modified optimization method for safe learning.

197

Paper VI. Adaptive Routing for Real-Time Networks with ...

In our work we use the second method, ensuring modified exploration to en-
sure safety. Safe exploration restricts exploratory actions using expert knowledge
about the system [Moldovan and Abbeel, 2012], [Hans, Schneegaß, Schäfer, and
Udluft, 2008] and [Sui, Gotovos, Burdick, and Krause, 2015]. We build on these
works by ensuring safe routing for real-time networks.

8. Conclusion

In this paper we have studied the problem of packet routing over a recently pro-
posed model for routing applicable for IoT networks. The model consists of links
with dual-delays where the encountered delays are different from the worst case
delays. To guarantee packet transmission within a pre-determined constraint, we
apply safe reinforcement learning to find optimal paths ensuring traversal of only
safe edges. The constant safe exploration ensures that the algorithm is dynamic
and robust to changes in deadlines in conjunction with the large state-space that
better captures behavior of the network. We also showed the robustness of our
algorithm to node additions and deletions due to mobility in IoT networks. This
dynamicity of our algorithm allows us to route over new paths through node ad-
ditions that lead to lower transmission times.

We provided safety guarantees for our algorithm and verified it by packet
transmission through two different network models with varying network prop-
erties. Compared to classical RL we provided robust safety guarantees for our
algorithm. We also discussed the different state of the art routing algorithms dif-
ferent real-time networks and their applicability.

References

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin (1988). “Network flows”.

Badia, A. P. et al. (2020). Agent57: outperforming the atari human benchmark.
arXiv: 2003.13350 [cs.LG].

Baruah, S. (2018). “Rapid routing with guaranteed delay bounds”. In: 2018 IEEE
Real-Time Systems Symposium (RTSS). Nashville, TN, USA. DOI: 10.1109/RTSS.
2018.00012.

Bertsekas, D. P. (1991). Linear network optimization.

Davidson, J. B. and D. K. Schmidt (1992). Modified optimal control pilot model for
computer-aided design and analysis. Tech. rep. URL: https://ntrs.nasa.gov/
citations/19930002271.

Dijkstra, E. W. (1959). “A note on two problems in connexion with graphs”. Nu-
merische Mathematik 1:1, pp. 269–271. DOI: 10.1007/BF01386390.

Habib, M. A., M. Y. Arafat, and S. Moh (2019). “Routing protocols based on rein-
forcement learning for wireless sensor networks: a comparative study”. Jour-
nal of Advanced Research in Dynamical and Control Systems, pp. 427–435.

198

References

Hagberg, A. A., D. A. Schult, and P. J. Swart (2008). “Exploring network structure,
dynamics, and function using networkx”. In: Varoquaux, G. et al. (Eds.). Pro-
ceedings of the 7th Python in Science Conference. Pasadena, CA USA, pp. 11–
15. URL: https://www.researchgate.net/publication/236407765_Exploring_
Network_Structure_Dynamics_and_Function_Using_NetworkX.

Hamacher, H. W., S. Ruzika, and S. A. Tjandra (2006). “Algorithms for time-
dependent bicriteria shortest path problems”. Discrete Optimization 3:3.
Graphs and Combinatorial Optimization, pp. 238–254. DOI: 10 . 1016 / j .
disopt.2006.05.006.

Hans, A., D. Schneegaß, A. M. Schäfer, and S. Udluft (2008). “Safe exploration
for reinforcement learning.” In: ESANN2008, pp. 143–148. URL: https://www.
elen.ucl.ac.be/Proceedings/esann/esannpdf/es2008-36.pdf.

Hansen, P. (1980). “Bicriterion path problems”. In: Fandel, G. et al. (Eds.). Multi-
ple Criteria Decision Making Theory and Application. Springer, pp. 109–127.
DOI: 10.1007/978-3-642-48782-8_9.

Loui, R. P. (1983). “Optimal paths in graphs with stochastic or multidimensional
weights”. Communications of the ACM 26:9, pp. 670–676. DOI: 10 . 1145 /
358172.358406.

Martins, E. Q. V. (1984). “On a multicriteria shortest path problem”. European
Journal of Operational Research 16:2, pp. 236–245. DOI: 10 . 1016 / 0377 -
2217(84)90077-8.

Moldovan, T. M. and P. Abbeel (2012). “Safe exploration in markov decision pro-
cesses”. arXiv preprint arXiv:1205.4810.

Nayak Seetanadi, G., K.-E. Årzén, and M. Maggio (2020). “Adaptive routing with
guaranteed delay bounds using safe reinforcement learning”. In: Proceed-
ings of the 28th International Conference on Real-Time Networks and Systems,
pp. 149–160. DOI: 10.1145/3394810.3394815.

Ozan, C., O. Baskan, S. Haldenbilen, and H. Ceylan (2015). “A modified reinforce-
ment learning algorithm for solving coordinated signalized networks”. Trans-
portation Research Part C: Emerging Technologies 54, pp. 40–55. DOI: 10.1016/
j.trc.2015.03.010.

Polychronopoulos, G. H. (1992). Stochastic and dynamic shortest distance prob-
lems. PhD thesis. Massachusetts Institute of Technology.

Al-Rawi, H., M. Ng, and K.-L. Yau (2013). “Application of reinforcement learning
to routing in distributed wireless networks: a review”. Artificial Intelligence
Review 43. DOI: 10.1007/s10462-012-9383-6.

Schrijver, A. (2003). Combinatorial optimization: polyhedra and efficiency.
Vol. 24. Springer Science & Business Media. ISBN: 978-3-540-44389-6.

Shi, W., J. Cao, Q. Zhang, Y. Li, and L. Xu (2016). “Edge computing: vision and
challenges”. IEEE Internet of Things Journal 3:5, pp. 637–646. DOI: 10.1109/
JIOT.2016.2579198.

199

Paper VI. Adaptive Routing for Real-Time Networks with ...

Sui, Y., A. Gotovos, J. Burdick, and A. Krause (2015). “Safe exploration for opti-
mization with Gaussian processes”. In: International Conference on Machine
Learning, pp. 997–1005.

Sutton, R. S. and A. G. Barto (2018). Reinforcement learning: An Introduc-
tion. Adaptive computation and machine learning. MIT Press. ISBN:
9780262039246.

Tesauro, G. (1995). “Temporal difference learning and td-gammon”. Commun.
ACM 38:3, pp. 58–68. DOI: 10.1145/203330.203343.

200

