
A theory of game trees, based on solution trees

Wim Pijls, Arie de Bruin, Aske Plaat

Erasmus University Rotterdam, P.O.Box 1738, 3000 DR Rotterdam,

The Netherlands, fpijls,adebruin,plaatg@few.eur.nl

Abstract

In this paper a complete theory of game tree algorithms is presented,

entirely based upon the notion of a solution tree. Two types of solution

trees are distinguished: max and min solution trees respctively. We show

that most game tree algorithms construct a superposition of a max and

a min solution tree. Moreover, we formulate a general cut-o� criterion in

terms of solution trees. In the second half of this paper four well known

algorithms, viz., alphabeta, SSS*, MTD and Scout are studied extensively.

We show how solution trees feature in these algorithms and how the cut-o�

criterion is applied.

Keywords: Game tree search, Minimax search, Solution trees, Alpha-beta,

SSS*, MTD, (Nega)Scout.

1 Introduction

A game tree models the behavior of a two-player game. The nodes in such a tree

represent positions of a game, whereas edges represent moves. Given a payo� in

the leaves of a game tree, the best move in each position can be determined by

means of the so-called minimax function. Over the years, many algorithms have

been designed, which determine the so-called minimax value of a game tree, given

a payo� value in the leaves. Although the minimax function is de�ned using all

nodes of the tree, every algorithm tries to inspect a number of nodes as small as

possible. The computation of the minimax function has also theoretical interest,

because this problem is known to be PSPACE-complete. In this paper, it turns

out that the notion of a solution tree is a key notion in the theory of game tree

algorithms. There are two types of solution trees: max and min solution trees

respectively. First, we show that every algorithm computing the minimax value

of a game tree constructs a max and a min solution tree. Next, we present a

general cuto� criterion for searching game trees. This criterion will be explained

in terms of solution trees. In the remainder of this paper, we discuss the role

of solution trees in four well-known algorithms, viz. alphabeta, SSS*, MTD and

Scout.

We deal only with �xed depth algorithms. In practice, mostly iterative deepening

is used. But even with iterative deepening, at one given level, still a �xed depth

method is needed.

This paper is organized as follows. The sections 2 and 3 discuss basic concepts.

In Section 2, the concept of a solution tree is introduced, and its relation to the

1

game tree value is explained. In Section 3, we show that there is a one-to-one

correspondence between a solution tree and a bound to a game value. An im-

portant result in this section is, that almost every algorithm must construct a

superposition of a max and a min solution tree. In the sections 4 and 5 a general

cut-o� criterion, used in almost every game tree algorithm, is presented. In the

subsequent sections, we focus on four major algorithms, and the interest of solu-

tion trees therein. In section 6 the alphabeta procedure and the so-called global

alphabeta algorithm are studied. In section 7, the working of the complex SSS*

is explained. Section 8 presents a framework of algorithms, called MTD, closely

related to the alphabeta procedure. In Section 9, we discuss some instances of

this framework. One instance is MTD(f), which has turned out to be very pow-

erful. [24]. Another one is AB-SSS, which has been proven equivalent to SSS*.

Section 9 addresses the Scout algorithm.

We now give some preliminaries. A game tree is denoted by G; its root is mostly

called r. The two game players are Max and Min. We assume that Max plays

the opening move. As said before, the algorithms to be studied here, aim at

computing the minimax function f , which is de�ned on every game tree. The

value f(r), the minimax value in the root, is written alternatively as f(G).

For any tree R (for example R = G) containing a node n, R(n) stands for the

subtree in R that is rooted in n. The set of children of a node n is denoted by

C(n). Every node is regarded to be one of its own descendants.

2 Solution trees

The purpose of the minimax function

We �rst recall the de�nition of the well-known minimax function and its raison

d'etre. In every terminal p of a game tree, a function value f(p) is assumed to

be de�ned, representing the pro�t or the payo� for Max, or equivalently, the loss

for Min. Max aims at maximizing this payo�, whereas Min aims at minimizing

it. Given an arbitrary node n, we are interested in the guaranteed payo� for the

Max player, i.e., the highest attainable value for the Max player, under the con-

dition that Min minimizes Max's pro�t. This guaranteed payo� is determined

by the familiar minimax function f . The de�nition of this function is based

on the idea that the guaranteed payo� for Max in a max node is equal to the

highest payo� among the children. To achieve this payo�, Max must move to a

child with maximal payo�. In a min node the highest attainable payo� for Max

is given by the minimum value among the children, assuming optimal play of min.

Strategies or solution trees

To gain more insight into the minimax function with related properties, we con-

sider the concept of a strategy. This notion is equivalent to the notion of a

solution tree, introduced in [28]. The idea of viewing a solution tree as a strategy

originates from [11]. A strategy of Max consists of a subtree, including in each

Max position exactly one continuation and in each min node all continuations

(all countermoves to Max). Since the choice of Max in each position is known

in a max strategy, Min is able to calculate the outcome for each series of choices

2

that he can make. In this paper, a subtree with exactly one child in an internal

max node and all children in a min node, which we called a Max strategy above,

will be also referred to as a min solution tree, or briey, a min tree. Dually a

max tree or a MIn strategy can be de�ned.

De�nition 2.1 A max solution tree T

+

is a subtree of a game tree G with the

properties:

- if an inner max node n 2 G is included in T

+

, then also all children of n

are included in T

+

;

- if an inner min node n 2 G is included in T

+

, then exactly one child is

included in T

+

.

A min solution tree T

�

is a subtree of G with the properties:

- if an inner min node n 2 G is included in T

�

, then all children of n are

included in T

�

;

- if an inner max node n 2 G is included in T

�

, then exactly one child is

included in T

�

.

For clarity, we emphasize that the root of a solution tree T is not necessarily the

root of G.

Given a min solution tree, the most bene�cial choice for Min in each min position

is a move towards a terminal with minimal value. Consequently, in a given Max

strategy T , the pro�t of Max under optimal play of Min is equal to the minimum

of all payo� values of T . Therefore, we de�ne a function g on the set of solution

trees. For a min solution tree T

�

, g(T

�

) is de�ned as the minimal value in the

terminals of T

�

. On a max solution tree, a dual de�nition holds. Alternatively,

on either solution tree type, g can be viewed as the minimax-value of the solution

tree, where the computation of the minimax function is restricted to the solution

tree.

De�nition 2.2 For a given max tree T

+

and a min tree T

�

, the g-value is

de�ned as:

g(T

+

) = maxff(p) j p is a terminal in T

+

g

g(T

�

) = minff(p) j p is a terminal in T

�

g

In Figure 1, an example of a game tree is shown labeled with its f -values. The

bold lines in this �gure generate a max solution tree.

An optimal solution tree.

In the foregoing, we have seen that in every max node of a game tree G, the

most bene�cial move of Max is the transition to a child with the highest f -value.

From this fact, we draw the following conclusion. A min solution tree T

�

, that

contains in each max node the best move of Max in G, is the most pro�table

strategy for Max. This entails that T

�

has a g-value equal to f(n) and every

other Max strategy T gives a payo� for Max at most equal to f(n). This property

together with its counterpart for min solution trees is expressed formally in the

following theorem, which will be referred to as Stockman's theorem. [28].

3

5

�

��

�

��

45

9 5 7 9 4

�

��

3

�

��

5

�

��

7

�

��

9

�

��

2

�

��

1

�

��

4

�

�

�

�

�

�

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

S

S

S

S

S

S

S

S

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

@

@

@

@

�

�

�

�

A

A

A

A

Figure 1: A max solution tree in a game tree with f -values.

Theorem 2.1 Let n be a node in a game tree G.

f(n) = minfg(T

+

) j T

+

is a max solution tree with root ng (2.1)

= maxfg(T

�

) j T

�

is a min solution tree with root ng (2.2)

In the remainder of this paper we will speak about the max (solution) tree and

min (solution) tree version of Stockman's theorem. A formal proof of the the-

orem uses induction on the height of n. A solution tree T with g(T) = f(G)

is called an optimal solution tree. Notice that, when constructing an optimal

strategy, it is not necessary to choose an optimal move in every node. Con-

sider for example a max node n with exactly two children, say c

1

and c

2

, such

that f(c

1

) � f(c

2

) = f(n). Then every optimal max solution tree T

+

has

g(T

+

(c

2

)) = f(c

2

) and f(c

1

) � g(T

+

(c

1

)) � f(c

2

). The continuation from c

1

in

T

+

needs not to be optimal.

Critical tree

The union of an optimal max and an optimal min solution tree is called a critical

tree. As soon as a critical tree is obtained, the game value of the root is estab-

lished and the algorithm may stop.

In [13] the notion of a critical tree is introduced as a minimal tree that has to be

searched by alpha-beta in order to �nd the minimax value in a best �rst game

tree. In that paper, the set of nodes in a critical tree is divided into three subsets.

Viewing a critical tree as a superposition of two solution trees, we can give an al-

ternative de�nition for each of the three types, replacing the (quite complicated)

de�nition in [13]. Type 1 nodes are in the intersection of the optimal solution

4

trees for the player and its opponent|the critical path. Outside the critical path,

there are type 2 and type 3 nodes. Type 2 nodes are either min nodes of the

max solution tree or max nodes of the min solution tree. Type 3 nodes are max

nodes in the max solution tree or min nodes in the min solution tree.

The observation that a minimal set of nodes, to be visited by any game tree

algorithm, consists of the superposition of two strategies was made before in

[18].

3 The search tree

De�nition of a search tree

First of all, we recapitulate the notion of a search tree, introduced in [10]. In

all game tree algorithms, the game tree is explored step by step. So, at each

moment during execution of a game tree algorithm, a subtree has been visited.

This subtree of the game tree is called the search tree. We assume that, as soon

as at least one child of a node n is generated or visited, all other children of n are

also added to the search tree. Hence, a search tree S has the property, that for

every node n 2 S either all children are included in S or none. An interior node

n of a game tree, whose children have been generated during execution of the

game tree algorithm under consideration, is called expanded. Hence, an interior

node in the search tree is always expanded. If an interior node n of game tree

is a leaf of the search tree, or, in other words, if the children of n have not been

generated yet, then n is called open. A terminal in a game tree is necessarily a

leaf in the search tree, but is not always called open. A terminal is called open

or expanded, according whether its game value has been computed or not. In

summary, expanding an open node n consists of appending the children to n, if

it is a non-terminal, or computing the payo� of n, if it a terminal. Instead of

expanding a terminal, we will also speak of closing a terminal.

Bounds to the game value

In the open nodes of a search tree we can de�ne two provisional payo� values.

The most optimistic payo� for Max is equal to +1, the most pessimistic �1.

By introducing these provisional values, we also introduce two game trees S

+

and S

�

, which are derived from S. In the open nodes p of S

+

, f

+

(p) = +1 by

de�nition, and in the inner nodes of S

+

, f

+

is determined according to the min-

imax function. For f

+

and f

�

as provisional optimistic and pessimistic payo�

values, we have

f

�

(n) � f(n) � f

+

(n)

A formal proof is by induction on the height. We see that f

+

and f

�

are bounds

to the game value.

An example of a search tree, related to the game tree of Figure 1 can be found

in Figure 2, where c, d and e are open nodes. In the trees of Figure 2, the f

+

-

and f

�

-values respectively are shown.

The relation between bounds and solution trees

Like a game tree, a search tree S also contains solution trees. The leaves of such

a solution tree are leaves in S. For each type (min and max) of solution trees in

5

9

��

��

��

��

97

1 1

7 9

1

��

��

7

��

��

9

��

��

2

��

��

1

��

��

1

�

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

@

@

@

@

�

�

�

�

�

S

S

S

S

S

�

�

�

�

�

@

@

@

@

@

�

�

�

�

�

A

A

A

A

A

a

b

c

d

e

2

��

��

��

��

2

�1

�1 �1

7 9 2

��

��

7

��

��

9

��

��

2

��

��

1

��

��

�1

�

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

@

@

@

@

�

�

�

�

�

S

S

S

S

S

�

�

�

�

�

@

@

@

@

@

�

�

�

�

�

A

A

A

A

A

a

b

c

d

e

Figure 2: A search tree with f

+

- (top) and f

�

- (bottom) values.

6

S, we have a division into two subtypes.

De�nition 3.1 A solution tree T in S is called open, if T has at least one open

leaf in S. A solution tree T is called closed, if T has solely closed leaves.

Notice that a closed solution tree in a search tree S is also a solution tree in the

entire game tree.

Stockman's theorem can be invoked in S

+

as well as in S

�

. First, the max tree

version of Stockmans's theorem, expressed in (2.2), is applied to S

+

. This gives

the statement, that f

+

(n) is equal to the minimum of all values g(T) with g

computed in S

+

and T a max solution tree in S. Every open max tree in S

+

has g-value equal to +1. Therefore, when applying the max tree version to S

+

,

we only need to take closed max solution trees into account. This results into

equality (3.1). The second equality (3.2) is obtained, when the min tree version

of Stockman's theorem is applied to S

�

.

f

+

(x) = minfg(T) j T is a closed max solution tree with root xg (3.1)

f

�

(x) = maxfg(T) j T is a closed min solution tree with root xg (3.2)

We immediately see that f

+

(n) has a �nite value if and only if n is the root of

closed max tree T

+

. So, to every �nite value f

+

(n) a max solution tree T

+

is

associated with g(T

+

) = f

+

(n).

An obvious termination criterion

Almost every game algorithm builds a search tree and stops when the equality

f

+

(r) = f

�

(r) is achieved. At that time, there are optimal solution trees T

+

and T

�

satisfying g(T

+

) = g(T

�

) = f(G). A union of an optimal max and an

optimal min solution tree, has been called a critical tree in the Section 2. We

conclude that, in order to compute the game value at the root, a critical tree is

needed.

If we are interested primarily in the best move from r instead of the value of

r, an algorithm may stop without constructing a critical tree. For any search

tree, for at least one child c

0

: f

�

(r) = f

�

(c

0

). If moreover f

+

(c) � f

�

(c

0

) for

every other child c 6= c

0

, and hence, f

+

(c

0

) = f

+

(r), then c

0

is guaranteed to be

the best continuation. However, in this situation, the equality f

+

(c

0

) = f

�

(c

0

)

or equivalently f

�

(r) = f

+

(r), does not hold necessarily. Here, we have a search

tree, where the best move is found, but not the game value.

The intersecting path in a critical tree

A max and a min tree always have exactly one path in common. We focus

on the intersecting path of a pair of optimal trees Let two trees be given with

g(T

+

) = f(G) = g(T

�

). Let n

0

= r; n

1

; : : :n

k

be the nodes of the intersection

path of two optimal tree T

+

and T

�

. In T

+

and T

�

respectively, we have:

f

+

(n

i

) � g(T

+

(n

i

)) � g(T

+

); i = 0; 1; : : :k; (3.3)

f

�

(n

i

) � g(T

�

((n

i

)) � g(T

�

); i = 0; 1; : : :k: (3.4)

Since g(T

+

) = f(G) = g(T

�

), also f

+

(n

i

) = f

�

(n

i

) = f(G) for i = 0; 1; : : :k.

We conclude that the intersection of T

+

and T

�

is a path with f(n

i

) = f(n).

7

A path in a game tree from the root r to a terminal such that the f -value is

constant on this path (and thus = f(r)) is called a critical path.

4 Open solution trees

Speaking about solution trees in Section 3, we distinguished between open and

closed solution trees. We mentioned, that every open max solution tree T has

at least one leaf p with f

+

(p) = +1 and hence g(T) = +1. Such a solution

tree can be given another provisional value, de�ned as the maximum of the game

values of the closed leaves. Following the notation in [11], this value is denoted

by c(T) for a max solution tree T . So a new function on the set of max solution

trees is de�ned. Of course, this function has a dual counterpart.

De�nition 4.1 For a max tree T

+

and a min tree T

�

in a search tree S, a

function c is de�ned as:

c(T

+

) = maxff(p) j p a closed terminal in T

+

g;

c(T

�

) = minff(p) j p a closed terminal in T

�

g:

Obviously, if T is a closed (max or min) solution tree, then c(T) = g(T). The

c-value of an open max solution tree T

+

can be viewed as the minimax value of

T

+

with f(p) = �1 in the open nodes p of T

+

, i.e., as the minimax value of

T

+

in S

�

. In Section 3, we invoked the max tree version of Stockman's theorem

in S

+

, see (3.1). (Recall that the minimax value of an open max solution tree

in S

+

is = +1.) Stockman's max tree version applied to S

�

, says that the

smallest c-value of the max solution trees with root x is equal to f

�

(x). This

result, extended to its dual counterpart, is expressed by the formulas:

f

�

(x) = minfc(T

+

) j T

+

max solution tree in S with root xg (4.1)

f

+

(x) = maxfc(T

�

) j T

�

min solution tree in S with root xg (4.2)

We stated at the end of Section 3, that any game tree algorithm must visit at least

a critical tree, de�ned as the superposition of an optimal max and an optimal

min solution tree. Consider the following problem: given a node n in a search

tree S, does an extension of S to a game tree

�

S exist, such that n is in a critical

tree? Suppose S is a search tree for a game tree G =

�

S and a node n in S

belongs to an optimal max solution tree

�

T

+

of

�

S. Let T

+

denote the subtree of

�

T

+

included in S, in other words T

+

is the intersection of

�

T

+

and S. Since T

+

is a subtree of

�

T

+

, g(

�

T

+

) � c(T

+

). It follows that, if a node n in a search tree

S becomes into an optimal max solution tree when extending S to a full game

tree, the corresponding optimal g-value is larger than or equal to:

minfc(T

+

) j T

+

a max solution tree in S through r and ng

Of course, this quantity has a dual form. For these quantities, we will introduce a

special notation. In the remainder of this section, we will derive some properties

of them In the next section, they will be used to infer a general cuto� criterion

for game tree algorithms.

8

De�nition 4.2 Given a search tree S with root r and a node n included. The

set of all max solution trees in S through r and n is denoted by M(n) and the

set of all min solution trees in S through r and n will be denoted by N (n).

De�nition 4.3

h

�

(n) = minfc(T

+

) j T

+

2 M(n)g (4.3)

h

+

(n) = maxfc(T

�

) j T

�

2 N (n)g (4.4)

Later on in this section, we will give a simple formula to compute the h-functions.

The h-functions will play an essential role in the cut o� criterion for nodes, to be

presented in Section 5.

Theorem 4.1 Let a game tree G with root r including a node n be given.

h

�

(n) = maxff

�

(x) j x = n _ x 2 ANC(n)g (4.5)

h

+

(n) = minff

+

(x) j x = n _ x 2 ANC(n)g (4.6)

Proof

Only the �rst equality is proved.

Let the path from r to n be given by r = n

0

; n

1

; : : : ; n = n

k

. We give a proof by

induction along the path.

Basic step. The maximal c-value of the max trees in M(r) is equal to f

�

(r),

according to (4.1). Hence, (4.5) is correct for r = n

0

Induction step. Suppose that n

j

is a max node. An optimal tree in M(n

j

) is

also optimal in M(n

j+1

). Since n

j

is a max node, f(n

j+1

) � f(n

j

). It follows

that (4.5) is correct for n = n

j+1

, provided that it is correct for n = n

j

.

Suppose that n

j

is a min node. If f

�

(n

j+1

) � h

�

(n

j

), then, according to (4.1),

n

j+1

is the root of a max solution tree with value = f

�

(n

j+1

) � h

�

(n

j

). Conse-

quently, there is an optimal tree in M(n

j

), which also crosses n

j+1

. Alternately,

if f(n

j+1

) > h

�

(n

j

), then every max solution tree rooted in n

j+1

has c-value

� f

�

(n

j+1

) > h

�

(n

j

). Consequently, an optimal tree in M(n

j

) does not cross

n

j+1

. The optimal c-value inM(n

j+1

) is equal to f

�

(n

j+1

). Combining both re-

lations between f

�

(n

j+1

) and h

�

(n

j

), we see that the optimal c-value inM(n

j+1

)

is equal to max(f

�

(n

j+1

); h

�

(n

j

)). It follows that (4.5) is correct for n = n

j+1

,

provided that it is correct for n = n

j

. 2

There are yet other formulas for the h-functions. For these formulas, we need

new sets, associated with a node n in a game tree. In Figure 3, these sets are in-

troduced using a picture. The set AMAX(n) is the set of max nodes in ANC(n).

The set AMAX-C(n) is the set of nodes, whose father is in AMAX(n), but which

are not ancestors of n. Similar de�nitions hold for AMIN(n) and AMIN-C(n)

respectively.

Later on, we will also use the sets AMAX-C-L(n) and AMAX-C-L(n), splitting

the set AMAX-C(n). The set AMAX-C-L(n) contains the nodes of AMAX-C(n)

left to n and AMAX-C-R(n) contains the nodes right to n.

Every min node m 2 ANC(n) has a descendant m

0

, such that f

�

(m

0

) � f

�

(m)

and m

0

= n or m

0

is a max ancestor of n. It follows, that the maximum in (4.5)

9

��

��

�

��

��

��

�

��

��

��

�

�

��

�

�

��

J

J

JJ

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�

�

�

�

�

�

�

�

�

"

"

"

"

"

J

J

JJ

H

H

H

H

H

H

�

�

�

�

�

�

�

�

�

"

"

"

"

"

J

J

JJ

H

H

H

H

H

H

�

�

�

�

�

�

P

P

P

P

P

P

P

P

P

b

b

b

b

b

q q q

q q q

q q q

q q q

q q q

q q q

a node in AMAX(n)

a node in AMIN(n)

a node in AMIN-C(n)

a node in AMAX-C(n)

n

Figure 3: De�nition of node sets.

is not achieved in a min node, and consequently, the min nodes can be removed

from the set ANC(n) in the right-hand side of (4.5).

h

�

(n) = maxff

�

(x) j x = n _ (x 2 AMAX(n)g (4.7)

h

+

(n) = minff

+

(x) j x = n _ x 2 AMIN(n)g (4.8)

In general for a max node x, f

�

(x) is the maximum of all values f

�

(c), c a

child of x. Replacing the max nodes by their children in (4.7) and removing

min ancestors of n yields the following formula for h

�

(n), which has also a dual

counterpart:

h

�

(n) = maxff

�

(x) j x = n _ x 2 AMAX-C(n)g (4.9)

h

+

(n) = minff

+

(x) j x = n _ x 2 AMIN-C(n)g (4.10)

The proof is left to the reader.

As said in Section1, our de�nition of a game tree does not require the alternation

of a max and a min node in any path.

5 A general cut o� criterion

In this section, we will formulate a general cut o� criterion, to be expressed by

Theorem 5.1. In the subsequent sections, we will investigate, how far the best

known algorithms meet this criterion. It is important to recall (cf. Section 1)

that every node is its own descendant.

10

Lemma 5.1 Suppose n is a node with h

�

(n) < h

+

(n) in a search tree S. Let P

denote the set of open descendants of n in S. Then there is a game tree G � S,

in which every critical tree of G includes at least one node from P .

Proof

There are trees T

+

2 M(n) and T

�

2 N (n) with c(T+) = h

�

(n) < h

+

(n) =

c(T

�

). Let p

0

denote the leaf at the end of the common path. Since n belongs to

both solution trees, p

0

is a descendant of n. We �rst argue that p

0

is open in S.

If p

0

was closed, we would have f(p

0

) � c(T

+

) and, dually f(p

0

) � c(T

�

), which

relations contradict the inequality c(T+)) < c(T

�

). Therefore, we conclude that

p

0

is open, and hence p

0

2 P .

Choose a value f

0

with c(T

+

) � f

0

< c(T

�

). (An alternate choice is c(T

+

) <

f

0

� c(T

�

)). We construct G by choosing f(p

0

) = f

0

and f(p) � f

0

for any

open node p 6= p

0

in T

+

and f(p) > f

0

for any open node p 6= p

0

in T

�

. As

far as open nodes are left in the extended search tree, they are closed arbitrarily.

The extended solution trees

�

T

+

and

�

T

�

both have a g-value equal to f

0

and are

optimal therefore.

We now show that every optimal max tree of G includes p

0

. Notice, that

�

T

�

has, apart from p

0

, solely terminals with f -value > f

0

. Every node in AMIN-

C(p

0

) is included in

�

T

�

. Since every node m 2AMIN-C(p

0

) has solely descendant

terminals with f -value > f

0

in

�

T

�

, we have g(

�

T

�

(m)) > f

0

and consequently

f(m) > f

0

in G. If a max tree T

0

in G crosses a node m 2 AMIN-C(p

0

), its

g-value satis�es g(T

0

) � g(T

0

(m)) � f(m) > f

0

. Since any optimal max solution

tree in G has g-value = f

0

, it cannot cross any node m 2AMIN-C(p

0

). We con-

clude that every optimal max tree contains the path from r to p

0

. (In case of the

alternate choice c(T

+

) < f

0

� c(T

�

), we can construct a game tree, where every

optimal min solution tree contains the path from r to p

0

.) 2

This lemma is illustrated using the Figures 2 and 4. The latter �gure shows

some solution trees embedded in the search tree of the former �gure. One can

derive easily from Figure 2, that h

�

(a) = 2 and h

+

(a) = 7. According to the

proof Lemma 5.1, it is possible to construct a game tree G with game value

f

0

2 [2; 7), such that every optimal max tree crosses a. We have to consider the

max tree and the left min tree. Applying the method, indicated in that proof,

with f

0

= 2 we de�ne f(d) = 2, f(e) � 2 and f(c) > 2. It is also possible to

get node b into a critical tree. Since h

�

(b) = 2 and h

+

(b) = 9, a game tree G

0

can be built with game value f

0

2 (2; 9], such that b is included is every min

tree of G

0

. To that end, the max tree and the right min tree in Figure 4 have to

be considered. According to the proof of Lemma 5.1, we de�ne f(e) = f

0

and

f(d) < f

0

.

Lemma 5.2 Suppose n is a node with h

�

(n) � h

+

(n) in a search tree S. Let

P denote the set of open descendants of n in S. Then every game tree G � S

contains at least one critical tree without any node in P .

Proof

Let G be any game tree enclosing S. We are going to construct a critical tree

consisting of optimal trees T

+

0

and T

�

0

, that haven't any node in P .

We choose arbitrarily an optimal max and an optimal min tree in G. These are

11

l l

l

2

l

1

l

�

�

�

�

�

Q

Q

Q

Q

Q

@

@

@

�

�

�

S

S

S

a

b

d

e

l

l

7

�

�

�

�

�

�

�

�

@

@

@

A

A

A

a

c

d

l

l

9

l

Q

Q

Q

Q

Q

@

@

@

�

�

�

S

S

S

b

e

Figure 4: Some open solution trees of the search tree in Figure 2: a max solution

tree with c-value 2 and two min solution trees with c-value 7 (left) and 9 (right).

12

a

c

��

��

b

d

��

��

J

J

JJ

J

J

JJ

�

�

��

q

��

��

p

��

��

��

��

e

b

b

b

b

b

b

b

b

b

b

J

J

JJ

f

�

(p) = 1

f

+

(q) = 3

f

�

(d) = w

Figure 5: An example.

denoted by

�

T

+

and

�

T

�

respectively, where T

+

and T

�

denote the restriction of

�

T

+

and

�

T

�

respectively to S (or: the intersection of

�

T

+

and

�

T

�

with S).

If

�

T

+

and P haven't any node in common, then T

+

0

=

�

T

+

. In the alternate

case, i.e., a node of P is in

�

T

+

, then n is included in T

+

, and we have in S

that c(T

+

) � h

�

(n). Further, in general, g(

�

T

+

) � c(T

+

). By Theorem 4.1, a

node u 2 ANC(n) [fng satis�es f

+

(u) = h

+

(n) in S. Due to (4.1) and (3.2)

respectively we know, that f

+

(u) is the c-value of an open min tree with root u as

well as the g-value of a closed max tree T

0

, rooted in u. From the latter relation

follows that in S: g(T

0

) = f

+

(u) = h

+

(n) � h

�

(n) � g(

�

T

+

). Since T

0

is a closed

solution tree in S, P and T

0

have an empty intersection. Replacing T

+

(u) by T

0

in the optimal tree

�

T

+

yields T

+

0

, which gets around P . Since g(T

0

) � g(T

+

),

the g-value doesn't increase by this replacement, and consequently, T

+

0

is also

optimal.

Dually, a min tree T

�

is obtained, which gets around P . 2

To illustrate the foregoing lemma, see �gure 5. We concentrate on node c; the

nodes right to the path from a to d are open. The boundary values are h

+

(c) = 3

and h

�

(c) = max(w; 1). Any max solution tree T

+

through c, has subtrees,

rooted in p and d respectively, with c(T

+

(p)) � 1 and c(T

+

(d)) � w. Suppose

w � 3. Then the open node e needs no longer to be expanded. This node will not

belong to an optimal max tree, because the most pro�table move for min in b goes

to q, the root of a strategy for min (=a max tree) with value 3. So, an optimal

max solution tree through c is dominated by one through p. Since f

+

(q) = 3,

any optimal min tree through c has g-value at most equal to 3. Therefore, an

optimal min solution through c may include d.

If w < 3, then e is still worth expanding.

Note

In [11] the following de�nition was presented. A max solution tree T

1

dominates

13

T

2

, if the set of open leaves of T

1

is a subset of T

2

's open set and c(T

1

) � c(T

2

).

The relevance of dominance appears from the following statement: if T

1

domi-

nates T

2

, then every enhancement of the search tree that makes T

2

an optimal

solution tree, also makes T

1

optimal. A dual de�nition and dual statement holds

for min trees. The proof of Lemma 5.2 actually shows that every solution tree

through a descendant p of n is dominated by a second tree avoiding p. The

lemma itself can be reformulated in this sense.

The assertions in the two previous lemmas can also be expressed, using quantors:

(9G � S 8C � G 9p 2 P; p 2 C), h

�

(n) < h

+

(n);

or equivalently:

(8G � S 9C � G 8p 2 P; p 62 C), h

�

(n) � h

+

(n);

where C denotes a critical tree. This formula can be expressed verbally in the

following way:

Theorem 5.1 Given a node n in a search tree S, the set of open descendants of

n in S can be ignored, if and only if h

�

(n) � h

+

(n).

A node n in a search tree with h

�

(n) � h

+

(n) is called dead; analogously a node

with h

�

(n) < h

+

(n) is called alive. Theorem 4.1 shows that every child of a

dead node is also dead. Every max node in a search tree has at least one child c

0

with f

+

(n) = f

+

(c

0

). Since also f

�

(n) � f

�

(c

0

), we have h

+

(c

0

) = h

+

(n) and

h

�

(c

0

) = h

�

(n). We conclude that every alive max node has at least one alive

child. By duality, this also holds for an alive min node.

As mentioned in Section 3, the termination criterion of almost every game tree

algorithm is: f

+

(r) = f

�

(r). The cut o� criterion in Theorem 5.1 for the special

case n = r is equivalent to this termination criterion. We may make the following

statement about the execution of a game tree algorithm: as long as the root is

alive, at least one leaf of the search tree is also alive, and the execution must be

continued; when the root is dead, everything is dead and the execution can be

stopped.

Ibaraki [10] introduced a cut o� criterion for so-called informed game trees, based

upon the top-down functions. In our paper we deal with so-called static trees.

Since our h-functions are the counterparts of the top-down functions, as shown in

the previous section, we have extended this cut o� criterion to the static model.

It was shown in [11] that cuto�s in the alpha-beta or SSS* algorithm can be

explained in terms of dominance of one solution tree over another one.

6 Alpha-beta revisited

An extensive treatment of the alphabeta procedure can be found in [13]. The

same paper also includes a historical survey of the rise of this procedure. Figure

6 shows the code of the alphabeta procedure. We will present an extended post-

condition, related to the boundary functions. The accompanying precondition

is: � < �. The return value is denoted by v.

14

Lemma 6.1 The following postcondition holds for an alphabeta call.

v � �) v = f

+

(n) (low failure); (6.1)

� < v < �) v = f

+

(n) = f

�

(n); (6.2)

v � �) v = f

�

(n) (high failure): (6.3)

Proof(sketch)

This theorem dealing with a recursive procedure is proved by induction on the

depth of the calling tree. We show that the theorem holds for a call, assuming

that the theorem holds for any recursive subcall.

For reasons of duality, only the case that n is a max node, is studied. The while

loop in the alphabeta code has the following invariants:

� > v = maxff

+

(x) j x 2 C(n) ^ x left to cg (6.4)

and

(� < �

0

= v = f

�

(x) for at least one such x)

_

(v � �

0

= �) (6.5)

The relations (6.1) and (6.2) can be derived easily from these invariants. If the

execution ends with v � �, then v = f

�

(c

0

) = f

�

(n) where c

0

denotes the pa-

rameter in the last subcall. 2

In case of v � � on termination high failure, the child c

0

that was parameter

in the last subcall, is called the cuto� child of n, since it caused an cuto� of the

other (still open) children. Dually, also in case of a low failure a cuto� is de�ned.

In some literature, the terms �-cuto� and �-cuto� are used instead of high and

low failure. Likewise, the return value v is called an � or a � bound respectively.

Suppose that a call in a max node ends with a high failure (�-cuto�). The

subcall in the cuto� child also ended with a high failure, as we can see in the

proof of Lemma 6.1a). The dual version of that proof shows that a high failure

in a min node implies that every child has been visited and every visit has also

ended with a high failure. After a high failure in n, we can re-consider top-down

the visited descendants of n. Taking all children in a min node and taking the

cuto� child in a max node, we generate a min solution tree, which is called the

key solution tree. Dually, a low failure gives rise to a key solution tree. which is

of the max type.

A node m is called a left child of a max key solution tree T

+

, if m is a child

of a min node in T

+

and m is left to the single child of n in T

+

. Likewise a right

child of max solution tree is de�ned. Dually, a left or right node of a min solution

are de�ned. After a low failure, the postcondition of the alphabeta-procedure can

be extended with the following proposition: the left children of the key solution

tree T

+

have an f

�

-value � v and the right children are open. Notice that the

children left to a cuto� node are dead and can be ignored in the sequel of the

search process. This has been called a left ignore cuto� in [15].

The exact value of a game tree is computed by a call alphabeta(r;�1;+1).

We will show which role is played by the boundary functions during execution of

this call.

15

function alphabeta(n; �; �);

if terminal (n) then v :=eval(n);

else if max(n) then

v := �1;

�

0

:= �;

c :=�rst(n);

while v < � and c < ? do

v

0

:=alphabeta(c; �

0

; �);

v := max(v; v

0

);

�

0

:= max(�

0

; v

0

);

c := next(c);

else if min(n) then

v := +1;

�

0

:= �;

c :=�rst(n);

while � < v and c < ? do

v

0

:=alphabeta(c; �; �

0

);

v := min(v; v

0

)

�

0

:= min(�

0

; v

0

);

c := next(c);

return v;

Figure 6: The alpha-beta procedure

Lemma 6.2 Suppose a call alphabeta(r;�1;+1) is performed. Then at every

nested call alphabeta(n; �; �):

- f

+

(x) � � for every x 2 AMAX-C-L(n) and f

+

(x) = f

�

(x) = � for at

least one such node x.

- f

�

(x) � � for every x 2 AMIN-C-L(n) and f

+

(x) = f

�

(x) = � for at

least one such node x.

- every x in AMIN-C-R(n) or in AMAX-C-R(n) is open.

Proof

Follows from the invariant relations (6.4) and (6.5). 2

Theorem 6.1 Suppose a call alphabeta(r;�1;+1) is performed. Then at every

nested call alphabeta(n; �; �), every node left to n is dead and h

�

(n) = � < � =

h

+

(n).

Proof

Follows directly from Lemma 6.2. 2

The latest theorem actually says that a node n, when expanded by alphabeta, is

the leftmost open alive node in the actual search tree.

We might say that, before n is expanded, the algorithm attempts to establish an

f

+

-value as low as possible in each x 2 AMIN-L-C(n). To make sure in any x

that no lower value f

+

(x) can be achieved, an f

�

-value is established. Of course,

a dual statement holds.

16

It follows immediately from Lemma 6.2, that a node n, expanded by alphabeta

satis�es:

� = minff(x) j x 2 AMIN-C-L(n)g (6.6)

� = maxff(x) j x 2 AMAX-C-L(n)g (6.7)

This result was already presented in [3]. In that paper, the inversion was also

proved: if � < � for a node n, where � and � are de�ned according to (6.6) and

(6.7) respectively, then, during the alphabeta algorithm, n is parameter in a call

alphabeta(n; �; �).

7 SSS* revisited

Since the time, when people started to use game-playing programs, the alpha-beta

algorithm and, later on, its variants Negascout and PVS have taken a promi-

nent place. Besides, another algorithm is known, which has fascinated many

researchers in the past seventeen years. This algorithm is called SSS*, published

in 1979 by Stockman [28]. The originating paper is one of the top 50 referenced

in the AI Journal[5]. Before 1994, it was never used in actual applications. Any-

way, SSS* has drawn considerable attention in literature. An (incomplete) list

of the major papers can be found in [5] or [21]. In this section, we will gain a lot

of insight into the question, why the algorithm works. The boundary functions

will turn out to be crucial in the understanding of SSS*.

The SSS* algorithm manipulates triples of the form hn; s;

^

hi, where n is a node

in the game tree, s denotes a status and

^

h a so-called merit, a real value. The

possible values of the status s are open and closed; (the original paper uses live

and solved respectively instead.) The triples are included in LIST. In each itera-

tion, one triple is selected and removed from LIST, and this triple is replaced by

one or several new triple(s). This replacement is performed according to Figure

7. For one case (Case 1), in addition to putting one triple into LIST, other triples

are deleted from LIST. The code of SSS* is:

SSS* Scheme

initially, LIST includes the single triple hr, open, 1i:

repeat

select a triple hn; s;

^

hi from LIST with maximal

^

h;

remove hn; s;

^

hi from LIST and insert new triple(s) hn

0

; s

0

;

^

h

0

i

into LIST, according to Figure 7;

until a triple hr, closed,

^

hi is included in LIST.

This code is more general than that of the seminal paper[28]. When we require

that the leftmost triple with maximal merit is selected in each iteration, the orig-

inal version is recovered. In Section 8.4, we will see that SSS* has an alternative

description: a sequence of alphabeta calls with a null-window.

Given a search tree S, any leaf of a solution tree in S is also a leaf of S, as

mentioned in Section 3. Here, we introduce another, more general type of solu-

tion tree, which we call a truncated solution tree. In a truncated solution tree T ,

an interior node of a search tree may be a leaf of T .

17

Case Restrictions to new triple(s)

triple hn; s;

^

hi to be inserted

1 s = closed hn

0

, closed,

^

hi with n

0

=parent(n),

type(parent(n)) = max Purge LIST of all triples hp; s;

^

h"i

with p an descendant of n

0

.

2 s = closed hn

0

, open ,

^

hi with n

0

=next(n)

type(parent(n)) =min

next(n) 6= NIL

3 s = closed hn

0

, closed,

^

hi with n

0

=parent(n)

type(parent(n)) = min

next(n) = NIL

4 s = open hn; closed ,

^

h

0

i with

^

h

0

= min(

^

h; f(n))

n is a terminal

5 s = open hn

0

; open,

^

hi with n

0

=�rst(n)

n is not a terminal

type(n) = min

6 s = open hn

0

; open ,

^

hi for n

0

:= �rst(n) to last(n)

n is not a terminal

type(n) = max

Figure 7: Replacing a triple in SSS*

Lemma 7.1 The SSS* algorithm has the following invariant:

a) the nodes in the set fn j n occurs in a triple of LISTg are the leaves of a

truncated max solution tree with root r;

b) for any node m that has a descendant in LIST, a partition of the set N (m)

is given by: fN (p) j p occurs in a triple of LIST and p is a descendant of

mg.

Proof

a) This can be proved by showing that a) is preserved in each of the six cases.

b) Follows directly from a). 2

Theorem 7.1 SSS* Scheme has the following invariant: every triple hn; s;

^

hi 2

LIST has the properties:

a)

^

h = h

+

(n),

b) every non-open node x 2 AMIN-C(n)[fng satis�es f

�

(x) �

^

h.

Proof

Each part is proved separately. We will prove that each of the six cases preserves

either part in every iteration. Notice that the search tree does not change in the

cases 1, 2, and 3.

Part a)

Case 1: For n

0

as the father of of n, h

+

(n

0

) � h

+

(n) and by the invariant,

h

+

(n) =

^

h. Before the iteration, we may apply Lemma 7.1b). This tells us, that

every tree T in N (n

0

) belongs to a set N (p) with p a descendant of n

0

occur-

ring LIST, and c(T) � h

+

(p). Since

^

h (the merit of n

0

) is maximal in LIST, we

conclude that c(T) is at most equal to

^

h for any T 2 N (n

0

). We conclude that

18

h

+

(n

0

) �

^

h. Combining this inequality with the above relation h

+

(n

0

) �

^

h, yields

h

+

(n

0

) =

^

h(n).

Case 2 and 3. Since, in general h

+

(x) = h

+

(c) for each child of a min node x,

the equality h

+

(n

0

) = h

+

(n) holds.

Case 4: Here n is closed, and

^

h

0

is the updated value for h

+

(n).

Cases 5 and 6 comprise the expansion of n. These cases are almost trivial.

Part b).

Case 1. Since f

�

(n) �

^

h and n

0

is a max node, also f

�

(n

0

) �

^

h. Now the

invariant follows from the relation AMIN-C(n) =AMIN-C(n

0

).

Case 2. The sets AMIN-C(n) and AMIN-C(n

0

) are identical. Since by the in-

variant f

�

(n) �

^

h and n 2 AMIN-C(n

0

), the invariant is preserved.

Case 3. Since f

�

(n) �

^

h and, by the invariant f

�

(b) �

^

h for every brother b of

n, we conclude f

�

(n

0

) �

^

h. Again, the invariant now follows from the relation

AMIN-C(n) =AMIN-C(n

0

).

Case 4. Node n is closed and f

�

(n) �

^

h holds.

Case 5 and 6. The sets of non-open nodes in AMIN-C(n) [fng and AMIN-

C(n

0

) [fn

0

g respectively are identical. 2

Theorem 7.2 When SSS* terminates with a triple hr; closed,

^

hi in LIST, then

f

+

(r) = f

�

(r) =

^

h.

Proof

Notice that (Lemma 7.1a) implies that hr; closed,

^

hi is the single triple in LIST

on termination. Applying Theorem 7.1b) yields f

�

(r) �

^

h = h

+

(r). Now, the

theorem follows from the general equalities h

+

(r) = f

+

(r) and f

+

(r) � f

�

(r). 2

Note

An extra property can be derived from a) and b) in Theorem 7.1. This theorem

7.1 implies that f

�

(x) �

^

h = h

+

(n) for every non-open x 2AMIN-C(n) [fng

with n a node in a triple of LIST. At least one such x has f

+

(x) = h

+

(n), according

to (4.10). Taking into account the relation f

+

(x) � f

�

(x), we come to our extra

property: at least one node x in AMIN-C-L(n)[fng satis�es f

+

(x) = f

�

(x) =

^

h.

Notice that Theorem 7.2 is an instance of the new property.

Theorem 7.1b) can be extended with the following statement: every x 2AMIN-

C-L(n) left to x is expanded (non-open), every x 2AMIN-C-R(n) is open. This

requires a little longer proof. Since h

+

(n) =

^

h for any triple hn; s;

^

hi in LIST,

there is a min solution tree T

n

in N (n) with c(T

n

) = h

+

(n) =

^

h. As a matter of

fact, the path from r to n is included in this solution tree. Using the extended

Theorem 7.1b), we can describe the shape of one such min tree T

n

more precisely.

Every node x in AMIN-C-L(n) is the root of a closed min tree with g-value �

^

h.

If n is clsoed, it is also the root of a closed min solution tree. A tree T

n

is

obtained by appending these min trees to the path from r to n. The nodes in

AMIN-C-R(n) are open in S and hence in T

n

. See �gure 8 for a skeleton of T

n

.

We have seen that every triple stands for min solution tree T

n

. It is easily

derived from its shape, that T

n

dominates any other tree in N (n). Now, it can

be argued that SSS* is a branch-and-bound method, looking for the min solution

19

mm

mm

mm

n

J

J

J

J

J

J

�

�

�

�

�

�

J

J

J

�

�

�

�

�

p

p

p

p

p

p

�

�

�

�

�

�

�

"

"

"

"

p

p

p

p

p

p

Figure 8: T

n

, a min solution tree in S.

tree with maximal g-value. A solution tree T

n

represents a subproblem. Branch-

ing is equivalent to expanding the leftmost open node in a min solution tree T

n

,

see the cases 4, 5 and 6. Bounding is computing the c-value. In the cases 5

and 6 this c-value isn't a�ected. Selecting a triple with maximal merit means

selecting a subproblem with optimal c-value. So, the best-�rst selection criterion

is applied.

Suppose that a triple hn; closed;

^

hi is selected and triples hp; s;

^

h

0

i, where p is

a proper descendant of n

0

=father(n), are deleted according to Case 1. Then

c(T

n

) =

^

h �

^

h

0

= c(T

p

) and apart from the descendants of n

0

, T

n

and T

p

consist

of the same nodes. Therefore, T

n

dominates T

p

. Best-�rst branch-and-bound

terminates, when the subproblem selected includes a solution, i.e., a closed min

solution tree. This termination condition is obeyed by SSS*.

8 The MTD-framework

In this section, we discuss the MTD-framework. MTD stands for Memory Test

Driver. The root of this algorithm is the Test routine, introduced by Pearl[17].

This procedure is equivalent to alphabeta with a so-called null-window, i.e., a

window with � � � = 1. A null-window is represented by one value, the greater

parameter = � = � + 1. When several Test calls are executed successively

(each with a di�erent null window), the search tree can be retained in memory

and bounds can be stored at each node. The Test procedure, which exploits the

bounds of former calls and stores new bounds, which may be of use to future

calls, is named MT(Memory Test). The code of MT is presented in Figure 9.

The bounds to f(n), which are stored into memory, are denoted by n:f

+

and

n:f

�

respectively. Bounds which cannot be retrieved are assumed to be in�nite.

The code of MTD is the following:

20

functionMT(n;);

if terminal (n) then

if open(n) then v :=eval(n)

else v := n:f

+

or n:f

�

; /* only in case weak storage */

else

if open(n) then generate the children of n;

if max(n) then

v := �1;

c :=�rst(n);

while v < and c < ? do

if c:f

+

� then v

0

:=alphabeta(c;) else v

0

:= c:f

+

;

v := max(v; v

0

);

c := next(c);

if min(n) then

v := +1;

c :=�rst(n);

while v � and c < ? do

if c:f

�

< then v

0

:=alphabeta(c;) else v

0

:= c:f

�

;

v := min(v; v

0

);

c := next(c);

storage(n);

return v;

Figure 9: MT

functionMTD(n);

p := �1;

q := +1;

repeat

choose a value 2 [p+ 1; q];

v :=MT(n;);

if v � then p := v; else q := v;;

until p = q;

return q (= p);

In most actual applications of game tree search, a so-called transposition table,

abbreviated as TT, is maintained, recording all positions visited before. This

table can also serve to register the search tree. To make the code of MTD inde-

pendent of the maintenance an TT, two variables p and q are used, intended to

represent the values n:f

+

and n:f

�

. Like the alphabeta code, the MT procedure

also returns one value v. Consistently, one variable, either p or q is updated after

a call in the main loop of MTD.

New values for n:f

+

or n:f

�

are established by the procedure storage(n). In

most implementations of instances of MTD, e.g. [23, 24, 29], the following code

is used, which we call weak storage.

procedure storage(n) /* weak storage*/

if v < (low failure) then n:f

+

:= v

else if v � (high failure) n:f

�

:= v,

21

Properties of the search tree

The search tree contains a tree T

+

with g(T

+

) = q and a min tree with g(T

�

) = p.

As already mentioned in Section 6, every left child of T

+

as well as every left

child of T

�

is dead. This implies that left to the common path everything is

dead.

Let us consider the situation along the common path more closely. Suppose in

the small window algorithm two subsequent calls end with a low and high fail-

ure respectively. After the low failure, any node in the key solution tree T

+

has g(T

+

(n)) � q. After the subsequent high failure, a left child c of T

�

has

q � p > f

+

(c). If the father of c is on the common path of the two key trees,

then after the two calls q � T

+

(c) (and p needs not to exceed g(T

+

(c)).

Right to the common path most children are alive in general. Possibly, a right

child c is already dead. This is case for instance if g(T

+

(c) � p.

The above procedure storage puts a value into the variable n:f

+

or n:f

�

. This

contents of this variable needs not to equal f

+

(n) or f

�

(n) respectively at any

time. Consider for instance the tree of Figure 10, where a and c are root of a

n

�

��

�

��

b

a

a:f

+

= 5

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

c

d

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

c:f

�

= 8 d:f

+

= w

Figure 10: Side e�ects on boundaries.

subtree and d is a terminal with game value f(w) � 5. Initially, n is open and

hence, f(n) = �1. Let a call MT(n; 6) be executed. Suppose that the boundary

values are stored as shown in the �gure. Although d:f

�

and n:f

�

are not set

(and hence are considered = �1), the actual values f

�

(d) and f

�

(n) have a

�nite value w. The next call may be MT(n;�3). If the game tree contains a

min solution tree through a with g-value = �3, this solution tree is generated

and n:f

�

is set to �3. Simultaneously, f

+

(a) as well as f

+

(n) = max(f

+

(a); w)

may take a new value. (Consider for instance the situation that a has three

children: �rst two terminals with values 5 and 4 respectively and next a child a

0

which takes f

�

(a

0

) = �3.) We conclude that in case of weak storage, the bounds

n:f

+

or n:f

�

stored in the TT, possibly are relaxations of the actual bounds

f

+

(n) and f

�

(n) in the search tree. Since some bounds in the TT are not up-to-

date, the algorithm overlooks for some nodes that they are dead. Consequently,

22

dead nodes are re-visited and dead open nodes are expanded possibly. If w = 5 in

Figure 10, then n is dead after the �rst call MT(n; 6) and the algorithm may stop.

In order to make sure that all bounds in the TT are up-to-date at any time,

we may introduce the so-called heavy storage.

procedure heavy-storage(n)

if v < (low failure) then

n:f

+

:= v;

if terminal(n) then n:f

�

:= v

else n:f

�

:= max =minfc:f

�

j c 2 C(n)g

else if v � (high failure)

n:f

�

:= v;

if terminal(n) then n:f

+

:= v

else n:f

+

:= max =minfc:f

+

j c 2 C(n)g

As a matter of fact, heavy storage has higher requirements with respect to time

and space and, in practice, a trade-o� has to be made.

In the MTD algorithm as described at the beginning of this section, the variables

p are q are intended to represent the values n:f

�

and n:f

+

of the search tree.

To be consistent, both p and q must be updated after each MT call in the main

loop of MTD, when using heavy storage. Using this storage method, the call

MT(n;) has the same postcondition as alphabeta has with window [� 1;]

and the equalities f

+

(x) = x:f

+

and f

�

(x) = x:f

�

hold at any node x at any

time. It can be derived from the code of MT, that in a search tree, where x:f

�

and x:f

+

are truthful values for every x, the relation

h

�

(n) < � h

+

(n) (8.1)

holds at any nested call MT(n;) during execution of MTD. This can be shown

by induction on the depth of n. Hence, using heavy storage, the algorithm visits

solely alive nodes. Especially, a closed terminal is never a parameter in an MT

call.

Similarly to Lemma 6.2, we can show that at every nested call MT(n;) in the

MT-SSS algorithm:

f

+

(x) < for every x 2 AMAX-C-L(n) (8.2)

f

�

(x) � for every x 2 AMIN-C-L(n) (8.3)

Likewise, we have the following counterpart to (6.6) and (6.7) for a node, when

expanded by MTD:

minff(x) j x 2 AMIN-C-L(n)g � > maxff(x) j x 2 AMAX-C-L(n)g (8.4)

In Section 6 we presented a su�cient condition (due to Baudet), for a node to

be visited by alpahabeta. It follows from that condition that every node visited

by MTD and hence obeying (8.4) is also visited by alphabeta.

Note

23

Apart from our concern with storage methods, we will point to another interest-

ing phenomenon. Looking at the code of MT, we see that in a child of a max

node only the f

+

-value is inspected. This is due to the fact that h

�

(n) = h

�

(c)

for each child c of a max node n. In a min node, we have a dual phenomenon. It

turns out that it is useless to store the f

+

in a max node's child or to store f

�

in

a min node's child, Consequently, only one bound needs to be stored per node,

except r. These observations hold regardless which storage procedure (weak or

heavy) is applied.

9 Some interesting instances of MTD

The following instance of MTD is called MTD-f.

functionMTD-f(n; f);

v :=MT(n; f);

if v < f then

repeat

q := v;

v :=MT(n; q);

until v = q;

if v � f then

repeat

p := v;

v :=MT(n; p+ 1);

until v = p;

return v;

An interesting instance of of MTD-f(f)is the instance with f = +1 and weak

storage. In this algorithm q varies and p remains = �1 throughout execution.

This instance is called MT-SSS, because it is equivalent to SSS* in the sense

that the sequence of nodes expanded successively is the same in either algorithm.

This is proved formally in [22]. A sketch of the proof can be found in [24]. The

algorithm SSS-2, presented in [19], is also equivalent to MT-SSS. An extensive

analysis of SSS-2 can be found in [20]. Since weak storage is used, MT-SSS as

well as SSS* may expand dead nodes. See Figure 10 with w = 5. First, MTD

executes a call MT(n;1). Then the bounds are as shown in the �gure. Next a

call MT(n; 5) is performed, which expands dead open descendants of a and revis-

its d. However, if the �rst loop in the above code is executed, it can be shown,

using the results of [22], that x:f

+

is up to date for any x throughout execution.

Furher, any closed node x, which is parameter in a nested call MT(x;), has

h

+

(x) = f

+

(x) = . Such a node x has node has a small chance to be dead.

This is the case, only if the key solution tree T

+

includes a path P from x to

a terminal p, such that P contains the youngest child in each min node and

f(p) = . If the second loop in the above code is executed, dual statements hold.

In MT-SSS with heavy storage, (8.1) holds, when an open node n is expanded.

The equalities f

+

(r) = and (4.6) imply that h

+

(n) � . We conclude that

h

+

(n) = . Furthermore, the inequalities (8.2) and (8.3) hold. This implies that

every desendant of a node x 2AMIN(n) is dead and every descendant d of a node

x 2AMAX(n) has h

+

(d) < . Since f

+

(r) = , there is no node in the search

24

tree with h

+

-value > . We conclude that, at any call MT(n;) with n open

during MT-SSS, h

+

(n) is maximal in the search tree and n is leftmost open alive

node with maximal h

+

-value.

Extensive tests with MT-SSS, MT-Dual and MTD(f) using weak storage are

described in [23] and [24]. It turns out that, combining MTD(f) with iterative

deepening and taking the value of each previous iteration as the next f -value,

results in a quick and e�cient algorithm.

We conclude this section with discussing the conditions for a node to be expanded

by SSS* or MT-SSS. When an open node n is expanded in SSS* or MT-SSS, ev-

ery x 2 AMIN-C-R(n) is open. Since f

+

(r) � , we have h

+

(n) = . It follows

from (8.3) that f

+

(x) = f

�

(x) = for at least one x 2 AMIN-C-R(n). Let x

0

denote the node closest to the root with this property. Then f

�

(x) > and

hence also f

+

(x) > for every x 2 AMIN-C-L(x

0

). As mentioned above, every

node in AMIN-C-R(n) is open. It follows that f

+

(y) � for every y 2ANC(x

0

),

because if we had f

+

(y) > , the relation for h

+

in (4.10) would yield h

+

(y) > ,

which is not compatible with f

+

(r) � .

Now, we are ready to formulate necessary conditions for an open node n, which

is expanded by a call MT(n;).

minff(x) j x 2 AMIN-C-L(n)g = > maxff(x) j x 2 AMAX-C-L(n)g (9.5)

and

maxff(y) j y 2 ANC(x

0

)g � ; (9.6)

where x

0

is the highest node x in AMIN-C-L(n) whose f -value achieves the

minimum in (9.5).

Similarly to alphabeta (cf. Section 6), the above conditions necessary for a node

to be expanded by a call MT(n;) during MT-SSS, are also su�cient. This is

shown in [19] and [20] for SSS-2, an obsolete formulation of MT-SSS with weak

storage.

The combination of (9.5) and (6.6) shows that a node n, that is expanded in MT-

SSS by a call MT(n;) is expanded in the alphabeta algorithm with parameter

� = . In the proof for the equivalence of MT-SSS and SSS* it appears that

Case 5 or 6 once applies to a triple hn; open;

^

hi with

^

h = .

10 Scout

Negascout [25] is another algorithm, which computes the minimax value f(n)

of a node n. Negasout is equivalent to PVS[7]. An older version of Negascout

is Scout. The idea of this algorithm originates from Pearl[17]. His idea can be

paraphrased as follows in terms of solution trees. In order to compute the game

value of n, a critical tree with root n must be built. The child of n on the crit-

ical path is called th principal variation. First, we guess which child of n is the

principal variation. For this child the game value is computed, using a recursive

call of the scout procedure. Next, in case n is a max node, In each child succes-

sively, c 6= c

0

a max solution tree T

+

is rooted with g(T

+

) � f(c

0

), if possible.

If the construction of such a tree fails for some child c, this child is considered

25

n

�

��

�

��

b

f

�

(b) = 4

a
f(a) = 2

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

c

d

e

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

f

�

(c) = 4

f(c) = 8

f

�

(d) = 6

f

+

(d) = 7

f

�

(e) = 5

Figure 11: Applying Scout to a game tree.

the principal variation instead of c

0

. It is subject to a scout call therefore. The

construction of a max solution tree is achieved by a null window call. When a

scout call is performed subsequently, the result of the former MT calls can be

exploited. We become aware of the fact that a max tree with g-value � f(c

0

)

does not exist, when a min solution is found.

To illustrate Scout, we consider the game tree fragment in Figure 11, where

the nodes a, c, d and e are the roots of subtrees in the game tree. We describe a

possible run. The principal variation of n and Scout establishes f(n) = 2. The

subsequent MT call to b ends with v

0

= 4, and hence, b is the root of a min

solution tree. In this tree f

�

(c) = 4, f

�

(d) = 6 and f

�

(e) = 5. Next, the scout

procedure is invoked with b as parameter. In this scout call, c is chosen as the

principal variation and a nested scout call returns 8. As a side e�ect, f

�

(b) has

changed to 5. The subsequent call MT(d; 8) ends with v

0

= 7. Then, in the search

tree, both boundary values of d as well as of b are �nite: f

+

(b) = f

+

(d) = 7,

f

�

(b) = 4 and f

�

(d) = 6. A scout call to d follows, which returns 6. The call

MT(e; 6) ends with a low failure: v

0

� 6. After this result, the algorithm �nishes.

We will prove some properties of Scout. Each proof uses induction on the depth

of the calling tree, as already applied for Theorem 6.1. A result is shown to

hold for a call, under the assumption that the same result holds for any recursive

subcall.

Theorem 10.1 The call Scout(n) returns f(n).

26

function scout(n);

if terminal (n) then

if open(n) then v :=eval(n);

else v := n:f

+

or n:f

�

; /*only in case of weak storage */

else

if open(n) then generate the children of n;

if max(n) then select a child c

0

with n:f

�

= c

0

:f

�

;

else select a child c

0

with n:f

+

= c

0

:f

+

;

if c

0

:f

+

> c

0

:f

�

then v :=scout(c

0

) else v := c

0

:f

+

;

c :=�rst(n);

if max(n) then

while v < n:f

+

and c < ? do

if c:f

+

> v then

v

0

:=MT(c; v + 1);

if v

0

> v then if v

0

= c:f

+

then v := v

0

;

else v :=scout(c);

c :=next(c);

else if min(n) then

while v > n:f

�

and c < ? do

if c:f

�

< v then

v

0

:=MT(c; v);

if v

0

< v then if v

0

= c:f

�

then v := v

0

;

else v :=scout(c);

c :=next(c);

return v;

Figure 12: scout

Proof(for a max node n)

The following loop invariant holds: v := maxff(c) j c is already visited g. When

v is set for the �rst time, the invariant holds. When v is updated, a preceding

MT-call with parameters c and v + 1 ended with a high failure and therefore

showed that v < f(c). 2

An obvious choice for the principal variation is the cuto� child (if any) of the

most recent MT-call. If this choice is maintained consistently, the Scout algo-

rithm does not visit any dead mode during execution, as we will show now.

Lemma 10.1 When a call scout(n) is executed with n a max node, the pre-

condition f

�

(c) = f

�

(n) holds for every inner scout call and the precondition

v = f

�

(n) holds for every inner MT call.

Proof

For the �rst scout call with parameter c

0

, the precondition holds as a conse-

quence of the selection criterion f

�

(c

0

) = f

�

(n). On termination of this call

v = f(c

0

), which value is at least the former values f

�

(c

0

) = f

�

(n). It follows

that v = f

�

(n) after the �rst inner scout call, which relation also holds, when

the �rst iteration of the while loop starts.

If v+1 � v

0

, then MT has ended with a high failure and v+1 � v

0

= f

�

(c) holds.

Since the new value value v

0

= f

�

(c) is at least equal to the old value v = f

�

(n),

27

we have v

0

= f

�

(c) = f

�

(n), which relation also holds for the subsequent scout

call. After the assignment v := v

0

, we obtain v = v

0

= f

�

(n). Similarly to

�rst scout call, the precondition f

�

(c) = f

�

(n) on call implies v = f

�

(n) on

termination.

In each next iteration, the precondition of MT and scout is derived in the same

way, exploiting the fact that v = f

�

(n) holds at the start of each iteration. 2

Suppose the choice of the PV is arbitrary. Then Lemma 10.1 does not hold

for the �rst scout call with c = c

0

, but it does for the subsequent calls. Further,

the precondition for MT becomes: v � f

�

(n).

Theorem 10.2 The Scout algorithm only visits alive nodes.

Proof

Descending in a tree such that in every max node n a child c is chosen with

f

+

(c) > f

�

(c) = f

�

(n) and in every min node a dual choice is made, yields

a path with solely alive nodes. Since the scout algorithm makes such choices

for the recursive scout calls, every parameter in a nested scout call is alive.

For each node on the path obtained by the above construction, the relation

f

+

(x) = h

+

(x) > h

�

(x) = f

�

(x) holds. This relation is preserved, when f

+

(x)

or f

�

(x) change during execution.

Whenever a max node n has a child c, that is parameter in a nested MT-call,

then f

�

(c) � f

�

(n) = v < f

+

(c) � f

+

(n), It follows that h

�

(c) = v and

v < h

+

(c) = f

+

(c). Since the null window is in the liveness windows, MT solely

visits live nodes. 2

The previous theorem assumes that the values n:f

+

and n:f

�

stored into mem-

ory by MT are truthful values at any time at any node.

In practice, the availability of a complete search tree in memory is not guaranteed,

since a transposition table acting as a search tree may su�er from collisions.

11 Concluding remarks

In the Sections 2 through 5, we developed a general theory on game tree, based

upon solution trees. In this theory, the functions f

+

, f

�

, h

+

and h

�

played

an essential role. In the Sections 6 through 9 this theory was applied to some

well-known algorithms, viz. alphabeta, SSS*, MTD and Scout. How this theory

relates to Proof Number search [1, 2], was shown in [6].

Further, we have given we gave a dynamic characterization of a node, expanded

during alphabeta and MT-SSS. So we described the node expanded by alphabeta

or MT-SSS in terms of the current search tree, using the h

+

and h

�

function.

Alphabeta is the algorithm that expands at any time the leftmost open alive node

of the current search tree. MT-SSS expands the leftmost open alive node with

maximal h

+

-value, assuming that the search tree is stored completely (including

truthful bounds) in memory. One might state that alphabeta is a depth-�rst

search algorithm, whereas MT-SSS is a best-�rst search algorithm.

28

The sets of nodes visited by alphabeta and MT-SSS have been characterized

in [3] and [19, 20] respectively. One way of this characterization (the necessary

condition for a node to be visited) has also been shown in the present paper.

References

[1] L. Victor Allis, Maarten van der Meulen, and H. Jaap van den Herik,

Proof-number search, Arti�cial Intelligence 66 (1994), 91{124.

[2] L. Victor Allis, Searching for Solutions in Games and Arti�cial Intelli-

gence, Ph. D. Thesis, Maastricht, NL 1994.

[3] G. M. Baudet, On the branching factor of the alpha-beta pruning algorithm.

Arti�cial Intelligence 10 (1978), pp 173-199.

[4] Subir Bhattacharya and Amitava Bagchi, A faster alternative to SSS* with

extension to variable memory, Information processing letters 47 (1993),

pp. 209-214.

[5] Daniel Bobrow,Arti�cial Intelligence in perspective, a retrospective on �fty

volumes of the Arti�cial Intelligene Journal, Arti�cial Intelligence, vol. 59

(1993) pp. 5-20.

[6] A. de Bruin, W. Pijls and A.Plaat, Solution Trees as a Basis for Game

Tree Search, ICCA Journal, 17(4), pp.207-219, December 1994.

[7] Murray S. Campbell and T. A. Marsland, A comparison of minimax tree

search algorithms, Arti�cial Intelligence 20 (1983), pp. 347-367.

[8] John P. Fishburn and Raphael A. Finkel, Parallel alpha-beta search on

arachne, Tech. Report 394, Computer Sciences Dept, University of Wis-

consin, Madison, WI, 1980.

[9] C.A.R. Hoare, An axiomatic basis for computer programming, Communi-

cations of the ACM, 12 (1969), pp 576-580.

[10] Toshihide Ibaraki, Generalization of alpha-beta and SSS* search proce-

dures, Arti�cial Intelligence 29 (1986), pp. 73-117.

[11] V. Kumar and L.N. Kanal, A General Branch and Bound Formulation for

Understanding and Synthesizing And/Or Tree Search Procedures, Arti�cial

Intelligence 21 (1983), pp. 179-198.

[12] V.Kumar and L.N. Kanal, Parallel Branch and Bound Formulations for

AND/OR Tree Search, IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, PAMI-6 (1984) no. 6, pp. 768-778.

[13] Donald E. Knuth and Ronald W. Moore, An analysis of alpha-beta prun-

ing, Arti�cial Intelligence 6 (1975), no. 4, pp. 293-326.

[14] Richard E. Korf, Best-�rst minimax search: First results, Proceedings of

the AAAI'93 Fall Symposium, American Association for Arti�cial Intelli-

gence, AAAI Press, October 1993, pp. 39{47.

29

[15] T. A. Marsland, A. Reineveld, J. Schae�er, Low Overhead Alternatives to

SSS*, Arti�cial Intelligence 31 (1987) pp. 185-199.

[16] Judea Pearl, Asymptotical properties of minimax trees and game searching

procedures, Arti�cial Intelligence 14 (1980), no. 2, 113{138.

[17] Judea Pearl, Heuristics { intelligent search strategies for computer problem

solving, Addison-Wesley Publishing Co., Reading, MA, 1984.

[18] J. Pearl and R.E. Karp, Search Techniques, Ann. Rev. Comput. Sci. 2,

1987, pp. 451-467.

[19] Wim Pijls and Arie de Bruin, Another view on the SSS* algorithm, Algo-

rithms, International Symposium SIGAL '90, Tokyo, Japan, August 16{18,

1990 Proceedings (T. Asano et. al. eds.), LNCS, vol. 450, Springer-Verlag,

August 1990, pp. 211{220.

[20] Wim Pijls and Arie de Bruin, Searching informed game trees, Tech. Report

EUR-CS-92-02, Erasmus University Rotterdam, Rotterdam, NL, October

1992, Extended abstract in Proceedings CSN 92, pp. 246{256, and Algo-

rithms and Computation, ISAAC 92 (T. Ibaraki et al. eds), pp. 332{341,

LNCS 650.

[21] Wim Pijls and Arie de Bruin, SSSy, Advances in Computer Chess 8 (H.J.

van den Herik et al. eds.), University of Limburg, Maastricht, The Nether-

lands, 1997 (to appear).

[22] Wim Pijls, Arie de Bruin, Aske Plaat, A theory of game trees, based on so-

lution trees, Tech. Report EUR-CS-96-xx, Erasmus University Rotterdam,

Rotterdam, NL, November 1996.

[23] Aske Plaat, Jonathan Schae�er, Wim Pijls and Arie de Bruin, Best-�rst

�xed depth game tree search in practice. In: Proceedings of the 14th Inter-

national Joint Conference on Arti�cial Intelligence (IJCAI-95), vol. 1 pp

273-279, 1995.

[24] Aske Plaat, Jonathan Schae�er, Wim Pijls and Arie de Bruin, A Minimax

Algorithm Better than SSS*, In: Arti�cial Intelligence, to appear.

[25] A. Reineveld, An improvement of the Scout tree-search algorithm, ICCA

Journal, 6(4): 4-14, 1983.

[26] Alexander Reinefeld and Peter Ridinger, Time-e�cient state space search,

Arti�cial Intelligence 71 (1994), pp. 397-408.

[27] Igor Roizen and Judea Pearl, A minimax algorithm better than alpha-beta?

Yes and No, Arti�cial Intelligence 21 (1983), pp. 199{230.

[28] G. Stockman, A minimax algorithm better than alpha-beta?, Arti�cial In-

telligence 12 (1979), no. 2, pp. 179-196.

[29] J.C. Weill, The NegaC* Search, ICCA Journal 15 (1992), no. 1, pp. 3{7.

30

Glossary

G a game tree

T

+

; T

�

a max/min solution tree

S the search tree

S

+

; S

�

the search tree with +1/�1 as game value in the

For each above tree denotation A:

A(n) the subtree of A, rooted in n

M(n);N (n) the set of max/min solution trees in S through the root and n

f(n) the minimax value of n

f(G) the minimax value of the root of G

g(T) (T a closed solution tree) the minimax value of the root of T ,

restricted to T , or:

g(T

+

) (T

+

a closed solution tree) maxff(p) j p a terminal in T

+

g

g(T

�

) (T

�

a closed solution tree) minff(p) j p a terminal in T

�

g

c(T

+

) the minimax value in S

�

of the root of T

+

or: maxff(p) j p a closed terminal in T

+

g;

c(T

�

) the minimax value in S

+

of the root of T

�

or : minff(p) j p a closed terminal in T

�

g:

f

+

(n); f

�

(n) the minimax value of n in S

+

/S

�

h

+

(n); h

�

(n) the minimum/maximum of value c(T), T 2 M/N

31

A Equivalence of SSS* and MT-SSS

In this appendix, we give the proof of the equivalence of SSS* and MT-SSS. To

that end, we �rst present an extended postcondition of the classical alphabeta

algorithm. Each proof in this appendix applies induction on the height of the

calling tree, generated by nested recursive calls.

De�nition A.1 A search tree S with root n is a -milestone if f

+

(n) � and S

contains a max solution tree T

+

such that, in every min node of T

+

, the children

left to T

+

have an f

�

-value > and the children right to T

+

are open.

The following intuitive interpretation holds for a milestone: a -milestone is the

minimum search tree necessary to achieve an upperbound � , when the game

tree is searched from left to right. Given a value , the key solution tree T

+

in

any -milestone is determined uniquely, because it is the leftmost solution tree

with g-value � .

If a search tree S with root n is a -milestone, Sis also a

0

-milestone for any

0

in the interval [f

+

(n);].

Lemma A.1 When a call alphabeta(n; �; �) terminates with a low failure, then

S is an �-milestone.

Proof

We give a proof by induction on the height of the calling tree. In the basic step,

we consider the case that n is a terminal. Here, the postcondition holds almost

trivially.

The induction step is divided into two cases: n is a max node and n is a min

node respectively.

If a fail low happens in a max node n, then every child c of n has been param-

eter in a subcall and every subcall has ended with a fail low. By the induction

hypothesis, every child c is the root of an �-milestone. It follows immediately

from the de�nition of max milestone that n is also the root of such a milestone.

If a fail low happens in a min node n, then one subcall, say to a child c

0

, has

ended with a fail low. The induction hypothesis, referring to a), says that c

0

is

the root of a max milestone with pivot �. Every call to an older brother c of

c

0

has ended with v

0

= f

�

(c) > �. Every younger brother of c

0

is still open.

Again, we conclude from the de�nition of a milestone, that n is the root of an

�-milestone. 2.

The foregoing proof shows, that after a high failure, the key solution tree as

de�ned in Section 6 and the key solution tree in the related milestone are iden-

tical. Now, we show that AB-SSS is equivalent to SSS*. To that end, the code

of the alphabeta procedure in small window search is tailored to AB-SSS. This

code can be found in Figure 13. Moreover this code is enhanced with calls of

a procedure List-op, operating on a List. The call List-op(i; n) means that the

operations of Case i in Figure 7 have to be executed. We assume, that LIST is

initialized to hr; live;1i, like in SSS*.

Theorem A.1 During execution of MT-SSS, the following conditions apply to

the calls List-op(i; n) and to the call MT(n;).

32

functionMT(n;);

if terminal (n) then

if open(n) then

v :=eval(n);

List-op(4; n);

else v := n:f

+

or n:f

�

;

else if max(n) then

if open(n) then

generate the children of n;

List-op(6; n);

v := �1;

c :=�rst(n) ;

while v < and c < ? do

if c:f

+

� then

v

0

:=MT(c;);

if v

0

� then List-op(1; c);

else v

0

:= c:f

+

;

v := max(v; v

0

);

c := next(c);

else if min(n) then

if open(n) then

generate the children of n;

List-op(5; n);

v := +1;

c :=�rst(n) ;

while v � and c < ? do

if c:f

�

< then

v

0

:=MT(c;);

if v

0

� then

if c < last(n) then List-op(2; c) else List-op(3; c);

else v

0

:= c:f

�

;

v := min(v; v

0

)

c := next(c);

weak storage(v);

return v;

Figure 13: The MT-procedure in MT-SSS

33

a) precondition of List-op(i; n):

LIST includes a triple hn; s; i, being the leftmost triple with maximal merit;

the restrictions in Case i of Figure 7 are satis�ed for this triple;

b) precondition of MT(n;):

if n is open, then hn; open; i is in LIST and n in the leftmost node in LIST

with maximal merit;

if n is closed, S(n) is a -milestone and = f

+

(n); every leaf x of the key

solution tree T

+

is represented in LIST by a triple hx, closed, f(x)i; one of

these leaves of T

+

is the leftmost node in LIST with maximal merit.

c) postcondition of MT(n;):

if v < , then S(n) is a -milestone and v = f

+

(n); every leaf x of the key

solution tree T

+

is represented in LIST by a triple hx, closed, f(x)i;

if v � , then hn; closed; i is in LIST

In case b) and c), no other descendants of n are included in LISTand every node

of the key solution tree T

+

and every left child of T

+

has truthful storage values.

Proof

We will prove that the speci�cation consisting of the precondition in b) and

the postcondition of c) is correct for the procedure MT. A correct speci�cation

means that the postcondition is satis�ed, provided that the precondition is sat-

is�ed. The proof is by induction on the height of the calling tree. This proof is

divided into two parts. First, we show that if the precondition holds for a call,

it also holds for all subcalls. Second, we prove that the postcondition is met. In

both parts, the assumption is already made that the speci�cation is correct for

each subcall.

As a side e�ect, we prove that the precondition of List-op holds, whenever it is

called.

To complete the proof of the theorem, we must show that the calls MT(r;) in

the main program of MT-SSS satisfy the precondition in b). This is shown as

follows, using the correctness of the speci�cation of MT. In the �rst iteration, n

is open and hr; open;1i is in LIST. Each MT generates a milestone S with value v

and each next MT call starts with this milestone S, replacing v by . Of course,

the relation between LIST and S accomplished in an iteration, holds at the start

of the next iteration.

Now, we give the two parts, which make up the correctness of MT(n;).

Precondition of MT

We distinguish between n being open and n being closed.

Assume the precondition holds for a call to an open node n. First consider the

case that n is a max node. By assumption, hn; open; i is in LIST, with n being

the leftmost node in LIST with maximal merit. The precondition for List-op(6; n)

holds. This operation replaces the triple including n by a series of triples, each

including a child of n. When c is parameter, the subcalls (if any) to older broth-

ers b has ended with v

0

< . By the induction hypothesis, after each such call,

the descendant terminals of b in LIST have a merit equal to their f -value. Since

34

g(T

0

) = v

0

< , also each of these merits is < . It follows that, when c is

parameter, hc; open; i is in LIST, being the leftmost triple with maximal merit.

Hence the precondition holds for c.

Second, consider n being a min node. By assumption, hn; open; i is in LIST and

this triple is the leftmost triple with maximal merit. The precondition to List-

op(5; n) holds. The operation List-op(5; n) causes the precondition to be met for

the oldest child c of n. As long as each subcall ends with v

0

� , the while loop

is continued. Before each such subcall, a triple hc; s; i is in LIST, with s =open,

being the leftmost triple with optimal merit. After the subcall, s has changed to

closed. The precondition for the call List-op(2; c) holds and the related operation

replaces this triple by hnext(c), open, i. We conclude that the precondition of

MT holds for each next subcall.

Now, we treat the case that n is a closed node. Assume the precondition holds

for an inner node n. Since is the maximum of the game values of the leaves of

T

+

, the maximal merit in LIST is equal to . The properties described in b) are

obvious for each closed child c, except the property that c is the leftmost node

LIST with maximal merit. We will explicitly show this property for every child c,

whenever it is parameter in a subcall. Further, we prove that the precondition

holds, when an open child c is addressed.

A child c of a max node n, which is parameter in a subcall, is in the key solu-

tion tree and has f

+

(c) = . When c is parameter, every older brother b has

f

+

(b) < . Therefore c is ancestor of the leftmost node in LIST with maximal

merit.

If n is a min node, the child of n in T

+

is the only closed child that undergoes

a subcall (the older children x satisfy f

�

(x) >). It follows that this child is

also the ancestor of the leftmost node in LIST with maximal merit. When, later

on, an open child c of n is a parameter in a subcall, then every preceding sub-

call to an older brother has ended with v

0

� . Similarly to the the situation

with n open (see above), the precondition holds for every subcall to an open child.

Postcondition of MT

First, consider n being a terminal. Since the precondition of MT holds, also the

precondition to List-op(4; n) is met. On exit, n is in LIST with status closed,

and either merit= f(n) = v < or merit = � f(n) = v. In both cases, the

postcondition holds.

Second, consider n being an inner max node. If every subcall ends with v

0

< ,

then v < on exit. The properties mentioned in c) hold for S, because they

hold for each subtree S(c). If at least one subcall to a child c ends with v

0

= ,

then after this call hc; closed; i is in LIST. This triple is the leftmost triple with

maximal merit, due to the fact that the calls to older brothers of c have ended

with v

0

< , The operation List-op(1; c) causes the postcondition to be met for

n.

Third, consider n being a min node. As soon as a subcall MT(c

1

;) has re-

turn value v

0

< , the while loop stops. Every brother at the left side of c

1

has

f

�

(c

1

) � and every brother at the right side is still open. By the induction

hypothesis, S(c

1

) is a max milestone and consequently S(n) is. They have the

same key solution tree, whose leaves are in LIST. If all subcalls end with v

0

� ,

35

then, on termination of the while loop, hlast(n), closed, i is in LIST. Since last(n)

has no older brothers in LIST, this node is the leftmost node in LIST with maximal

merit. The precondition to List-op(3;last(n)) is satis�ed and after this operation,

the postcondition of MT holds for n. 2

During MT-SSS, we descend top-down in the search tree and we execute re-

cursively a call NT(n;), where is constant and f

+

(n) = , as shown above.

Descending top-down in this way, we may encounter a dead node n. This is

the case, if n has = f

�

(n) (beside = f

+

(n)). (The �rst dead node, that

is encountered, if any, is a child of a min node, because, if it was a max node's

child, this max node is also dead). Since n is also the root of a -milestone, we

conclude that n is the starting point of a path P to a terminal z with f(z) = ,

such that every node in P that is a child of a min node, is the youngest child of

that min node. Unless n is the max father of a terminal or n itself is a terminal,

this is a rare situation. Therefore, apart from visits to closed terminals, MT-SSS

with weak storage hardly di�ers from the version with heavy storage.

36

