33,791 research outputs found

    A theory of game trees, based on solution trees

    Get PDF
    In this paper a complete theory of game tree algorithms is presented, entirely based upon the notion of a solution tree. Two types of solution trees are distinguished: max and min solution trees respectively. We show that most game tree algorithms construct a superposition of a max and a min solution tree. Moreover, we formulate a general cut-off criterion in terms of solution trees. In the second half of this paper four well known algorithms, viz., alphabeta, SSS*, MTD and Scout are studied extensively. We show how solution trees feature in these algorithms and how the cut-off criterion is applied

    Game tree algorithms and solution trees

    Get PDF
    In this paper, a theory of game tree algorithms is presented, entirely based upon the concept of solution tree. Two types of solution trees are distinguished: max and min trees. Every game tree algorithm tries to prune nodes as many as possible from the game tree. A cut-off criterion in terms of solution trees will be formulated, which can be used to eliminate nodes from the search without affecting the result. Further, we show that any algorithm actually constructs a superposition of a max and a min solution tree. Finally, we will see, how solution trees and the related cutoff criterion are applied in major game tree algorithms, like alpha-beta and MTD

    Solution trees as a basis for game tree search

    Get PDF
    A game tree algorithm is an algorithm computing the minimax value of the root of a game tree. Many algorithms use the notion of establishing proofs that this value lies above or below some boundary value. We show that this amounts to the construction of a solution tree. We discuss the role of solution trees and critical trees in the following algorithms: Principal Variation Search, alpha-beta, and SSS-2. A general procedure for the construction of a solution tree, based on alpha-beta and Null-Window-Search, is given. Furthermore two new examples of solution tree-based algorithms are presented, that surpass alpha-beta, i.e., never visit more nodes than alpha-beta, and often less

    Iterated Regret Minimization in Game Graphs

    Full text link
    Iterated regret minimization has been introduced recently by J.Y. Halpern and R. Pass in classical strategic games. For many games of interest, this new solution concept provides solutions that are judged more reasonable than solutions offered by traditional game concepts -- such as Nash equilibrium --. Although computing iterated regret on explicit matrix game is conceptually and computationally easy, nothing is known about computing the iterated regret on games whose matrices are defined implicitly using game tree, game DAG or, more generally game graphs. In this paper, we investigate iterated regret minimization for infinite duration two-player quantitative non-zero sum games played on graphs. We consider reachability objectives that are not necessarily antagonist. Edges are weighted by integers -- one for each player --, and the payoffs are defined by the sum of the weights along the paths. Depending on the class of graphs, we give either polynomial or pseudo-polynomial time algorithms to compute a strategy that minimizes the regret for a fixed player. We finally give algorithms to compute the strategies of the two players that minimize the iterated regret for trees, and for graphs with strictly positive weights only.Comment: 19 pages. Bug in introductive example fixed

    Trends in game tree search

    Get PDF
    This paper deals with algorithms searching trees generated by two-person, zero-sum games with perfect information. The standard algorithm in this field is alpha-beta. We will discuss this algorithm as well as extensions, like transposition tables, iterative deepening and NegaScout. Special attention is devoted to domain knowledge pertaining to game trees, more specifically to solution trees. The above mentioned algorithms implement depth first search. The alternative is best first search. The best known algorithm in this area is Stockman's SSS*. We treat a variant equivalent to SSS* called SSS-2. These algorithms are provably better than alpha-beta, but it needs a lot of tweaking to show this in practice. A variant of SSS-2, cast in alpha-beta terms, will be discussed which does realize this potential. This algorithm is however still worse than NegaScout. On the other hand, applying a similar idea as the one behind NegaScout to this last SSS version yields the best (sequential) game tree searcher known up till now: MTD(f)

    Setting Parameters by Example

    Full text link
    We introduce a class of "inverse parametric optimization" problems, in which one is given both a parametric optimization problem and a desired optimal solution; the task is to determine parameter values that lead to the given solution. We describe algorithms for solving such problems for minimum spanning trees, shortest paths, and other "optimal subgraph" problems, and discuss applications in multicast routing, vehicle path planning, resource allocation, and board game programming.Comment: 13 pages, 3 figures. To be presented at 40th IEEE Symp. Foundations of Computer Science (FOCS '99

    Average tree solutions and the distribution of Harsanyi dividends

    Get PDF
    We consider communication situations games being the combination of a TU-game and a communication graph. We study the average tree (AT) solutions introduced by Herings \sl et al. [9] and [10]. The AT solutions are defined with respect to a set, say T, of rooted spanning trees of the communication graph. We characterize these solutions by efficiency, linearity and an axiom of T-hierarchy. Then we prove the following results. Firstly, the AT solution with respect to T is a Harsanyi solution if and only if T is a subset of the set of trees introduced in [10]. Secondly, the latter set is constructed by the classical DFS algorithm and the associated AT solution coincides with the Shapley value when the communication graph is complete. Thirdly, the AT solution with respect to trees constructed by the other classical algorithm BFS yields the equal surplus division when the communication graph is complete.

    Compensations in the Shapley value and the compensation solutions for graph games

    Get PDF
    We consider an alternative expression of the Shapley value that reveals a system of compensations: each player receives an equal share of the worth of each coalition he belongs to, and has to compensate an equal share of the worth of any coalition he does not belong to. We give an interpretation in terms of formation of the grand coalition according to an ordering of the players and define the corresponding compensation vector. Then, we generalize this idea to cooperative games with a communication graph. Firstly, we consider cooperative games with a forest (cycle-free graph). We extend the compensation vector by considering all rooted spanning trees of the forest (see Demange 2004) instead of orderings of the players. The associated allocation rule, called the compensation solution, is characterized by component efficiency and relative fairness. The latter axiom takes into account the relative position of a player with respect to his component. Secondly, we consider cooperative games with arbitrary graphs and construct rooted spanning trees by using the classical algorithms DFS and BFS. If the graph is complete, we show that the compensation solutions associated with DFS and BFS coincide with the Shapley value and the equal surplus division respectively.
    • …
    corecore