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Abstract. This paper deals with algorithms searching trees generated
by two-person, zero-sum games with perfect information. The standard
algorithm in this field is Alpha-Beta. We will discuss this algorithm as
well as extensions, like transposition tables, iterative deepening and Ne-
gaScout. Special attention is devoted to domain knowledge pertaining to
game trees, more specifically to solution trees.

The above mentioned algorithms implement depth first search. The alter-
native is best first search. The best known algorithm in this area is Stock-
man’s SSS*. We treat a variant equivalent to SSS* called SSS-2. These
algorithms are provably better than Alpha-Beta, but it needs a lot of
tweaking to show this in practice. A variant of SSS-2, cast in Alpha-Beta
terms, will be discussed which does realize this potential. This algorithm
is however still worse than NegaScout. On the other hand, applying a
similar idea as the one behind NegaScout to this last SSS version yields
the best (sequential) game tree searcher known up till now: MTD(f).

1 Introduction

In this paper we give an overview on algorithms that search game trees, as defined
by perfect-information, two-person, zero-sum games like chess, checkers and the
like. Let the reader be warned that the presentation is certainly not exhaustive
and also rather broad. Most of the algorithms presented here admit refinements,
game trees are not so regular as suggested in this paper, many details and all
proofs are skipped. The aim of this paper is to give the reader a feeling for what
is going on in the field. For more details one should consult the references.

The term ‘zero-sum game’ indicates that the gain of one player equals the loss
of her opponent. This excludes games studied in the field of classical mathemati-
cal game theory, such as the prisoner’s dilemma. We furthermore exclude random
events, the game should proceed completely deterministically. This means that
a game like backgammon is not studied here either.

The games in the above described class proceed by the adversaries taking
turns in making a move. A move alters the current position, e.g. the contents
of a chess board, or the number and the size of heaps of matches in Nim-like
games. Such games can be represented in abstract terms as game trees, the nodes
of which correspond to positions, while an edge between two nodes describes the
move that transforms the position corresponding to the source node into the
position associated with the target node. Because the players take turns, such
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Fig.1. A Game Tree

a tree is layered, in the sense that all nodes at the same depth are of the same
type, e.g. MAX nodes (denoted by a square), in which the first player (usually
called MAX) has the move. At the next level in the tree we only see MIN nodes,
depicted as circles, where the second player (called MIN) should move. The root
of the tree corresponds with a given position of the game, and the leaves are
nodes from which no move can be made. In these final positions the game is
decided, the value of such a position is known, e.g. ‘win for MAX’, ‘loss for
MAX’, ‘draw’, or maybe a more subtle score. It is customary to represent a
score as an integer which denotes the value that the position has for MAX. For
instance, a win for MAX could be denoted by +1, a draw by 0 and a win for
MIN by —1. An example of a game tree is given in Fig. 1.

A game tree search algorithm determines the value f(root) of the root node
of a game, e.g. ‘forced win for MAX’ or ‘forced win for MIN’ or ‘one of the
players can force a draw’. Moreover the algorithm also determines the best move
from the root position.

A few remarks are in order at this moment. First of all one should be aware
of the fact that most games do not generate trees but game graphs instead. For
instance, due to repetitions of moves the game tree for chess is infinite, while the
game graph is finite, because there are only finitely many valid positions in chess.
For efficiency reasons most game tree algorithms exploit a transposition table in
which positions already encountered are stored together with relevant informa-
tion thereof (value, best move, etc.). One gets the impression that transposition
tables have been added as an afterthought, or as a coding trick. For instance one
still speaks of game tree search instead of game graph search. More importantly,
we have the impression that not all information stored in a transposition table
is used to good effect by the standard algorithms. In fact, a few of the more
recent results discussed in this paper are related to a fuller exploitation of the
data hidden there. For other examples the reader is referred to [11, 13].

A second remark is related to the fact that trees for nontrivial games are
far too big to be searched fully (which is one of the reasons such games are



interesting for us humans). Therefore approximation techniques have to be used.
One standard approach is to consider only a finite part of the tree, e.g. only a
restricted number of levels (plies or half-moves). Notice that Fig. 1 can also be
considered as such a partial game tree. This means that not in all leaves of such a
reduced tree an exact evaluation of the position is possible (because if we would
have such a gadget, there would be no need to search a full tree of variations...).
We have to rely on an evaluation function ‘eval’ that can only approximate the
true value of a position. It is hoped however that the inexactness of this approach
is leveled by the fact that the tree is searched to a sufficient depth.

The value of a position is determined by the so called minimaz rule. In a leaf
n of the tree the value is given by eval(n). In non-leaf positions the MAX player
will choose the move which leads to the best position, i.e. the position with the
highest value. If it is MIN’s move then she will choose the move resulting in the
best position from her point of view, that is, the one with the smallest value.
This mechanism can be applied recursively which yields the following definition.

minimax(n) =
eval(n) if n is a leaf
= ¢ max{minimax(c) | ¢ is a child of n} if n is a MAX node (1)

min{minimax(c) | ¢ is a child of n} if n is a MIN node

This rule straightforwardly translates into the algorithm given in Fig. 2. A
few remarks on the ‘language’ in which the algorithms appearing in this paper
are written must be made. The return statement is like its C—counterpart, that
is, the return value of the function is determined and an exit from the function
is performed. Statement grouping is expressed by using indentation, obviating
the need for pascal begin...end pairs or C-like {}-brackets. We will use a
genealogical way of expressing relations between nodes in our game trees. For
instance, the FirstChild of a node n or the OldestBrother of one of its children
¢ is the leftmost child of n in the tree.

2 Alpha-Beta

The Minimax algorithm from the previous section visits all nodes in the game
tree. Because this number is exponential in the depth d of the tree, and also
because branching factors w can be rather large (for instance in the middle
game of chess a node has about 30-40 children), one can be confronted with
impressive numbers of nodes to be visited (O(w?) for uniform trees, i.e. trees in
which all non-leaf nodes have the same number of children). It is only natural to
search for ways to avoid having to visit all nodes. The well known Alpha-Beta
algorithm uses, like Minimax, a depth first search but, unlike Minimax, finds a
way to cut off nodes which are not relevant for the outcome. Alpha-beta has a
rich history, a good overview of the early stages is presented in [5].

Suppose the Minimax algorithm of Fig. 2 searches the tree from Fig. 1 and
suppose the inner call ‘minimax(d)’ executed within the call ‘minimax(b)’ has



function minimax(n) — g;
if n is a leaf then g := eval(n);
else if n is a MAX node then
g := —o0; ¢ := FirstChild(n);
while c is well defined do
g := max(g, minimax(c)); ¢ := NextBrother(c);
else /* n is a MIN node */
g := +o00; ¢ := FirstChild(n);
while c is well defined do
g := min(g, minimax(c)); ¢ := NextBrother(c);
return g;

Fig. 2. The Minimax algorithm

just returned the value 12. The next step is now to determine the minimax value
of e, a call ‘minimax(e)’ is executed which in its turn leads to a call ‘miminax(j)’
which delivers the value 80. Therefore we now know that e, being a MAX node,
will have a minimax value of at least 80. But from this we can already infer the
minimax value of b, because this will be the minimum of 12 (d’s value) and a
number not smaller than 80. So the value of k£ cannot influence b’s value any
more and there is no need to investigate k or its descendants. This phenomenon,
that a node needs not be visited because an older brother (in this case j) has a
value worse than an uncle (here d) is called a shallow cutoff.

This is the main idea exploited in Alpha-Beta. It is implemented by giving the
recursive search procedure ‘alphabeta’; apart from the node to be investigated,
two other parameters, a lower bound « and an upper bound [ using which
information is transferred about the history of the computation previous to this
call. In our case, node e as well as node j will feature in a call ‘alphabeta’
with parameters a = —oo and 8 = 12. These parameters define the af-window
(—00,12), using which it is communicated to the procedure that only return
values within this window matter for the environment. Using this information,
in the body of the call ‘alphabeta(e, —00,12)’ it can locally be decided that there
is no need to investigate k after j’s value has become known.

Let us return to the execution of Minimax and Alpha-Beta on the tree in
Fig. 1. Once it is determined that the value of b equals 12, control returns to
node a, after which the subtree rooted in ¢ should be investigated. Now a similar
line of reasoning applies: for node a, having already a child with value 12, only
values greater than 12 are of interest. This translates into parameter values in
the call for node ¢ of @ = 12 and 8 = +oo. This will lead to an inner call for
nodes f and [ with the same parameters and once it is determined that the
oldest child of [ has value smaller than 12 there is no need to visit the other
child. Notice however that this cutoff is not of the type discussed earlier, there is
no ‘older brother — uncle’ relationship. This type of cutoff is called a deep cutoff
and the early versions of Alpha-Beta did not recognize such ones.



function alphabeta(n, a, 8) — g;
if n is a leaf then g := eval(n);
else if n is a MAX node then
g := —o0; &' := «; ¢ := FirstChild(n);
while (g < 3) and (c is well defined) do
/* g is max{return values of children seen so far} */
g := max(g, alphabeta(c, o', 8));
o' := max(g,a’); ¢ := NextBrother(c);
else /* n is a MIN node */
g := +o0; B := B3; ¢ := FirstChild(n);
while (g > ) and (c is well defined) do
/* g is min{return values of children seen so far} */
g := min(g, alphabeta(c, o, 8'));
B := min(g,’); c := NextBrother(c);

return g;

Fig. 3. The Alpha-Beta algorithm

It is also possible to have finite values for both the o and the g parameter.
Counsider node c. Once the call ‘alphabeta(f, 12, +00)’ has terminated with re-
turn value 35, node g will be called with af-window (12,35). There is no need
for return values < 12 because a does not need them (in that case a will choose
b instead) and there is no need for a return value > 35 because ¢ does not need
this (¢ will choose f instead).

The same parameters will feature in the recursive call for n. This latter call
will return with a high failure, i.e. value 37, which will cause a cutoff (a 3-cutoff)
of node o.

The mechanism must be clear by now. If a child of a MAX node returns with
a high failure, a return value > 3, then the remaining younger children can be
cut off. Dually, if a child of a MIN node returns with a low failure, a return value
< a, then we again have a cutoff, called an a-cutoff. Using this explanation the
code of Fig. 3 should be clear.

The idea behind the Alpha-Beta function applied to a node n is that it needs
only return the right value, the game value f(n), when this value lies within the
input af-window. It is interesting to see what value is returned if the function
returns with a low or a high failure. We first consider the case that n is a MAX
node with only leaves as children. From the code in Fig. 3 we see that on low
failure all children have been investigated, and the return value is the highest
value among the children. Thus in this case also the exact minimax value of n
is returned. On the other hand if a high failure occurs, it is not necessary that
all children of n have been visited. The procedure returns the value of the oldest
child with value > 3. This means that now not the exact value f(n) is returned
but only a lower bound to the game value of n. A dual observation can be made
for the case that n is a MIN node.



This again entails that on low failure in a MAX node with height 2 (where
‘height’ is defined as the distance to the leaves), Alpha-Beta will not return
the game value but in general only an upper bound thereof. This is due to the
fact that the same holds for all its children. The next lemma states that this
observation generalizes.

Lemmal. Consider a call alphabeta(n,«, ), returning a value g. If on entry
to this function the precondition a < (3 holds, then on exit we have the following
postcondition

g<a=g> f(n), (low failure) (2)
a<g<pB=g=f(n), (success) (3)
9> 6= g < f(n), (high failure) (4)

The proof (cf. [1, 8, 9]) is a formalization of the above line of reasoning, using
recursion induction, which is in essence induction on the height of n.

It is interesting to notice that the earliest variants of Alpha-Beta would return
the input value a on low failure and g on high failure, thus discarding information
gathered during the call. On first sight the output value is indeed irrelevant on
high or low failure because high enough up the game tree it will be discarded
anyhow. There are reasons however to state the contrary. The most important
ones will surface later when we will discuss Alpha-Beta variants of best first game
tree search, but one argument can be given already now. Suppose a transposition
table is used in order to apply the results of a previous investigation of a node n
when this node turns out to be a transposition. In general, the a8 input window
will not be the same as in the previous call. This suggests that it is useful to
store results in the transposition table that are as informative as possible. We
return to this issue later.

Earlier we saw that Alpha-Beta searches less nodes than Minimax in essence
by exploiting the input ag-window to prune nodes. It seems that the effect is that
making the input window smaller decreases the number of nodes to be visited.
Closer examination of the code shows that this is indeed the case. Stated more
precisely, we have

Lemma 2. Suppose two calls alphabeta(n, a, 3) and alphabeta(n,a’,3') are ez-
ecuted on the same node in the same game tree and suppose a < o' and 3> [3'.
Then we have that the set of nodes visited by the second call is a subset of the
set of nodes visited by the first call.

This lemma can be proven by exploiting a characterization of the nodes
visited by Alpha-Beta, given in [1, 3] amongst others. It can also be proven
straightforwardly using recursion induction. This result will turn out to be very
useful in the sequel while comparing the efficiency of Alpha-Beta based game
tree search algorithms.



Fig. 4. An Optimal Max (left) and Min (right) Solution Tree

3 Solution Trees

In the previous section we indeed realized our goal, Alpha-Beta searches less
nodes than Minimax (the pathological case that Alpha-Beta searches the whole
tree is possible but unlikely). In this section we approach the question whether
we can do better from a theoretical point of view, by introducing the notion
solution tree.

Suppose, for the tree of Fig. 1, we want to find a subtree from which we can
derive an upper bound for the game value 35 of the root. We can do so if we
have an upper bound for both children, b and c¢. This follows from the minimax
rule. So a, b and ¢ must be included in the tree to be built. For b and ¢, being
MIN nodes, there is a less precious way to establish an upper bound, an upper
bound for only one child will do (this follows again from the minimax rule). Let
us include d and f. Now the story repeats. For these MAX nodes we have to
include both children, i.e. h, i, [ and m. Finally we have to add one child for
each of these 4 nodes and we choose the leaves labeled 5, 12, 10 and 35.

The subtree we have built is the left one in Fig. 4. It is called a maz solution
tree, the shape of which is defined by the rule that the root should be included,
all children should be included for a non-leaf MAX node, and exactly one child
should be included for a non-leaf MIN node. A max solution tree exhibits a
strategy for the MIN player because in all possible variations in the tree the
choice of MIN is fixed [4, 15].

The minimax value of the tree is an upper bound to the game value of
the root. Because in MIN nodes of this tree the minimax rule determines the
minimum of a singleton set, there is only maximization left, and we find that
the minimax value equals max{l | [ leaf in the tree} = 35. This value is in fact
the best we can get, and therefore this solution tree is called optimal.

By reversing the ‘construction rules’ we define the dual notion min solution
tree. The rightmost tree in Fig. 4 is a min solution tree. It is also optimal because



its minimax value, the minimum of the values of its leaves equals f(a).

When we take the union of an optimal min solution tree and an optimal max
solution tree we obtain a so called critical tree. The intersection of these trees is
the principal variation, in our example the path from the root to node 35. From
the arguments given above we infer that a critical tree establishes both an upper
bound and a lower bound equal to the value of the root, that is it establishes
the game value. We summarize.

Lemma 3. [17] The minimaz value of a min/maz solution tree is a lower/upper
bound to the game value of the root. Moreover, for each game tree there exists
at least one optimal min/maz solution tree.

Lemmad4. [3,5, 10] In order to establish the game value of the root an algorithm
must have visited at least a critical tree.

The reader is invited to check that both optimal solution trees for the tree
of Fig. 1 are unique. Lemma 3 suggest that this need not be so. In fact, assign-
ing to leaf 41 in Fig. 1 the value 11 makes the max solution tree with leaf set
{11,12,10, 35} optimal as well.

It is instructive to study how Alpha-Beta finds the critical tree of Fig. 1. The
leaf set visited by Alpha-Beta is {41,5,12,90,99, 80, 10, 36, 35, 50, 37} which is
certainly bigger than the critical leaf set {5,12,10, 36, 35,50,37}. The overhead
is due to the fact that Alpha-Beta determines that 12 is the game value of node
b, while an upper bound of 12 would have been sufficient. Notice furthermore
that on high failure, e.g. in e, a min solution tree has been constructed defining
the return value 80 which is a lower bound. For these results we will therefore
use the notation f~. Similarly a low failure, e.g. in [, returns an upper bound
fT defined by a max solution tree.

In [5] it is investigated whether it is possible that Alpha-Beta indeed searches
only the critical tree. This will occur if the tree is perfectly ordered, i.e. for each
node n, the oldest child has the best game value (maximal if n is a MAX node,
minimal otherwise) of all its children. In that case the optimal solution trees will
be the leftmost ones in the game tree. The reader is invited to reorganize the
tree of Fig. 1 so that the above property holds, and to check how Alpha-Beta
traverses this tree.

Notice that if we are able to organize the search so that we need only to
search the critical tree we will have made a big progression because the size of
this tree is O(w??). Or, stated in other words, with the same amount of work
we will be able to search trees twice as deep as Minimax can.

4 Enhancing Alpha-Beta

In this section we will discuss three reasons why it makes sense to add a trans-
position table to the Alpha-Beta algorithm [11, 16]. The first one has already
appeared in the Introduction, one wants to avoid a recalculation when a trans-
position is found. Instead, the results stored in the transposition table should



function TTalphabeta(n, a, 3) — g;
if n in transposition table then
ifn.f~ =n.f then return n.f~;
if n.f~ > 8 then return n.f~;
if n.ft < a then return n.f7;
/* Info in transposition table did not cause a shortcut */
a:= max(a,n.f7); 8 := min(3,n.f);
if n is a leaf then g := eval(n);
else if n is a MAX node then
g := —o0; &' := a; ¢ := FirstChild(n);
while (g < 8) and (c is well defined) do
/* g is max{return values of children seen so far} */
g := max(g, TTalphabeta(c, o', 3));
o' := max(g,a’); ¢ := NextBrother(c);
else /* n is a MIN node */
g := +o0; B := B3; ¢ := FirstChild(n);
while (g > «) and (c is well defined) do
/* g is min{return values of children seen so far} */
g := min(g, TTalphabeta(c, o, 3'));
B := min(g,3'); ¢ := NextBrother(c);
if n not in transposition table then
put n into transposition table;
n.f~ i= —o0; n.fT := +o0;
if (3 < B) or (n is a leaf) then n.fT :=g;
if (9 > @) or (n is a leaf) then n.f™ := g;
return g;

Fig. 5. Alpha-beta with a transposition table

be used. From Lemma 1 we have that there are three types of outcome possible:
high failure yielding a lower bound f~ to the game value, low failure yielding
an upper bound fT, and success yielding the game value f, combining an upper
and a lower bound f+ = f~ = f.

In Fig. 5 the code for Alpha-Beta using a transposition table is given. It is the
same as in Fig. 3 except that code has been added that handles the transposition
table. At the end of the procedure we store results, and at the beginning we try to
profit of them. Information from the transposition table can cause an immediate
cutoff, or it can lead to sharper bounds, worthwile to be adopted in view of
Lemma 2.

A second advantage of transposition tables is that one can achieve a bet-
ter move ordering. This is realized for instance by algorithms applying iterative
deepening (ID). This technique was introduced for another reason though, i.e.
to avoid that programs would overstep a time limit. Often only a limited time
is available to search a position, and therefore it makes sense to organize the
search as an anytime algorithm, i.e. one must be able to interrupt it at an arbi-



function NegaScout(n, a, 8) — g;
if n is a leaf then g := eval(n);
else
¢ := FirstChild(n); g := NegaScout(c, a, 8); ¢ := NextBrother(c);
if n is a MAX node then
o =y
while (g < 8) and (c is well defined) do
/* g is max{return values of children seen so far} */
o' := max(g,a’); t := NegaScout(c,a,a’ + 1);
if (¢t > @’) and (¢t < 3) then ¢ := NegaScout(c, ¢, 8);
g := max(g,t); ¢ := NextBrother(c);
else /* n is a MIN node */
B = 0;
while (g > ) and (c is well defined) do
/* g is min{return values of children seen so far} */
B := min(g,'); t := NegaScout(c,3 —1,8');
if (t < (') and (t > «) then t := NegaScout(c, a, t);
g :=min(g,t); ¢ := NextBrother(c);
return g;

Fig. 6. The NegaScout algorithm

trary moment and still obtain a sensible answer. The idea is to let the program
search bigger and bigger trees. One starts with the game tree truncated to a
limited depth d, which will be searched using an evaluation function defined at
the nodes at depth d. The tree is then iteratively extended one level deeper, and
re-searched. After an interation, the time spent in the earlier iterations will be
negligeable to the time spent in the last one because search time grows expo-
nentially with the depth.

The value eval(n) of a node at depth d shall in general be a good estimate
of its minimax value determined by the evaluation function of its children. This
means that the best son of an internal node, as calculated by a depth d search,
will probably remain so when calculated by a depth d + 1 search. It is therefore
useful to store the identity of a node’s best child in the transposition table. In
the next iteration this node can then be searched before the others. This idea
turned out to be quite successful, cf. [16], it caused an appreciable speedup,
which should not surprise us in the light of the discussion at the end of the
previous section.

Having achieved a good move ordering, the Alpha-Beta extension called Ne-
gaScout [6] tries to make advantage of that. The idea is to search suitable nodes
using a null window, a window of the form (f, f+1) which cannot contain a game
value. This means that a null window call can only end in high or low failure.
The NegaScout algorithm, given in Fig. 6 is indeed a more efficient version of
Alpha-Beta:



Lemma5. A call NegaScout(n, «, 3) returns the same value as alphabeta(n, a, )
and every node it visits must also be visited by alphabeta.

We give an example of the ideas behind NegaScout, again using the game
tree from Fig. 1. Suppose a call NegaScout(a, —00,00) is performed. First of
all the value of b will be determined through NegaScout(a, —00, c0). This re-
turns 12, which it should according to the above lemma. Now Alpha-Beta would
proceed with a call alphabeta(c, 12,00), but let us try to be smart. If the tree
is sufficiently ordered the odds are high that b is better than ¢, meaning that
alphabeta(c, 12, 00) will fail low. But then any window (12,z) will generate a
low failure, so why not choose (12,13) promising the smallest amount of work.
This leads to a call NegaScout(c, 12, 13).

Now the risk of gambling is that one might lose, and this is exactly what
happens in our case (remember, the tree of Fig. 1 is rather badly ordered.) The
NegaScout call returns the value 35, again obeying the above lemma. We now
are forced to perform a re-search to obtain the true value of ¢ using a wide
window, in our case (35, 00). Notice the value 35 here, we try to exploit as much
information from the previous search as possible. This call will return 35.

Not intimidated by our previous experience, we try to perform the null win-
dow trick again. We again assume that f is the better child of ¢, so we do not
issue a call with window (—o00,35) on g but we do NegaScout(g, 34, 35) instead.
Notice that we shifted the window 1 to the left, because we now expect g to
have a value > 35. In this case we are succesful, the return value is 37 and no
re-search is needed.

It is instructive to execute manually the recursion chain generated by the call
NegaScout(a, —00, 00) on the tree in Fig. 1. A chain of inner calls will lead us to
leaf 41, and to the hypothesis that the value of h equals 41. Null window search
on leaf 5 immediately refutes this, and a re-search will lead to the conclusion
f(h) =5 and the hypothesis f(d) = 5. A null window search on ¢ will invalidate
this, so again we have to do a re-search on i, showing f(d) = 12, leading to the
hypothesis f(b) = 12. The call NegaScout(e, 11, 12) justifies this, leading to the
hypothesis f(a) =12, and so on.

The leaf set visited by NegaScout on a is {41, 5, 12,90, 99, 80, 10, 36, 35, 50, 37},
unfortunately the same set as visited by Alpha-Beta. In order to show that Ne-
gaScout is better than Alpha-Beta the tree should be better ordered. On the
other hand, if the tree would be perfectly ordered again NegaScout and Alpha-
Beta would search the same subtree, i.e. the critical tree...

Our examples are rather unfortunate. Some of the advantages of NegaScout
over Alpha-Beta can be observed by changing the tree of Fig. 1 a little bit: give
leaf 10 the value 15, and leaf 50 the value 10. Now Alpha-Beta will generate calls
alphabeta(l, 12, 00) and alphabeta(m, 15,00) and it will visit the subtree under
m. On the other hand, NegaScout will generate a call NegaScout(l,12,13) and
not visit m. Re-search in f will not be needed because NegaScout(g, 12, 13) will
fail low.

It turns out in practice that for reasonably well ordered trees NegaScout
performs consistently better than Alpha-Beta, cf. [11, 12]. The overhead caused



program SSS-2;

G := {root};
g := expand(root, 0o);
repeat

g =g

g := diminish(root, g');
until g > ¢';

Fig. 7. The SSS-2 algorithm, main loop

by re-searches turns out to be low, especially when the evaluation function is
relatively expensive compared to tree traversal. This of course assumes that we
store leaf values in a transposition table, which is an indication of the third
advantage of transposition tables: it provides useful information for re-searches
within the same iteration of iterative deepening. We will return to this issue in
a later section.

5 The SSS* Family

Because in Alpha-Beta the search is organized in a depth first left to right
manner the algorithm easily suffers from bad move orderings in the tree. The
SSS* algorithm [17] tries to direct the search to those parts of the tree which
are likely to be in the critical tree, in that sense it can be characterized as a best
first search. In this section we will not discuss SSS* but SSS-2 instead [7]. The
reason is that the latter algorithm is more perspicuous and it is equivalent with
SSS* in a rather strong sense: it searches the same nodes in the same order and
it shows almost all weaknesses that SSS* has. A similar analysis as given here,
but based on SSS* can be found in [11, 12].

The main body of SSS-2 is given in Fig. 7. The idea is to find the best max
solution tree. This is realized by first generating the leftmost max solution tree
and then successively refining it into a better one until this is no longer possible.
The program manipulates a global variable G in which the current max solution
tree is stored.

The first max solution tree is generated by the call ‘expand(a,cc)’. It finds
the leftmost max solution tree, assigns it to G and returns its value g. The
max solution tree is then refined by a call ‘diminish(a,g¢’)’. If successful, this
procedure returns a sharper upper bound g and stores in G the max solution
tree defining this bound. Failure is indicated by a return value g > ¢'. When
executed on the tree of Fig. 1, the expand call will return the max solution tree
with leaf set {41,12,10,36}, and the leaf sets of the max solution trees built by
the diminish calls will be {5,12,10,36} and {5, 12,10, 35}.

We now give a more detailed description of ‘diminish’, cf. Fig. 8 and ‘expand’,
cf. Fig. 9. Consider the second time the main body of SSS-2 executes a diminish



function diminish(n,v) — g;
/* may only be called if subtree rooted in G has value v */
if n is a leaf then
/*By virtue of precondition game value of n equals v */
return v;
else if n is a MAX node then
/* n has at least one child ¢ with c.g = v */
for ¢ := FirstChild(n) to LastChild(n) do
if c.g = v then v’ := diminish(c, v);
if v’ > v then /* no tighter upper bound available for n */
PURGE all descendants of n from G}
return v';
/* loop terminated normally, tighter upper bound available for n */
v' := max{c.g | c child of n};
n.g :=v'; return v';
else /* n is a MIN node, the only child of n in G has c.n =v */
¢ := the single child of n in G}
v’ := diminish(c, g);
if v < v then
n.g :=v'; return v';
/* no tighter bound for ¢ available, children of ¢ in G have already
been removed */
remove ¢ from G,
for ¢ := NextBrother(c) to LastChild(n) do
add c to G; v' := expand(c, v);
if v’ < v then
n.g :=v'; return(v’);
/* arrive here only if v' > v */
remove ¢ from G,
return g; /* returns the sharpest lower bound, not strictly necessary */

Fig. 8. The SSS-2 algorithm, procedure diminish

call. At that moment we have a tree in G with leaf set {5, 12, 10,36}. Accordingly,
the input parameter g’ will be 36. The tree G defines an upper bound of 12 for
b and of 36 for c. Refining G so that the upper bound of b will become sharper
is of no use at this stage as long as we are not able to tighten g(c). Therefore a
recursive call ‘diminish(c, 36)’ is generated. In order to efficiently find out which
child to choose, the algorithm stores the g-value of each node, as defined by G,
also in G. Because ¢ is a MIN node there is only one child, f, in G. We first
try to make the subtree in f better, i.e. we issue a call ‘diminish(f, 36)’. This
generates a call ‘diminish(m, 36)’ and an inner call ‘diminish(36,36)’ returning
36, i.e. failure. There is one possibility left to make a better g(m), the other
child must be investigated. Because this child has not been visited before, a
call of ‘expand’ is in order. However, we will only be satisfied with a return
value smaller than 36, and that is why we add this value as a second parameter:



function expand(n,v) — g;
/* G should contain n but no descendants of n */
if n is a leaf then
v' := eval(n); n.g := v'; return v';
else if n is a MAX node then
for ¢ := FirstChild(n) to LastChild(n) do
add ¢ to G; v' := expand(c,v);
if v' > v then
PURGE all descendants of n from G
return v’;
/* loop terminated normally; bound for n, tighter than v, available */
v" := max{c.g | ¢ child of n};
n.g :=v'; return v';
else /* n is a MIN node */
v = oo
for ¢ := FirstChild(n) to LastChild(n) do
add ¢ to G; v’ := expand(c,v);
if v < v then
n.g :=v'; return v';
/* arrive here only if v' > v */
remove c¢ from G; v" :=min(v',v");
/* loop terminated normally, i.e. there is no better bound than v */
return v'’; /* sharpest lower bound, v' would have worked as well */

Fig. 9. The SSS-2 algorithm, procedure expand

‘expand(35,36)’. This returns successfully, and the whole recursive chain winds
up with value 35.

The next call ‘diminish(a,35)’ in the main loop should fail. Recursive calls
for ¢, f and m are issued, and the reader is invited to check how failure of the
inner call for m is computed. Because f is a MAX node and m has failed there
is no way to obtain a better bound for f. This means that the subtree of G in
f can be destroyed. This is realized by the PURGE operation (notice that f
itself will be removed at one level higher). The body of the call for ¢ will now
generate a call ‘expand(g,35)’ and this will return the failure value 37 (please
check, notice that expand also executes a PURGE). Now c itself fails, a PURGEs
all descendants and the computation terminates.

The code given in Figs. 7, 8 and 9 must be clear. Some care has been taken
to return on failure the best lower bound which can be deduced for the node.
This is not strictly necessary, for the caller any value > g will do.

Notice that this computation must have visited the min solution tree with
value 35, by virtue of Lemma 4. This is indeed the case because the algorithm
has issued a diminish call for nodes g and 36. These nodes are not on the critical
path (from a to 35) themselves, but they are children of MIN nodes on the
critical path. The second arguments of these diminish calls have been values



> 35. The calls have reported failure and each of them must therefore have seen
a min solution tree with value > 35.

The SSS-2 algorithm differs in two respects from original SSS*. The first
difference is of conceptual nature. SSS* has been set up to find the best min
solution tree. It achieves this by searching min solution trees from left to right.
At each moment more than one tree is under investigation. The search proceeds
in an interleaved way. Each tree is characterized by the last node visited, to-
gether with the best (minimal) value seen so far in this tree. The algorithm is
organized in such a way that at each moment these end nodes form the leaf set
of a max solution tree. Because the search of a min solution tree will also visit
interior nodes of the game tree, it is possible that the corresponding max solu-
tion tree does not descend all the way down to the leaves of the game tree. This
corresponds with points in time where SSS-2 is busy expanding new children of
a MIN node.

The second difference with SSS* is the data structure used. Where SSS-2
uses a max solution tree, SSS* uses an OPEN list, which is the list of endpoints
of this tree. The working of SSS* can roughly be described as a loop with body:
search the maximal element in OPEN; perform local operations (like searching
younger brothers) until you have found a better value or you recognize failure.
This loop is repeated until the search is exhausted. SSS* also needs the PURGE
operator, every now and then (corresponding to the points where SSS-2 would
do a PURGE) it also discards all descendants from the OPEN list.

The original paper [17] proved that SSS* was more efficient than Alpha-Beta
in the sense that the set of nodes visited by SSS* is always a subset of the
node set visited by Alpha-Beta. For instance, for Fig. 1 SSS-2 visits the leaves
{41,5,12,10, 36, 35, 50,37}. Notice that this is more than the critical tree which
does not contain 41. SSS-2 suffers here from a left to right effect. On the other
hand Alpha-Beta also visits the nodes 90, 99 and 80. This is due to the fact that
Alpha-Beta has to evaluate b fully, because there is as yet no indication that
another part of the tree is better.

So, SSS* seems to be the better algorithm, but this idea was challenged in
the paper [15] which critized the algorithm both on theoretical and on practical
grounds. From the theoretical side it was argued that in many cases the supe-
riority of SSS* over Alpha-Beta was not as big as expected. Both algorithms
search the same nodes for perfectly ordered trees, for perfectly unordered trees,
as well as for trees where ‘eval’ yields only two values, e.g. ‘win’ and ‘loss’. A
statistical analysis indicated that for practical values of the depth of the game
tree Alpha-Beta never searches more than 3 times the number of nodes that
SSS* would.

From the practical point of view there was the observation that Alpha-Beta
hardly needs memory space (O(d) for the stack if the depth of the tree is d), while
the OPEN list in SSS* would take room O(w/%/?1), i.e. the number of leaves of
a max solution tree of depth d. A more severe objection is that counting the
number of nodes visited is not a good indication for the running time. First of
all, nodes are revisited, but more important, visiting a node does not take a



constant amount of time: finding the best node in the OPEN list or the PURGE
operator needs more than that.

These observations have been justified experimentally in [2]. For random trees
(where the evaluation function will just draw a random number) they reported
that SSS* was 1.8 to 57 times slower than Alpha-Beta.

It is clear that a more efficient data structure for SSS* (and SSS-2) was
needed. The paper [2] came with a proposal which purged the PURGE operator
from the scene. Because SSS-2 always manipulates one max solution tree, the
algorithm needs only room for one such a tree. The idea was to pre-allocate this
room, structured as a max solution tree, but with ‘empty nodes’. The first call
of ‘expand’ now fills in the blanks. Purging is not needed because, for instance
when the subtree below f has to be purged (in the call ‘diminish(c, 35)’, cf. the
discussion above) the algorithm overwrites the entries belonging to the subtree
under f with new values from the subtree under g. In SSS-2 it is clear when
overwriting is allowed, because we go from ‘diminish-mode’ to ‘expand-mode’.
With respect to the original SSS* code more care had to be exercised.

This idea proved to be successful, experiments showed that this version
of SSS* was competitive with Alpha-Beta, sometimes faster (0.93), sometimes
slower (1.38). Moreover, in [14] several optimization tricks have been applied to
this idea, leading to relative running times of 40% for unordered random trees to
70% for 60% ordered random trees (i.e. random trees in which the oldest child
has 60% chance to be the best one).

However, still SSS* performs best for unordered trees, while game trees tend
to be rather well ordered. So the advantage of SSS* is doubtful. Furthermore,
we saw already that the ordering in the tree is exploited by algorithms like
NegaScout, which makes the algorithm to beat even more efficient. This raises
the question whether there is any hope for best first algorithms like SSS*.

6 SSS and Alpha-Beta Reconciled

In this section we will elaborate on the similarities between Alpha-Beta and SSS.
This will result in an algorithm based on null window search that is equivalent
with SSS-2. We will first concentrate on the procedure expand, so let us consider
a call ‘expand(n, g)’. If this call fails it will return a value > g, a lower bound
defined by a min solution tree. This behaviour is similar to that of an Alpha-Beta
call with 8 = g failing high. If, on the other hand, the expand call succeeds, it
will have built a max solution tree with value < g or, assuming integer game
values, a value < g — 1. This again resembles behaviour of Alpha-Beta, now
failing low on input parameter a = g — 1. Apparently the calls ‘expand(n, g)’
and ‘alphabeta(n, g — 1, g) behave similarly.

We study in more detail the case that n is a MAX node for which the ex-
pand call succeeds. In that case the call will generate for all children ¢ of n,
from left to right, a subcall ‘expand(c,g)’ with the same g-parameter. These
subcalls all succeed and the call ‘expand(n, g)’ returns the maximum of the re-
turn values of the children. Now let us assume that for the children ¢ expand



and alphabeta behave identically. Then Alpha-Beta will also generate a sub-
call for each of its children with the same return value as delivered by expand,
and ‘alphabeta(n,g — 1, g)’ returns the same value as ‘expand(n, g)’. Therefore
‘expand(n, g)’ and ‘alphabeta(n, g — 1, g)’ behave identically. If one analyzes the
other possible cases, and one uses induction, one can prove that the calling tree
for ‘expand(n, g)’ is completely mirrored by the one for ‘alphabeta(n,g —1,¢)’,
the same set of nodes is visited in the same order and the same value is returned.

The next step is to extend this result to the calling tree generated by the
procedure diminish. However, this procedure expects a max solution tree in GG
which will guide its search. Therefore, the null window search should generate
and use equivalent information. The main result of this section will be that this
can be realized by using TTalphabeta instead of Alpha-Beta, i.e. by using a
transposition table. This means that we obtain an algorithm equivalent with
SSS-2 if we change, in the main body of SSS-2, cf. Fig. 7, the calls ‘expand(n, g)’
and ‘diminish(n, g)’ by calls ‘TTalphabeta(n,g—1, g)’. This new version is called
‘MTD(o0)’.

We will not prove this formally. Instead, we will try to sketch why the flow of
control (the calling tree and the return values) will be essentially the same in both
versions. We will first show how a call of TTalphabeta builds a structure inside
the transposition table which is equivalent with the maximum solution tree a
corresponding expand or diminish call would construct in G. In this analysis we
will use induction-like arguments, like ‘earlier calls (or inner calls) do whatever
we expect from them’. These assumptions are used only to highlight the essential
ideas, not to lay the base for an inductive proof. Such a formal proof can be given
but it must be set up with some more care. Furthermore, our analysis will be
based on yet another assumption, namely that no entries in the transposition
table will be overwritten, i.e. there will be no collisions.

First of all we recall that TTalphabeta stores on low failure its return value
in the f*-field of the entry in the transposition table of the node involved. So,
assuming that ‘expand(n, g)’ or ‘diminish(n,g)’ generate the same result value
g' as ‘TTalphabeta(n,g — 1,g)" does, we will see in the max solution tree in
G n.g = ¢’ and in the transposition table n.f* = ¢'. This means that in the
transposition table the max solution tree from G can be partially found back
by tracing the fT-fields. As it stands we cannot recover the max solution tree
completely because it is not yet clear which child should be chosen in a MIN
node.

Two observations are relevant here. The first one is that on high failure,
TTalphabeta stores its return value in the f~-field of the node involved. The
second observation follows from a reconstruction of the way expand and diminish
include a node ¢, child of a MIN node n, in the max solution tree G, say with
value g. This occurs when a call ‘expand(c, ¢’)’or ‘diminish(c, ¢')’ with ¢' > ¢
ends in success with result value g. Again, assuming that there is an equiva-
lent call ‘TTalphabeta(c, g’ — 1,¢') failing low with result g, we see that in the
transposition table we obtain c.ft = g. Now what about the other children of
n? The younger brothers of ¢ have not yet been subjected to an expand or di-



minish call, so we assume that there has neither been a TTalphabeta call, and
therefore they are not in the transposition table. The older brothers ¢’ of ¢ must
have been searched earlier by SSS-2 with parameter g’ > g and they must have
been rejected, i.e. expand or diminish (and we therefore assume TTalphabeta as
well) must have ended in a (high) failure with return values > ¢’ and therefore
> ¢. This means that for all older brothers ¢ the transposition table has entries
c.f~ > g. Now it is clear how the current max solution tree is encoded in the
transposition table. For the children ¢ of a MAX node n which is in the max
solution tree we see in the fT-field the same value as in the g-field of G. The
child of a MIN node n is the child with the same fT-value as n itself, while all
older children have f~-value bigger than n.f+.

Notice that the line of reasoning from the beginning of this section showing
that expand and alphabeta generate equivalent calling trees can be extended.
We observe that expand and TTalphabeta generate equivalent calling trees and
also that the max solution tree generated in G is encoded in the transposition
table. This means that in the sequel we need only compare the behaviour of
diminish and TTalphabeta.

So, suppose that we have a call ‘diminish(n, g)’ and ‘TTalphabeta(n,g—1, g)’,
where GG contains a max solution tree defining the upper bound g for n, and where
the transposition table encodes this max solution tree. We will now sketch that
both procedures generate equivalent subcalls for essentially the same nodes in
the same order. We say ‘essentially’ because TTalphabeta will pay short visits
to nodes that will not be visited by diminish. These short visits are needed to
determine which node should be the next, say, ‘serious’ one to be visited, serious
nodes being the ones that are also visited by diminish.

Suppose n is a MAX node. By inspecting the code we see that the diminish
call will generate subcalls only for children ¢ with ¢.g = g. On the other hand, the
code of TTalphabeta specifies that all children ¢ will be visited. However, for all
nodes with n.ft < g, these visits will be short ones, because the test ‘n.fT < o’
in the body of TTalphabeta will be met. So the only serious calls will be for the
children with c¢.f* = ¢g and one easily checks that for such a call diminish and
TTalphabeta behave in the same way. (Notice that we have c.f~ = —oo for all
non leaf children because all earlier visits to ¢ must have failed low.)

Next, suppose that n is a MIN node. The first node visited by diminish will
be its only child ¢ that is in G. TTalphabeta has to do some short visits to the
older brothers ¢’ of ¢ first, in order to find out which child is the one in the
max solution tree. All visits to these brothers will meet a shortcut in the test
‘n.f= > (@ in the body of TTalphabeta. So the first serious visit will be to ¢
and the reader is again invited to check that from this point on diminish and
TTalphabeta exhibit the same behaviour.

In Section 4 we mentioned that a transposition table can provide useful infor-
mation to speed up re-searches, like the ones done by NegaScout. The analysis
given here has elaborated on this, ‘short visits’ will enable a re-search to effi-
ciently avoid old useless paths. This very mechanism is exploited to good effect
in NegaScout as well.



Now that we have reduced SSS to a series of null window searches we can
compare this algorithm with Alpha-Beta in a fair way, i.e. in an equal environ-
ment. We briefly state some results, the reader is referred to [11, 12] for more
details. Experiments have been performed for tournament-quality real-life game
playing programs for three different games.

First of all, the idea that SSS* uses too much memory proved to be untrue.
The experiments showed that MTD(co0) becomes better than Alpha-Beta if the
size of the transposition table exceeds roughly 2!7 entries. Assuming that each
entry contains 16 bytes, we see that a transposition table of 2 Mbyte is already
adequate. The second result is that in general the difference in efficiency of
MTD(c0) and Alpha-Beta is relatively small, the trend being that MTD(o0) is
a few percents more efficient. This seems to be in contrast with the results from
[14], cf. Section 5. Apparently in real life game trees are so well ordered that the
reason why SSS would perform better has almost vanished. Thirdly we found
that NegaScout is in general better than both MTD(oc) and Alpha-Beta, though
the difference is never more than 10

NegaScout improves upon Alpha-Beta by exploiting knowledge gathered from
the previous iteration of iterative deepening. For the null window search frame-
work a similar trick is possible. MTD(c0) is parameterized with the value oo
and therefore one can view the algorithm as generating it first g-value, an up-
per bound for f(root), from the assumption that this value equals co. However
the last iteration of iterative deepening has generated an estimate of f(root)
that will be much better. It is reasonable to expect that less iterations in the
main loop of SSS-2 will be needed if we start from this better estimate. The
algorithm which applies this idea is called MTD(f). We have to be a little care-
ful in the formulation of this algorithm. Starting from oo we are sure to get
an upper bound after all iterations but the last one. This means that we can
always re-search using the window (g — 1, g), where g is the result returned pre-
viously. In the MTD(f)-case we have to check whether after the first expand
call ‘g :=TTalphabeta(root, f — 1, f);’ we obtain a value ¢ > for g < f.In
the first case we have to approximate the game value from below using calls
‘TTalphabeta(root, g, g + 1)’ while in the second case we can continue using
windows (g — 1,9).

Experiments like the one discussed above have shown that MTD(f) performs
(almost) consistently better than NegaScout. We observed margins in the range
1-15%. This shows that the most efficient general purpose game tree searching
program that we presently know of is MTD(f).
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