
Trends in Game Tree SearchArie de Bruin and Wim PijlsErasmus University, Dept. Comp. Science, H4-29, P.O. Box 1738,3000 DR The Netherlandsemail fadebruin, pijlsg@few.eur.nl.Abstract. This paper deals with algorithms searching trees generatedby two-person, zero-sum games with perfect information. The standardalgorithm in this �eld is Alpha-Beta. We will discuss this algorithm aswell as extensions, like transposition tables, iterative deepening and Ne-gaScout. Special attention is devoted to domain knowledge pertaining togame trees, more speci�cally to solution trees.The above mentioned algorithms implement depth �rst search. The alter-native is best �rst search. The best known algorithm in this area is Stock-man's SSS*. We treat a variant equivalent to SSS* called SSS-2. Thesealgorithms are provably better than Alpha-Beta, but it needs a lot oftweaking to show this in practice. A variant of SSS-2, cast in Alpha-Betaterms, will be discussed which does realize this potential. This algorithmis however still worse than NegaScout. On the other hand, applying asimilar idea as the one behind NegaScout to this last SSS version yieldsthe best (sequential) game tree searcher known up till now: MTD(f).1 IntroductionIn this paper we give an overview on algorithms that search game trees, as de�nedby perfect-information, two-person, zero-sum games like chess, checkers and thelike. Let the reader be warned that the presentation is certainly not exhaustiveand also rather broad. Most of the algorithms presented here admit re�nements,game trees are not so regular as suggested in this paper, many details and allproofs are skipped. The aim of this paper is to give the reader a feeling for whatis going on in the �eld. For more details one should consult the references.The term `zero-sum game' indicates that the gain of one player equals the lossof her opponent. This excludes games studied in the �eld of classical mathemati-cal game theory, such as the prisoner's dilemma. We furthermore exclude randomevents, the game should proceed completely deterministically. This means thata game like backgammon is not studied here either.The games in the above described class proceed by the adversaries takingturns in making a move. A move alters the current position, e.g. the contentsof a chess board, or the number and the size of heaps of matches in Nim-likegames. Such games can be represented in abstract terms as game trees, the nodesof which correspond to positions, while an edge between two nodes describes themove that transforms the position corresponding to the source node into theposition associated with the target node. Because the players take turns, such
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,,, lll gnl50�� BB37�� TTol25�� BB3Fig. 1. A Game Treea tree is layered, in the sense that all nodes at the same depth are of the sametype, e.g. MAX nodes (denoted by a square), in which the �rst player (usuallycalled MAX) has the move. At the next level in the tree we only see MIN nodes,depicted as circles, where the second player (called MIN) should move. The rootof the tree corresponds with a given position of the game, and the leaves arenodes from which no move can be made. In these �nal positions the game isdecided, the value of such a position is known, e.g. `win for MAX', `loss forMAX', `draw', or maybe a more subtle score. It is customary to represent ascore as an integer which denotes the value that the position has for MAX. Forinstance, a win for MAX could be denoted by +1, a draw by 0 and a win forMIN by �1. An example of a game tree is given in Fig. 1.A game tree search algorithm determines the value f(root) of the root nodeof a game, e.g. `forced win for MAX' or `forced win for MIN' or `one of theplayers can force a draw'. Moreover the algorithm also determines the best movefrom the root position.A few remarks are in order at this moment. First of all one should be awareof the fact that most games do not generate trees but game graphs instead. Forinstance, due to repetitions of moves the game tree for chess is in�nite, while thegame graph is �nite, because there are only �nitely many valid positions in chess.For e�ciency reasons most game tree algorithms exploit a transposition table inwhich positions already encountered are stored together with relevant informa-tion thereof (value, best move, etc.). One gets the impression that transpositiontables have been added as an afterthought, or as a coding trick. For instance onestill speaks of game tree search instead of game graph search. More importantly,we have the impression that not all information stored in a transposition tableis used to good e�ect by the standard algorithms. In fact, a few of the morerecent results discussed in this paper are related to a fuller exploitation of thedata hidden there. For other examples the reader is referred to [11, 13].A second remark is related to the fact that trees for nontrivial games arefar too big to be searched fully (which is one of the reasons such games are



interesting for us humans). Therefore approximation techniques have to be used.One standard approach is to consider only a �nite part of the tree, e.g. only arestricted number of levels (plies or half-moves). Notice that Fig. 1 can also beconsidered as such a partial game tree. This means that not in all leaves of such areduced tree an exact evaluation of the position is possible (because if we wouldhave such a gadget, there would be no need to search a full tree of variations. . . ).We have to rely on an evaluation function `eval' that can only approximate thetrue value of a position. It is hoped however that the inexactness of this approachis leveled by the fact that the tree is searched to a su�cient depth.The value of a position is determined by the so called minimax rule. In a leafn of the tree the value is given by eval(n). In non-leaf positions the MAX playerwill choose the move which leads to the best position, i.e. the position with thehighest value. If it is MIN's move then she will choose the move resulting in thebest position from her point of view, that is, the one with the smallest value.This mechanism can be applied recursively which yields the following de�nition.minimax(n) == 8<:eval(n) if n is a leafmaxfminimax(c) j c is a child of ng if n is a MAX nodeminfminimax(c) j c is a child of ng if n is a MIN node (1)This rule straightforwardly translates into the algorithm given in Fig. 2. Afew remarks on the `language' in which the algorithms appearing in this paperare written must be made. The return statement is like its C{counterpart, thatis, the return value of the function is determined and an exit from the functionis performed. Statement grouping is expressed by using indentation, obviatingthe need for pascal begin. . . end pairs or C-like fg-brackets. We will use agenealogical way of expressing relations between nodes in our game trees. Forinstance, the FirstChild of a node n or the OldestBrother of one of its childrenc is the leftmost child of n in the tree.2 Alpha-BetaThe Minimax algorithm from the previous section visits all nodes in the gametree. Because this number is exponential in the depth d of the tree, and alsobecause branching factors w can be rather large (for instance in the middlegame of chess a node has about 30{40 children), one can be confronted withimpressive numbers of nodes to be visited (O(wd) for uniform trees, i.e. trees inwhich all non-leaf nodes have the same number of children). It is only natural tosearch for ways to avoid having to visit all nodes. The well known Alpha-Betaalgorithm uses, like Minimax, a depth �rst search but, unlike Minimax, �nds away to cut o� nodes which are not relevant for the outcome. Alpha-beta has arich history, a good overview of the early stages is presented in [5].Suppose the Minimax algorithm of Fig. 2 searches the tree from Fig. 1 andsuppose the inner call `minimax(d)' executed within the call `minimax(b)' has



function minimax(n)! g;if n is a leaf then g := eval(n);else if n is a MAX node theng := �1; c := FirstChild(n);while c is well de�ned dog := max(g; minimax(c)); c := NextBrother(c);else /* n is a MIN node */g := +1; c := FirstChild(n);while c is well de�ned dog := min(g; minimax(c)); c := NextBrother(c);return g; Fig. 2. The Minimax algorithmjust returned the value 12. The next step is now to determine the minimax valueof e, a call `minimax(e)' is executed which in its turn leads to a call `miminax(j)'which delivers the value 80. Therefore we now know that e, being a MAX node,will have a minimax value of at least 80. But from this we can already infer theminimax value of b, because this will be the minimum of 12 (d's value) and anumber not smaller than 80. So the value of k cannot in
uence b's value anymore and there is no need to investigate k or its descendants. This phenomenon,that a node needs not be visited because an older brother (in this case j) has avalue worse than an uncle (here d) is called a shallow cuto�.This is the main idea exploited in Alpha-Beta. It is implemented by giving therecursive search procedure `alphabeta', apart from the node to be investigated,two other parameters, a lower bound � and an upper bound � using whichinformation is transferred about the history of the computation previous to thiscall. In our case, node e as well as node j will feature in a call `alphabeta'with parameters � = �1 and � = 12. These parameters de�ne the ��-window(�1; 12), using which it is communicated to the procedure that only returnvalues within this window matter for the environment. Using this information,in the body of the call `alphabeta(e;�1; 12)' it can locally be decided that thereis no need to investigate k after j's value has become known.Let us return to the execution of Minimax and Alpha-Beta on the tree inFig. 1. Once it is determined that the value of b equals 12, control returns tonode a, after which the subtree rooted in c should be investigated. Now a similarline of reasoning applies: for node a, having already a child with value 12, onlyvalues greater than 12 are of interest. This translates into parameter values inthe call for node c of � = 12 and � = +1. This will lead to an inner call fornodes f and l with the same parameters and once it is determined that theoldest child of l has value smaller than 12 there is no need to visit the otherchild. Notice however that this cuto� is not of the type discussed earlier, there isno `older brother { uncle' relationship. This type of cuto� is called a deep cuto�and the early versions of Alpha-Beta did not recognize such ones.



function alphabeta(n; �; �)! g;if n is a leaf then g := eval(n);else if n is a MAX node theng := �1; �0 := �; c := FirstChild(n);while (g < �) and (c is well de�ned) do/* g is maxfreturn values of children seen so farg */g := max(g; alphabeta(c; �0; �));�0 := max(g;�0); c := NextBrother(c);else /* n is a MIN node */g := +1; �0 := �; c := FirstChild(n);while (g > �) and (c is well de�ned) do/* g is minfreturn values of children seen so farg */g := min(g; alphabeta(c; �; �0));�0 := min(g; �0); c := NextBrother(c);return g; Fig. 3. The Alpha-Beta algorithmIt is also possible to have �nite values for both the � and the � parameter.Consider node c. Once the call `alphabeta(f; 12;+1)' has terminated with re-turn value 35, node g will be called with ��-window (12; 35). There is no needfor return values � 12 because a does not need them (in that case a will chooseb instead) and there is no need for a return value � 35 because c does not needthis (c will choose f instead).The same parameters will feature in the recursive call for n. This latter callwill return with a high failure, i.e. value 37, which will cause a cuto� (a �-cuto�)of node o.The mechanism must be clear by now. If a child of a MAX node returns witha high failure, a return value � �, then the remaining younger children can becut o�. Dually, if a child of a MIN node returns with a low failure, a return value� �, then we again have a cuto�, called an �-cuto�. Using this explanation thecode of Fig. 3 should be clear.The idea behind the Alpha-Beta function applied to a node n is that it needsonly return the right value, the game value f(n), when this value lies within theinput ��-window. It is interesting to see what value is returned if the functionreturns with a low or a high failure. We �rst consider the case that n is a MAXnode with only leaves as children. From the code in Fig. 3 we see that on lowfailure all children have been investigated, and the return value is the highestvalue among the children. Thus in this case also the exact minimax value of nis returned. On the other hand if a high failure occurs, it is not necessary thatall children of n have been visited. The procedure returns the value of the oldestchild with value � �. This means that now not the exact value f(n) is returnedbut only a lower bound to the game value of n. A dual observation can be madefor the case that n is a MIN node.



This again entails that on low failure in a MAX node with height 2 (where`height' is de�ned as the distance to the leaves), Alpha-Beta will not returnthe game value but in general only an upper bound thereof. This is due to thefact that the same holds for all its children. The next lemma states that thisobservation generalizes.Lemma1. Consider a call alphabeta(n; �; �), returning a value g. If on entryto this function the precondition � < � holds, then on exit we have the followingpostcondition g � �) g � f(n); (low failure) (2)� < g < � ) g = f(n); (success) (3)g � � ) g � f(n); (high failure) (4)The proof (cf. [1, 8, 9]) is a formalization of the above line of reasoning, usingrecursion induction, which is in essence induction on the height of n.It is interesting to notice that the earliest variants of Alpha-Beta would returnthe input value � on low failure and � on high failure, thus discarding informationgathered during the call. On �rst sight the output value is indeed irrelevant onhigh or low failure because high enough up the game tree it will be discardedanyhow. There are reasons however to state the contrary. The most importantones will surface later when we will discuss Alpha-Beta variants of best �rst gametree search, but one argument can be given already now. Suppose a transpositiontable is used in order to apply the results of a previous investigation of a node nwhen this node turns out to be a transposition. In general, the �� input windowwill not be the same as in the previous call. This suggests that it is useful tostore results in the transposition table that are as informative as possible. Wereturn to this issue later.Earlier we saw that Alpha-Beta searches less nodes than Minimax in essenceby exploiting the input ��-window to prune nodes. It seems that the e�ect is thatmaking the input window smaller decreases the number of nodes to be visited.Closer examination of the code shows that this is indeed the case. Stated moreprecisely, we haveLemma2. Suppose two calls alphabeta(n; �; �) and alphabeta(n; �0; �0) are ex-ecuted on the same node in the same game tree and suppose � � �0 and � � �0.Then we have that the set of nodes visited by the second call is a subset of theset of nodes visited by the �rst call.This lemma can be proven by exploiting a characterization of the nodesvisited by Alpha-Beta, given in [1, 3] amongst others. It can also be provenstraightforwardly using recursion induction. This result will turn out to be veryuseful in the sequel while comparing the e�ciency of Alpha-Beta based gametree search algorithms.
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### ccc gnm50�� LL37��Fig. 4. An Optimal Max (left) and Min (right) Solution Tree3 Solution TreesIn the previous section we indeed realized our goal, Alpha-Beta searches lessnodes than Minimax (the pathological case that Alpha-Beta searches the wholetree is possible but unlikely). In this section we approach the question whetherwe can do better from a theoretical point of view, by introducing the notionsolution tree.Suppose, for the tree of Fig. 1, we want to �nd a subtree from which we canderive an upper bound for the game value 35 of the root. We can do so if wehave an upper bound for both children, b and c. This follows from the minimaxrule. So a, b and c must be included in the tree to be built. For b and c, beingMIN nodes, there is a less precious way to establish an upper bound, an upperbound for only one child will do (this follows again from the minimax rule). Letus include d and f . Now the story repeats. For these MAX nodes we have toinclude both children, i.e. h, i, l and m. Finally we have to add one child foreach of these 4 nodes and we choose the leaves labeled 5, 12, 10 and 35.The subtree we have built is the left one in Fig. 4. It is called a max solutiontree, the shape of which is de�ned by the rule that the root should be included,all children should be included for a non-leaf MAX node, and exactly one childshould be included for a non-leaf MIN node. A max solution tree exhibits astrategy for the MIN player because in all possible variations in the tree thechoice of MIN is �xed [4, 15].The minimax value of the tree is an upper bound to the game value ofthe root. Because in MIN nodes of this tree the minimax rule determines theminimum of a singleton set, there is only maximization left, and we �nd thatthe minimax value equals maxfl j l leaf in the treeg = 35. This value is in factthe best we can get, and therefore this solution tree is called optimal.By reversing the `construction rules' we de�ne the dual notion min solutiontree. The rightmost tree in Fig. 4 is a min solution tree. It is also optimal because



its minimax value, the minimum of the values of its leaves equals f(a).When we take the union of an optimal min solution tree and an optimal maxsolution tree we obtain a so called critical tree. The intersection of these trees isthe principal variation, in our example the path from the root to node 35. Fromthe arguments given above we infer that a critical tree establishes both an upperbound and a lower bound equal to the value of the root, that is it establishesthe game value. We summarize.Lemma3. [17] The minimax value of a min/max solution tree is a lower/upperbound to the game value of the root. Moreover, for each game tree there existsat least one optimal min/max solution tree.Lemma4. [3, 5, 10] In order to establish the game value of the root an algorithmmust have visited at least a critical tree.The reader is invited to check that both optimal solution trees for the treeof Fig. 1 are unique. Lemma 3 suggest that this need not be so. In fact, assign-ing to leaf 41 in Fig. 1 the value 11 makes the max solution tree with leaf setf11; 12; 10; 35g optimal as well.It is instructive to study how Alpha-Beta �nds the critical tree of Fig. 1. Theleaf set visited by Alpha-Beta is f41; 5; 12; 90; 99; 80; 10; 36; 35; 50; 37g which iscertainly bigger than the critical leaf set f5; 12; 10; 36; 35; 50; 37g. The overheadis due to the fact that Alpha-Beta determines that 12 is the game value of nodeb, while an upper bound of 12 would have been su�cient. Notice furthermorethat on high failure, e.g. in e, a min solution tree has been constructed de�ningthe return value 80 which is a lower bound. For these results we will thereforeuse the notation f�. Similarly a low failure, e.g. in l, returns an upper boundf+ de�ned by a max solution tree.In [5] it is investigated whether it is possible that Alpha-Beta indeed searchesonly the critical tree. This will occur if the tree is perfectly ordered, i.e. for eachnode n, the oldest child has the best game value (maximal if n is a MAX node,minimal otherwise) of all its children. In that case the optimal solution trees willbe the leftmost ones in the game tree. The reader is invited to reorganize thetree of Fig. 1 so that the above property holds, and to check how Alpha-Betatraverses this tree.Notice that if we are able to organize the search so that we need only tosearch the critical tree we will have made a big progression because the size ofthis tree is O(wd=2). Or, stated in other words, with the same amount of workwe will be able to search trees twice as deep as Minimax can.4 Enhancing Alpha-BetaIn this section we will discuss three reasons why it makes sense to add a trans-position table to the Alpha-Beta algorithm [11, 16]. The �rst one has alreadyappeared in the Introduction, one wants to avoid a recalculation when a trans-position is found. Instead, the results stored in the transposition table should



function TTalphabeta(n; �; �)! g;if n in transposition table thenif n:f� = n:f+ then return n:f�;if n:f� � � then return n:f�;if n:f+ � � then return n:f+;/* Info in transposition table did not cause a shortcut */� := max(�;n:f�); � := min(�; n:f+);if n is a leaf then g := eval(n);else if n is a MAX node theng := �1; �0 := �; c := FirstChild(n);while (g < �) and (c is well de�ned) do/* g is maxfreturn values of children seen so farg */g := max(g; TTalphabeta(c; �0; �));�0 := max(g;�0); c := NextBrother(c);else /* n is a MIN node */g := +1; �0 := �; c := FirstChild(n);while (g > �) and (c is well de�ned) do/* g is minfreturn values of children seen so farg */g := min(g; TTalphabeta(c; �; �0));�0 := min(g; �0); c := NextBrother(c);if n not in transposition table thenput n into transposition table;n:f� := �1; n:f+ := +1;if (g < �) or (n is a leaf) then n:f+ := g;if (g > �) or (n is a leaf) then n:f� := g;return g; Fig. 5. Alpha-beta with a transposition tablebe used. From Lemma 1 we have that there are three types of outcome possible:high failure yielding a lower bound f� to the game value, low failure yieldingan upper bound f+, and success yielding the game value f , combining an upperand a lower bound f+ = f� = f .In Fig. 5 the code for Alpha-Beta using a transposition table is given. It is thesame as in Fig. 3 except that code has been added that handles the transpositiontable. At the end of the procedure we store results, and at the beginning we try topro�t of them. Information from the transposition table can cause an immediatecuto�, or it can lead to sharper bounds, worthwile to be adopted in view ofLemma 2.A second advantage of transposition tables is that one can achieve a bet-ter move ordering. This is realized for instance by algorithms applying iterativedeepening (ID). This technique was introduced for another reason though, i.e.to avoid that programs would overstep a time limit. Often only a limited timeis available to search a position, and therefore it makes sense to organize thesearch as an anytime algorithm, i.e. one must be able to interrupt it at an arbi-



function NegaScout(n; �; �)! g;if n is a leaf then g := eval(n);else c := FirstChild(n); g := NegaScout(c; �; �); c := NextBrother(c);if n is a MAX node then�0 := �;while (g < �) and (c is well de�ned) do/* g is maxfreturn values of children seen so farg */�0 := max(g; �0); t := NegaScout(c; �0; �0 + 1);if (t > �0) and (t < �) then t := NegaScout(c; t; �);g := max(g; t); c := NextBrother(c);else /* n is a MIN node */�0 := �;while (g > �) and (c is well de�ned) do/* g is minfreturn values of children seen so farg */�0 := min(g; �0); t := NegaScout(c; �0 � 1; �0);if (t < �0) and (t > �) then t := NegaScout(c; �; t);g :=min(g; t); c := NextBrother(c);return g; Fig. 6. The NegaScout algorithmtrary moment and still obtain a sensible answer. The idea is to let the programsearch bigger and bigger trees. One starts with the game tree truncated to alimited depth d, which will be searched using an evaluation function de�ned atthe nodes at depth d. The tree is then iteratively extended one level deeper, andre-searched. After an interation, the time spent in the earlier iterations will benegligeable to the time spent in the last one because search time grows expo-nentially with the depth.The value eval(n) of a node at depth d shall in general be a good estimateof its minimax value determined by the evaluation function of its children. Thismeans that the best son of an internal node, as calculated by a depth d search,will probably remain so when calculated by a depth d+1 search. It is thereforeuseful to store the identity of a node's best child in the transposition table. Inthe next iteration this node can then be searched before the others. This ideaturned out to be quite successful, cf. [16], it caused an appreciable speedup,which should not surprise us in the light of the discussion at the end of theprevious section.Having achieved a good move ordering, the Alpha-Beta extension called Ne-gaScout [6] tries to make advantage of that. The idea is to search suitable nodesusing a null window, a window of the form (f; f+1) which cannot contain a gamevalue. This means that a null window call can only end in high or low failure.The NegaScout algorithm, given in Fig. 6 is indeed a more e�cient version ofAlpha-Beta:



Lemma5. A call NegaScout(n; �; �) returns the same value as alphabeta(n; �; �)and every node it visits must also be visited by alphabeta.We give an example of the ideas behind NegaScout, again using the gametree from Fig. 1. Suppose a call NegaScout(a;�1;1) is performed. First ofall the value of b will be determined through NegaScout(a;�1;1). This re-turns 12, which it should according to the above lemma. Now Alpha-Beta wouldproceed with a call alphabeta(c; 12;1), but let us try to be smart. If the treeis su�ciently ordered the odds are high that b is better than c, meaning thatalphabeta(c; 12;1) will fail low. But then any window (12; x) will generate alow failure, so why not choose (12; 13) promising the smallest amount of work.This leads to a call NegaScout(c; 12; 13).Now the risk of gambling is that one might lose, and this is exactly whathappens in our case (remember, the tree of Fig. 1 is rather badly ordered.) TheNegaScout call returns the value 35, again obeying the above lemma. We noware forced to perform a re-search to obtain the true value of c using a widewindow, in our case (35;1). Notice the value 35 here, we try to exploit as muchinformation from the previous search as possible. This call will return 35.Not intimidated by our previous experience, we try to perform the null win-dow trick again. We again assume that f is the better child of c, so we do notissue a call with window (�1; 35) on g but we do NegaScout(g; 34; 35) instead.Notice that we shifted the window 1 to the left, because we now expect g tohave a value � 35. In this case we are succesful, the return value is 37 and nore-search is needed.It is instructive to execute manually the recursion chain generated by the callNegaScout(a;�1;1) on the tree in Fig. 1. A chain of inner calls will lead us toleaf 41, and to the hypothesis that the value of h equals 41. Null window searchon leaf 5 immediately refutes this, and a re-search will lead to the conclusionf(h) = 5 and the hypothesis f(d) = 5. A null window search on i will invalidatethis, so again we have to do a re-search on i, showing f(d) = 12, leading to thehypothesis f(b) = 12. The call NegaScout(e; 11; 12) justi�es this, leading to thehypothesis f(a) = 12, and so on.The leaf set visited by NegaScout on a is f41; 5; 12; 90; 99; 80; 10; 36; 35; 50; 37g,unfortunately the same set as visited by Alpha-Beta. In order to show that Ne-gaScout is better than Alpha-Beta the tree should be better ordered. On theother hand, if the tree would be perfectly ordered again NegaScout and Alpha-Beta would search the same subtree, i.e. the critical tree. . .Our examples are rather unfortunate. Some of the advantages of NegaScoutover Alpha-Beta can be observed by changing the tree of Fig. 1 a little bit: giveleaf 10 the value 15, and leaf 50 the value 10. Now Alpha-Beta will generate callsalphabeta(l; 12;1) and alphabeta(m; 15;1) and it will visit the subtree underm. On the other hand, NegaScout will generate a call NegaScout(l; 12; 13) andnot visit m. Re-search in f will not be needed because NegaScout(g; 12; 13) willfail low.It turns out in practice that for reasonably well ordered trees NegaScoutperforms consistently better than Alpha-Beta, cf. [11, 12]. The overhead caused



program SSS-2;G := frootg;g := expand(root;1);repeatg0 := g;g := diminish(root; g0);until g � g0; Fig. 7. The SSS-2 algorithm, main loopby re-searches turns out to be low, especially when the evaluation function isrelatively expensive compared to tree traversal. This of course assumes that westore leaf values in a transposition table, which is an indication of the thirdadvantage of transposition tables: it provides useful information for re-searcheswithin the same iteration of iterative deepening. We will return to this issue ina later section.5 The SSS* FamilyBecause in Alpha-Beta the search is organized in a depth �rst left to rightmanner the algorithm easily su�ers from bad move orderings in the tree. TheSSS* algorithm [17] tries to direct the search to those parts of the tree whichare likely to be in the critical tree, in that sense it can be characterized as a best�rst search. In this section we will not discuss SSS* but SSS-2 instead [7]. Thereason is that the latter algorithm is more perspicuous and it is equivalent withSSS* in a rather strong sense: it searches the same nodes in the same order andit shows almost all weaknesses that SSS* has. A similar analysis as given here,but based on SSS* can be found in [11, 12].The main body of SSS-2 is given in Fig. 7. The idea is to �nd the best maxsolution tree. This is realized by �rst generating the leftmost max solution treeand then successively re�ning it into a better one until this is no longer possible.The program manipulates a global variable G in which the current max solutiontree is stored.The �rst max solution tree is generated by the call `expand(a;1)'. It �ndsthe leftmost max solution tree, assigns it to G and returns its value g. Themax solution tree is then re�ned by a call `diminish(a; g0)'. If successful, thisprocedure returns a sharper upper bound g and stores in G the max solutiontree de�ning this bound. Failure is indicated by a return value g � g0. Whenexecuted on the tree of Fig. 1, the expand call will return the max solution treewith leaf set f41; 12; 10; 36g, and the leaf sets of the max solution trees built bythe diminish calls will be f5; 12; 10; 36g and f5; 12; 10; 35g.We now give a more detailed description of `diminish', cf. Fig. 8 and `expand',cf. Fig. 9. Consider the second time the main body of SSS-2 executes a diminish



function diminish(n; v)! g;/* may only be called if subtree rooted in G has value v */if n is a leaf then/*By virtue of precondition game value of n equals v */return v;else if n is a MAX node then/* n has at least one child c with c:g = v */for c := FirstChild(n) to LastChild(n) doif c:g = v then v0 := diminish(c; v);if v0 � v then /* no tighter upper bound available for n */PURGE all descendants of n from G;return v0;/* loop terminated normally, tighter upper bound available for n */v0 := maxfc:g j c child of ng;n:g := v0; return v0;else /* n is a MIN node, the only child of n in G has c:n = v */c := the single child of n in G;v0 := diminish(c; g);if v0 < v thenn:g := v0; return v0;/* no tighter bound for c available, children of c in G have alreadybeen removed */remove c from G;for c := NextBrother(c) to LastChild(n) doadd c to G; v0 := expand(c; v);if v0 < v thenn:g := v0; return(v0);/* arrive here only if v0 � v */remove c from G;return g; /* returns the sharpest lower bound, not strictly necessary */Fig. 8. The SSS-2 algorithm, procedure diminishcall. At that moment we have a tree in G with leaf set f5; 12; 10; 36g. Accordingly,the input parameter g0 will be 36. The tree G de�nes an upper bound of 12 forb and of 36 for c. Re�ning G so that the upper bound of b will become sharperis of no use at this stage as long as we are not able to tighten g(c). Therefore arecursive call `diminish(c; 36)' is generated. In order to e�ciently �nd out whichchild to choose, the algorithm stores the g-value of each node, as de�ned by G,also in G. Because c is a MIN node there is only one child, f , in G. We �rsttry to make the subtree in f better, i.e. we issue a call `diminish(f; 36)'. Thisgenerates a call `diminish(m; 36)' and an inner call `diminish(36; 36)' returning36, i.e. failure. There is one possibility left to make a better g(m), the otherchild must be investigated. Because this child has not been visited before, acall of `expand' is in order. However, we will only be satis�ed with a returnvalue smaller than 36, and that is why we add this value as a second parameter:



function expand(n; v)! g;/* G should contain n but no descendants of n */if n is a leaf thenv0 := eval(n); n:g := v0; return v0;else if n is a MAX node thenfor c := FirstChild(n) to LastChild(n) doadd c to G; v0 := expand(c; v);if v0 � v thenPURGE all descendants of n from G;return v0;/* loop terminated normally; bound for n, tighter than v, available */v0 := maxfc:g j c child of ng;n:g := v0; return v0;else /* n is a MIN node */v00 :=1;for c := FirstChild(n) to LastChild(n) doadd c to G; v0 := expand(c; v);if v0 < v thenn:g := v0; return v0;/* arrive here only if v0 � v */remove c from G; v00 :=min(v0; v00);/* loop terminated normally, i.e. there is no better bound than v */return v00; /* sharpest lower bound, v0 would have worked as well */Fig. 9. The SSS-2 algorithm, procedure expand`expand(35; 36)'. This returns successfully, and the whole recursive chain windsup with value 35.The next call `diminish(a; 35)' in the main loop should fail. Recursive callsfor c, f and m are issued, and the reader is invited to check how failure of theinner call for m is computed. Because f is a MAX node and m has failed thereis no way to obtain a better bound for f . This means that the subtree of G inf can be destroyed. This is realized by the PURGE operation (notice that fitself will be removed at one level higher). The body of the call for c will nowgenerate a call `expand(g; 35)' and this will return the failure value 37 (pleasecheck, notice that expand also executes a PURGE). Now c itself fails, a PURGEsall descendants and the computation terminates.The code given in Figs. 7, 8 and 9 must be clear. Some care has been takento return on failure the best lower bound which can be deduced for the node.This is not strictly necessary, for the caller any value � g will do.Notice that this computation must have visited the min solution tree withvalue 35, by virtue of Lemma 4. This is indeed the case because the algorithmhas issued a diminish call for nodes g and 36. These nodes are not on the criticalpath (from a to 35) themselves, but they are children of MIN nodes on thecritical path. The second arguments of these diminish calls have been values



� 35. The calls have reported failure and each of them must therefore have seena min solution tree with value � 35.The SSS-2 algorithm di�ers in two respects from original SSS*. The �rstdi�erence is of conceptual nature. SSS* has been set up to �nd the best minsolution tree. It achieves this by searching min solution trees from left to right.At each moment more than one tree is under investigation. The search proceedsin an interleaved way. Each tree is characterized by the last node visited, to-gether with the best (minimal) value seen so far in this tree. The algorithm isorganized in such a way that at each moment these end nodes form the leaf setof a max solution tree. Because the search of a min solution tree will also visitinterior nodes of the game tree, it is possible that the corresponding max solu-tion tree does not descend all the way down to the leaves of the game tree. Thiscorresponds with points in time where SSS-2 is busy expanding new children ofa MIN node.The second di�erence with SSS* is the data structure used. Where SSS-2uses a max solution tree, SSS* uses an OPEN list, which is the list of endpointsof this tree. The working of SSS* can roughly be described as a loop with body:search the maximal element in OPEN; perform local operations (like searchingyounger brothers) until you have found a better value or you recognize failure.This loop is repeated until the search is exhausted. SSS* also needs the PURGEoperator, every now and then (corresponding to the points where SSS-2 woulddo a PURGE) it also discards all descendants from the OPEN list.The original paper [17] proved that SSS* was more e�cient than Alpha-Betain the sense that the set of nodes visited by SSS* is always a subset of thenode set visited by Alpha-Beta. For instance, for Fig. 1 SSS-2 visits the leavesf41; 5; 12; 10; 36; 35; 50; 37g. Notice that this is more than the critical tree whichdoes not contain 41. SSS-2 su�ers here from a left to right e�ect. On the otherhand Alpha-Beta also visits the nodes 90, 99 and 80. This is due to the fact thatAlpha-Beta has to evaluate b fully, because there is as yet no indication thatanother part of the tree is better.So, SSS* seems to be the better algorithm, but this idea was challenged inthe paper [15] which critized the algorithm both on theoretical and on practicalgrounds. From the theoretical side it was argued that in many cases the supe-riority of SSS* over Alpha-Beta was not as big as expected. Both algorithmssearch the same nodes for perfectly ordered trees, for perfectly unordered trees,as well as for trees where `eval' yields only two values, e.g. `win' and `loss'. Astatistical analysis indicated that for practical values of the depth of the gametree Alpha-Beta never searches more than 3 times the number of nodes thatSSS* would.From the practical point of view there was the observation that Alpha-Betahardly needs memory space (O(d) for the stack if the depth of the tree is d), whilethe OPEN list in SSS* would take room O(wdd=2e), i.e. the number of leaves ofa max solution tree of depth d. A more severe objection is that counting thenumber of nodes visited is not a good indication for the running time. First ofall, nodes are revisited, but more important, visiting a node does not take a



constant amount of time: �nding the best node in the OPEN list or the PURGEoperator needs more than that.These observations have been justi�ed experimentally in [2]. For random trees(where the evaluation function will just draw a random number) they reportedthat SSS* was 1:8 to 57 times slower than Alpha-Beta.It is clear that a more e�cient data structure for SSS* (and SSS-2) wasneeded. The paper [2] came with a proposal which purged the PURGE operatorfrom the scene. Because SSS-2 always manipulates one max solution tree, thealgorithm needs only room for one such a tree. The idea was to pre-allocate thisroom, structured as a max solution tree, but with `empty nodes'. The �rst callof `expand' now �lls in the blanks. Purging is not needed because, for instancewhen the subtree below f has to be purged (in the call `diminish(c; 35)', cf. thediscussion above) the algorithm overwrites the entries belonging to the subtreeunder f with new values from the subtree under g. In SSS-2 it is clear whenoverwriting is allowed, because we go from `diminish-mode' to `expand-mode'.With respect to the original SSS* code more care had to be exercised.This idea proved to be successful, experiments showed that this versionof SSS* was competitive with Alpha-Beta, sometimes faster (0:93), sometimesslower (1:38). Moreover, in [14] several optimization tricks have been applied tothis idea, leading to relative running times of 40% for unordered random trees to70% for 60% ordered random trees (i.e. random trees in which the oldest childhas 60% chance to be the best one).However, still SSS* performs best for unordered trees, while game trees tendto be rather well ordered. So the advantage of SSS* is doubtful. Furthermore,we saw already that the ordering in the tree is exploited by algorithms likeNegaScout, which makes the algorithm to beat even more e�cient. This raisesthe question whether there is any hope for best �rst algorithms like SSS*.6 SSS and Alpha-Beta ReconciledIn this section we will elaborate on the similarities between Alpha-Beta and SSS.This will result in an algorithm based on null window search that is equivalentwith SSS-2. We will �rst concentrate on the procedure expand, so let us considera call `expand(n; g)'. If this call fails it will return a value � g, a lower boundde�ned by a min solution tree. This behaviour is similar to that of an Alpha-Betacall with � = g failing high. If, on the other hand, the expand call succeeds, itwill have built a max solution tree with value < g or, assuming integer gamevalues, a value � g � 1. This again resembles behaviour of Alpha-Beta, nowfailing low on input parameter � = g � 1. Apparently the calls `expand(n; g)'and `alphabeta(n; g � 1; g) behave similarly.We study in more detail the case that n is a MAX node for which the ex-pand call succeeds. In that case the call will generate for all children c of n,from left to right, a subcall `expand(c; g)' with the same g-parameter. Thesesubcalls all succeed and the call `expand(n; g)' returns the maximum of the re-turn values of the children. Now let us assume that for the children c expand



and alphabeta behave identically. Then Alpha-Beta will also generate a sub-call for each of its children with the same return value as delivered by expand,and `alphabeta(n; g � 1; g)' returns the same value as `expand(n; g)'. Therefore`expand(n; g)' and `alphabeta(n; g� 1; g)' behave identically. If one analyzes theother possible cases, and one uses induction, one can prove that the calling treefor `expand(n; g)' is completely mirrored by the one for `alphabeta(n; g � 1; g)',the same set of nodes is visited in the same order and the same value is returned.The next step is to extend this result to the calling tree generated by theprocedure diminish. However, this procedure expects a max solution tree in Gwhich will guide its search. Therefore, the null window search should generateand use equivalent information. The main result of this section will be that thiscan be realized by using TTalphabeta instead of Alpha-Beta, i.e. by using atransposition table. This means that we obtain an algorithm equivalent withSSS-2 if we change, in the main body of SSS-2, cf. Fig. 7, the calls `expand(n; g)'and `diminish(n; g)' by calls `TTalphabeta(n; g�1; g)'. This new version is called`MTD(1)'.We will not prove this formally. Instead, we will try to sketch why the 
ow ofcontrol (the calling tree and the return values) will be essentially the same in bothversions. We will �rst show how a call of TTalphabeta builds a structure insidethe transposition table which is equivalent with the maximum solution tree acorresponding expand or diminish call would construct in G. In this analysis wewill use induction-like arguments, like `earlier calls (or inner calls) do whateverwe expect from them'. These assumptions are used only to highlight the essentialideas, not to lay the base for an inductive proof. Such a formal proof can be givenbut it must be set up with some more care. Furthermore, our analysis will bebased on yet another assumption, namely that no entries in the transpositiontable will be overwritten, i.e. there will be no collisions.First of all we recall that TTalphabeta stores on low failure its return valuein the f+-�eld of the entry in the transposition table of the node involved. So,assuming that `expand(n; g)' or `diminish(n; g)' generate the same result valueg0 as `TTalphabeta(n; g � 1; g)' does, we will see in the max solution tree inG n:g = g0 and in the transposition table n:f+ = g0. This means that in thetransposition table the max solution tree from G can be partially found backby tracing the f+-�elds. As it stands we cannot recover the max solution treecompletely because it is not yet clear which child should be chosen in a MINnode.Two observations are relevant here. The �rst one is that on high failure,TTalphabeta stores its return value in the f�-�eld of the node involved. Thesecond observation follows from a reconstruction of the way expand and diminishinclude a node c, child of a MIN node n, in the max solution tree G, say withvalue g. This occurs when a call `expand(c; g0)'or `diminish(c; g0)' with g0 > gends in success with result value g. Again, assuming that there is an equiva-lent call `TTalphabeta(c; g0 � 1; g0) failing low with result g, we see that in thetransposition table we obtain c:f+ = g. Now what about the other children ofn? The younger brothers of c have not yet been subjected to an expand or di-



minish call, so we assume that there has neither been a TTalphabeta call, andtherefore they are not in the transposition table. The older brothers c0 of c musthave been searched earlier by SSS-2 with parameter g0 > g and they must havebeen rejected, i.e. expand or diminish (and we therefore assume TTalphabeta aswell) must have ended in a (high) failure with return values > g0 and therefore> g. This means that for all older brothers c0 the transposition table has entriesc0:f� > g. Now it is clear how the current max solution tree is encoded in thetransposition table. For the children c of a MAX node n which is in the maxsolution tree we see in the f+-�eld the same value as in the g-�eld of G. Thechild of a MIN node n is the child with the same f+-value as n itself, while allolder children have f�-value bigger than n:f+.Notice that the line of reasoning from the beginning of this section showingthat expand and alphabeta generate equivalent calling trees can be extended.We observe that expand and TTalphabeta generate equivalent calling trees andalso that the max solution tree generated in G is encoded in the transpositiontable. This means that in the sequel we need only compare the behaviour ofdiminish and TTalphabeta.So, suppose that we have a call `diminish(n; g)' and `TTalphabeta(n; g�1; g)',whereG contains a max solution tree de�ning the upper bound g for n, and wherethe transposition table encodes this max solution tree. We will now sketch thatboth procedures generate equivalent subcalls for essentially the same nodes inthe same order. We say `essentially' because TTalphabeta will pay short visitsto nodes that will not be visited by diminish. These short visits are needed todetermine which node should be the next, say, `serious' one to be visited, seriousnodes being the ones that are also visited by diminish.Suppose n is a MAX node. By inspecting the code we see that the diminishcall will generate subcalls only for children c with c:g = g. On the other hand, thecode of TTalphabeta speci�es that all children c will be visited. However, for allnodes with n:f+ < g, these visits will be short ones, because the test `n:f+ � �'in the body of TTalphabeta will be met. So the only serious calls will be for thechildren with c:f+ = g and one easily checks that for such a call diminish andTTalphabeta behave in the same way. (Notice that we have c:f� = �1 for allnon leaf children because all earlier visits to c must have failed low.)Next, suppose that n is a MIN node. The �rst node visited by diminish willbe its only child c that is in G. TTalphabeta has to do some short visits to theolder brothers c0 of c �rst, in order to �nd out which child is the one in themax solution tree. All visits to these brothers will meet a shortcut in the test`n:f� � �' in the body of TTalphabeta. So the �rst serious visit will be to cand the reader is again invited to check that from this point on diminish andTTalphabeta exhibit the same behaviour.In Section 4 we mentioned that a transposition table can provide useful infor-mation to speed up re-searches, like the ones done by NegaScout. The analysisgiven here has elaborated on this, `short visits' will enable a re-search to e�-ciently avoid old useless paths. This very mechanism is exploited to good e�ectin NegaScout as well.



Now that we have reduced SSS to a series of null window searches we cancompare this algorithm with Alpha-Beta in a fair way, i.e. in an equal environ-ment. We brie
y state some results, the reader is referred to [11, 12] for moredetails. Experiments have been performed for tournament-quality real-life gameplaying programs for three di�erent games.First of all, the idea that SSS* uses too much memory proved to be untrue.The experiments showed that MTD(1) becomes better than Alpha-Beta if thesize of the transposition table exceeds roughly 217 entries. Assuming that eachentry contains 16 bytes, we see that a transposition table of 2 Mbyte is alreadyadequate. The second result is that in general the di�erence in e�ciency ofMTD(1) and Alpha-Beta is relatively small, the trend being that MTD(1) isa few percents more e�cient. This seems to be in contrast with the results from[14], cf. Section 5. Apparently in real life game trees are so well ordered that thereason why SSS would perform better has almost vanished. Thirdly we foundthat NegaScout is in general better than both MTD(1) and Alpha-Beta, thoughthe di�erence is never more than 10NegaScout improves upon Alpha-Beta by exploiting knowledge gathered fromthe previous iteration of iterative deepening. For the null window search frame-work a similar trick is possible. MTD(1) is parameterized with the value 1and therefore one can view the algorithm as generating it �rst g-value, an up-per bound for f(root), from the assumption that this value equals 1. Howeverthe last iteration of iterative deepening has generated an estimate of f(root)that will be much better. It is reasonable to expect that less iterations in themain loop of SSS-2 will be needed if we start from this better estimate. Thealgorithm which applies this idea is called MTD(f). We have to be a little care-ful in the formulation of this algorithm. Starting from 1 we are sure to getan upper bound after all iterations but the last one. This means that we canalways re-search using the window (g� 1; g), where g is the result returned pre-viously. In the MTD(f)-case we have to check whether after the �rst expandcall `g :=TTalphabeta(root; f � 1; f);' we obtain a value g � f or g < f . Inthe �rst case we have to approximate the game value from below using calls`TTalphabeta(root; g; g + 1)' while in the second case we can continue usingwindows (g � 1; g).Experiments like the one discussed above have shown that MTD(f) performs(almost) consistently better than NegaScout. We observed margins in the range1{15%. This shows that the most e�cient general purpose game tree searchingprogram that we presently know of is MTD(f).Acknowledgements. It must have been clear from this paper that many ofthe newer results reported here have been generated by, or in close collaborationwith Aske Plaat and Jonathan Schae�er. We heartily acknowledge their work,and the pleasant cooperation we enjoyed over the years.References1. G. M. Baudet, On the branching factor of the alpha-beta pruning algorithm. Arti-
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