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Abstract We consider communication situations games being the combina-
tion of a TU-game and a communication graph. We study the average tree
(AT) solutions introduced by Herings et al. [9] and [10]. The AT solutions are
defined with respect to a set, say T , of rooted spanning trees of the commu-
nication graph. We characterize these solutions by efficiency, linearity and an
axiom of T -hierarchy. Then we prove the following results. Firstly, the AT
solution with respect to T is a Harsanyi solution if and only if T is a subset
of the set of trees introduced in [10]. Secondly, the latter set is constructed by
the classical DFS algorithm and the associated AT solution coincides with the
Shapley value when the communication graph is complete. Thirdly, the AT so-
lution with respect to trees constructed by the other classical algorithm BFS
yields the equal surplus division when the communication graph is complete.
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1 Introduction

Game theoretical models regularly address the problem of cooperative behav-
ior assuming that every agent is an autonomous acting individual. Under this
assumption, every group of individuals has to be regarded as a formable coali-
tion. If one discards the assumption that individuals are completely free in
forming coalitions, one arrives at refinements which incorporate certain con-
straints in coalition formation. Examples are games with permission structures
(Gilles et al. [6]), games with precedence constraints (Faigle and Kern [5]) and
games on regular systems (Lange and Grabisch [12]). Such constraints can
also be motivated by restrictions on communication. Myerson [15] is the first
to model this feature by an undirected graph that describes the limited com-
munication possibilities open to the agents. In his model, a coalition can only
form if it is connected, i.e. if its members can communicate without the help
of outside individuals. The combination of a cooperative game and a commu-
nication graph is called a communication situation.

This article studies solutions for communication situations. One such solu-
tion, called the average tree solution, has been recently introduced and char-
acterized by Herings et al. [9] and Herings et al. [10]. As for the Shapley value
(Shapley, [16]) for cooperative games with transferable utilities, this solution
relies on specific marginal contribution vectors. Nevertheless, instead of con-
sidering orderings on the set of the agents, Herings et al. [9] construct rooted
spanning trees that induce partial orders on the set of agents. Each rooted
spanning tree can be seen as a communication hierarchy that singles out a
unique agent, called the root, and assigns to each other agent a unique supe-
rior.1 Any agent can communicate with the root by communicating iteratively
with superiors. The more intermediary agents necessary to communicate with
the root, the more delegated the communication hierarchy. The simplest com-
munication hierarchies are the standard principal-agent model in which the
principal is the root and is the unique superior of any other agent, and the
chain that totally orders the agents. These types of communication hierarchies
are the least and most delegated respectively.

A solution is called an average tree solution if it is the average of the con-
tribution vectors over a nonempty set of rooted spanning trees. Herings et al.
[9] restrict their analysis to cycle-free communication situations and consider
the set of all rooted spanning trees. They show that the corresponding aver-
age tree solution is the only component efficient solution such that deleting
a link between two agents yields for both resulting components the same av-
erage change in allocation, where the average is taken over the agents in the
component. For arbitrary communication graph, Herings et al. [10] construct

1 Following van den Brink [17], communication hierarchies and organizational hierarchies
are distinguished in this article. He defines a (organizational) hierarchy as a permission
structure on the agent set which determines the set of coalitions allowed to form depending
on various requirements that can be imposed on the presence of superiors in the coalition.
Communication hierarchies studied in this article are called communication situations in
van den Brink [17] and corresponds to hierarchies as defined by Demange [4].
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a specific set of admissible rooted spanning trees. The induced average tree
solution coincides with the Shapley value when the underlying graph is com-
plete and with the average tree solution as defined by Herings et al. [9] when
the underlying graph is cycle-free.

In this article, we extend the work of Herings et al. [10] by allowing any
nonempty set of rooted spanning trees T in the definition of the average tree
solution. Our main objectives are to study the distribution of the Harsanyi
dividends and to highlight a connection between communication hierarchies
introduced in [10] and tree-growing algorithms. As a preliminary result, we
provide the first characterization of the average tree solution for arbitrary com-
munication situations. This result relies on the classical axioms of component
efficiency and linearity, and on a hierarchical axiom. This third axiom states
that for unanimity games, the difference of allocation between two agents is
explained by the number of times their positions are decisive in a set of rooted
spanning tree. From this characterization, we obtain a useful expression of the
average tree solution. This expression is used to show that the average tree
solution with respect to T is a Harsanyi solution (see van den Brink et al.
[19]) if and only if T is a subset of the set introduced in [10].

Then, we study the connections between the average tree solutions and
two well-known tree-growing algorithms called DFS (for Depth-First Search)
and BFS (for Breadth-First Search) respectively. Such algorithms explore the
communication graph so as to construct rooted spanning trees by growing a
tree, one agent and one link at a time. In DFS, agents are explored out of the
most recently visited agent who still has unvisited neighbors. Thus, the rooted
spanning trees constructed by DFS are the most delegated communication hi-
erarchies of a communication graph. Algorithm BFS systematically explores
the links of the graph in order to visits every unexplored agent that is reach-
able from an initial agent. Therefore, BFS constructs the most centralized
communication hierarchies of a graph. We prove that the set of trees in [10] is
constructed by DFS and that the associated average tree solution coincides
with the Shapley value when the communication graph is complete. We also
show that the average tree solution with respect to trees constructed by BFS
yields the equal surplus division when the communication graph is complete.
In a sense, the difference between the Shapley value and the equal surplus
division can be seen as a difference between delegated and and centralized
communication hierarchies. While this difference is highlighted by comparable
axiomatic characterizations in van den Brink [18], it is illustrated in terms
of circulation of the information through a communication hierarchy in this
article. This aspect is discussed in the last section of the article.

The rest of the article is organized as follows. Section 2 contains the defini-
tions and notations. The axiomatic characterization of the average tree solu-
tions is given in section 3. The results on the distribution of Harsanyi dividends
are proved in section 4. We point out the connection between the average tree
solutions and tree-growing algorithms in section 5. Section 6 concludes.
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2 Preliminaries

2.1 TU-games

Let N = {1, . . . , n} be a finite set of players. A cooperative game with transfer-
able utility on N , or simply TU-game, is a characteristic function v : 2N −→ R
such that v(∅) = 0. For each S ⊆ N , v(S) is the worth of coalition S. The set
of all TU-games on N is denoted by ΓN . A TU-game v ∈ ΓN is additive if
v(S) =

∑
i∈S v({i}) for any nonempty S ∈ 2N . A payoff vector x ∈ Rn is an

n-dimensional vector giving a payoff xi ∈ R to each player i ∈ N . A solution
on ΓN is a function f : ΓN −→ Rn that assigns a payoff vector f(v) ∈ Rn
to each v ∈ ΓN . For any S ∈ 2N\{∅}, the unanimity game uS is given by
uS(T ) = 1 if T ⊇ S and uS(T ) = 0 otherwise. It is well-known that the
collection of unanimity games forms a basis for ΓN . Hence for each TU-game
v ∈ ΓN we have v =

∑
S∈2N\{∅}∆v(S)uS , where the coefficients ∆v(S) are

called the Harsanyi dividends of v, see Harsanyi [8].
A well-studied solution on ΓN is the Shapley value (Shapley [16]). An

ordering is a bijective function π on N , where π(i) is the player at position i ∈
{1, . . . , n} in π. For any ordering π on N define Sπi = {π(1), π(2), . . . , π(i)} and
Sπ0 = ∅. For any v ∈ ΓN consider the marginal contribution vector mπ(v) ∈ Rn
defined as mπ

π(i)(v) = v(Sπi ) − v(Sπi−1) for each i ∈ N . The Shapley value is
the solution Sh that assigns to each TU-game v ∈ ΓN the average of all n!
marginal contribution vectors mπ(v):

∀v ∈ ΓN , Sh(v) =
1
n!

∑
π

mπ(v) (1)

Another solution on ΓN is the equal surplus division ESD, which first assigns
to each player i ∈ N his stand-alone payoff v({i}) and then distributes the
remainder of v(N) equally among all players in N :

∀v ∈ ΓN ,∀i ∈ N, ESDi(v) = v({i}) +
v(N)−

∑
j∈N v({j})
n

(2)

2.2 Communication situations

An undirected graph is a pair (N,L) where N is a set of nodes and L is a
collection of links, i.e. L ⊆ LN where LN = {{i, j} : i, j ∈ N, i 6= j}. For
ease of notation we write ij instead of {i, j}. For each S ⊆ N , L(S) = {ij :
i ∈ S, j ∈ S} is the set of links between nodes of S. The graph (S,L(S)) is
the subgraph of (N,L) induced by S. A sequence of distinct nodes (i1, . . . , ik)
is a path in (N,L) if iqiq+1 ∈ L for each q = 1, . . . , k − 1. Two nodes i and
j are connected in (N,L) if i = j or there exists a path (i1, . . . , ik) with
i1 = i and ik = j. A graph (N,L) is connected if any two nodes i, j ∈ N are
connected. A tree is a connected graph (N,L) such that for each link ij ∈ L,
the graph (N,L\{ij}) is not connected. A subset S of N is connected in (N,L)
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if (S,L(S)) is a connected graph. The empty subset ∅ is trivially connected.
Denote by C(L) the set of connected subsets of N in (N,L). A subset K ⊆ N
is a component of (N,L) if (K,L(K)) is maximally connected, i.e. if (K,L(K))
is connected and for each i ∈ N\K, (K ∪ {i}, L(K ∪ {i})) is not connected.
The collection of components of (N,L), denoted by N/L, forms a partition of
N . A graph (N,L) is a forest if for each component K ∈ N/L, (K,L(K)) is a
tree.

The combination of a TU-game and of a communication graph is a so-called
communication situation (Myerson [15]), given by a triple (N, v, L) where N is
the set of players, v is the characteristic function on N and L the set of links on
N . In most of this article we consider communication situations on N such that
(N,L) is a connected graph. Let CN denote the set of all such communication
situations. Also, let C∗N be the set of all communication situations on N such
that (N,L) is a forest. Denote by KN the complete graph on N and by CKN

the
class of all communication situations on N with a complete communication
graph. As for TU-games we omit N in our notation. Let C be any class of
communication situations on N . A solution on C is a function f that assigns
to each (v, L) ∈ C a payoff vector f(v, L) ∈ Rn.

For any communication situation (v, L) ∈ C, the Myerson restricted game
vL ∈ ΓN associated with (v, L) is defined as vL(S) =

∑
T∈S/L(S) v(T ) for

each S ∈ 2N . Fix any communication graph (N,L). The collection {uS : S ∈
C(L)\{∅}} forms a basis for the vector space ΓLN = {vL : v ∈ ΓN} of all
graph-restricted games constructed from the communication graph (N,L), see
Theorem 5.2.1 in Bilbao [2]. It follows that:

vL =
∑

S∈C(L)\{∅}

∆vL(S)uS (3)

In this article, we consider the solutions f on some classes of communication
situations C such that for each possible L, f(v, L) = g(vL) for some solution
g on ΓLN . We are interested in the class of Harsanyi solutions, introduced by
Vasil’ev [21] for TU-games and studied by van den Brink et al. [19] for com-
munication situations. A Harsanyi solution distributes the Harsanyi dividends
to the players of the corresponding coalitions according to a sharing function
which assigns to each coalition S a sharing vector specifying for each player in
S its share in the dividend of S. A sharing function on N is a function z which
assigns to each graph (N,L) a collection of vectors z(L) = (zS(L))S∈C(L)\{∅}
such that for each S ∈ C(L)\{∅}, the vector zS(L) ∈ Rn+ satisfies zSi (L) = 0
for each i ∈ N\S, zSi (L) ≥ 0 for each i ∈ S and

∑
i∈S z

S
i (L) = 1. For a given

sharing function z and a given graph (N,L), the Harsanyi payoff vector gz(vL)
associated with vL ∈ ΓLN is given by:

∀i ∈ N, gzi (vL) =
∑

S∈C(L):i∈S

zSi (L)∆vL(S).

The Harsanyi solution on C with respect to z, denoted by fz, is defined as:

∀(v, L) ∈ C, fz(v, L) = gz(vL) (4)
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2.3 The average tree solutions

Demange [4] adapts the marginal contribution vector mπ for TU-games in
the context of communication situations by considering rooted spanning trees
instead of orderings on the player set. First, for each component K of a graph
(N,L), a spanning tree on K is a tree on K. A rooted spanning tree on K is a
directed graph that arises from this spanning tree by selecting a player r ∈ K,
called the root, and directing all links away from the root. For a given spanning
tree on K, each player r ∈ K is the root of exactly one rooted spanning tree
denoted by tr. For each tr and each j ∈ K\{r}, there is exactly one directed
link (i, j). Player i is the unique predecessor of j and j is a successor of i in
tr. Denote by sr(i) the possibly empty set of successors of player i ∈ K in tr.
A player j is a subordinate of i in tr if there is a directed path from i to j, i.e.
if there is a sequence of distinct players (i1, . . . , ik) such that i1 = i, ik = j,
and, for each q = 1, . . . , k − 1, iq+1 ∈ sr(iq). The set Sr(i) denotes the union
of all subordinates of i in tr and {i}.

For each communication situation (v, L), each K ∈ N/L and each rooted
spanning tree tr on K, Demange [4] defines the marginal vector as:

∀i ∈ K, mtr
i (v, L) = v(Sr(i))−

∑
j∈sr(i)

v(Sr(j)) (5)

The marginal vector (5) is axiomatized by van den Brink et al. [20] for line-
graph communication situations and by Khmelnitskaya [11] for forest-graph
communication situations. Both articles also study economic applications. Her-
ings et al. [9] introduce and characterize the average tree solution AT, a solu-
tion on C∗N that assigns to each (v, L) ∈ C∗N , to each component K ∈ N/L of
the forest (N,L) and to each i ∈ K the average of his contribution (5) over
all the |K| rooted spanning trees induced by (K,L(K)):

∀(v, L) ∈ C∗N ,∀K ∈ N/L,∀i ∈ K, ATi(v, L) =
1
|K|

∑
r∈K

mtr
i (v, L) (6)

Herings et al. [10] extend the definition of the average tree solution to
arbitrary communication situations. For each graph, they consider a particular
collection of rooted spanning trees which is presented and characterized in
section 4.2. We consider a further extension by allowing any nonempty set of
rooted spanning trees. Because the marginal vector (5) can be decomposed by
the components of a graph, there is no loss of generality to focus on the class CN
of all communication situations with a connected communication graph. Also
define a function T that assigns to each connected graph (N,L) a nonempty
set T (L) of rooted spanning trees on N . The average tree solution ATT (v, L)
with respect to T on CN is defined as:

∀(v, L) ∈ CN ,∀i ∈ N, ATT
i (v, L) =

1
|T (L)|

∑
tr∈T (L)

mtr
i (v, L) (7)
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3 Axiomatic characterization

Various characterizations of the average tree solution on the class forest-graph
communication situations have been provided recently by Herings et al. [9],
Mishra and Talman [14] and Béal et al. [1]. In this section we provide the first
characterization the average tree solutions given by (7) on the class CN . We
consider four axioms. The first two axioms are standard.

Efficiency For any (v, L) ∈ CN , it holds that
∑
i∈N fi(v, L) = v(N).

Linearity For any (v, L) ∈ CN , any (w,L) ∈ CN and any a ∈ R, it holds that
f(av, L) = af(v, L) and f(v + w,L) = f(v, L) + f(w,L).

The third axiom states that the solution should give to each player his
stand-alone payoff v({i}) in a communication situation (v, L) if the corre-
sponding Myerson restricted game vL is additive.

Inessential restricted game property For any (v, L) ∈ CN such that vL is
additive, it holds that fi(v, L) = v({i}) for each i ∈ N .

In order to state the fourth axiom, let T (L) be a nonempty set of rooted
spanning trees associated with the communication graph of a communica-
tion situation (v, L) ∈ CN . For each S ∈ 2N\{∅} and each tr ∈ T (L) de-
note the smallest subtree of tr that contains S by tr(S) and its subroot by
itr(S). If S is a connected coalition in tr, then tr(S) is the subtree of tr in-
duced by S and so its subroot belongs to S. For a given function T , define
function hT that assigns to each (N,L) the collection of vectors hT (L) =
(hT,S(L))S∈2N\{∅} such that for each S ∈ 2N\{∅}, each vector hT,S(L) ∈ Rn+
and each i ∈ N , hT,S

i (L) is equal to the average number of times player i
is the subroot of a subtree that contains S among trees in T (L). Formally
hT,S
i (L) = |{tr ∈ T (L) : i = itr(S)}|/|T (L)|. The support of hT,S(L) is

denoted by D(hT,S(L)) = {i ∈ N : hT,S
i (L) > 0}. Observe that the func-

tion hT : (N,L) −→ (hT,S(L))S∈C(L)\{∅} is a sharing function if and only
if D(hT,S(L)) ⊆ S for each S ∈ C(L)\{∅}. The fourth axiom states that the
difference of allocation in (uS , L) between two players i and j is only explained
by the difference between hT,S

i (L) and hT,S
j (L).

T -hierarchy For any (uS , L) ∈ CN , S ∈ 2N\{∅}, any i ∈ N and any j ∈ N ,
it holds that hT,S

i (L)fj(uS , L) = hT,S
j (L)fi(uS , L).

This axiom is inspired by the hierarchical strength axiom introduced by
Faigle and Kern [5] in order to characterize a Shapley value for cooperative
games with precedence constraints. The first result shows that a solution sat-
isfying linearity and the inessential restricted game property assigns the same
payoff vector to the communication situations (v, L) and (vL, L).
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Proposition 1 If a solution f on CN satisfies linearity and the inessential
restricted game property, then for each (v, L) ∈ CN , f(v, L) = f(vL, L).

Proof. Fix any connected communication graph (N,L) and pick any (v, L) ∈
CN . By definition of vL, it holds that (v − vL)L(S) = 0 for each S ∈ 2N so
that (v − vL)L is additive. Therefore the inessential restricted game property
yields fi(v − vL, L) = 0 for each i ∈ N . By linearity of f :

f(v, L) = f(v − vL + vL, L) = f(v − vL, L) + f(vL, L),

and we conclude that f(v, L) = f(vL, L). �

The next result proves that for a given function T , ATT is the unique
solution on CN that satisfies efficiency, linearity and T -hierarchy.

Theorem 1 For each function T , the average tree solution ATT is the unique
solution on CN that satisfies efficiency, linearity and T -hierarchy.

Proof. First we prove uniqueness of the solution. So, consider any func-
tion T and consider any solution f on CN that satisfies efficiency, linear-
ity and T -hierarchy. Pick any (v, L) ∈ CN and any S ∈ 2N\{∅}. By def-
inition, uS(N) = 1. By T -hierarchy, hT,S

i (L)fj(uS , L) = hT,S
j (L)fi(uS , L)

for each distinct pair of players i and j. Assume that i ∈ D(hT,S(L)) and
j 6∈ D(hT,S(L)). Then, 0 = hT,S

i (L)fj(uS , L) and so fj(uS , L) = 0. Thus, ef-
ficiency becomes

∑
j∈D(hT,S(L)) fj(uS , L) = 1. Combining this equation with

the T -hierarchy axiom, we first get for each i ∈ D(hT,S(L)):

∑
j∈D(hT,S(L))

fj(uS , L) =
∑

j∈D(hT,S(L))

fi(uS , L)
hT,S
j (L)

hT,S
i (L)

= 1,

which in turn gives fi(uS , L) = hT,S
i (L) for each i ∈ D(hT,S(L)) and each

S ∈ 2N\{∅}. Because {uS : S ∈ 2N\{∅}} is a basis for the vector space ΓN ,
we have v =

∑
S∈2N\{∅}∆v(S)uS . By linearity of f , the solution f(v, L) =∑

S∈2N\{∅}∆v(S)f(uS , L) in (v, L) ∈ CN is determined in a unique way.

Second, we show that for any function T , the average tree solution ATT (v, L)
given by (7) satisfies the three axioms. Fix any (v, L) ∈ CN .

Efficiency For each tr ∈ T (L), the vector mtr is efficient (see Theorem 3.7
in Herings et al. [9]). Thus the average tree solution ATT satisfies efficiency.
Linearity The average tree solution is linear as the average of |T (L)| contri-
bution vectors.
T -hierarchy Pick any S ∈ 2N\{∅}, any i ∈ N and any tr ∈ T (L). Observe
the following two facts:

1. If i 6= itr(S), then either Sr(i) 6⊇ S or itr(S) ∈ Sr(i)\{i}. In both cases
mtr
i (uS , L) = 0.
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2. If i = itr(S), then Sr(i) ⊇ S and so uS(Sr(i)) = 1. Because tr(S) is
the smallest subtree of tr that contains S, we have Sr(j) 6⊇ S and so
uS(Sr(j)) = 0 for each j ∈ sr(i). Hence, mtr

i (uS , L) = 1.

For each S ∈ 2N\{∅} and each i ∈ N , facts 1. and 2. imply that

ATT
i (uS , L) =

1
|T (L)|

( ∑
tr∈T (L):
i=itr(S)

mtr
i (uS , L) +

∑
tr∈T (L):
i6=itk(S)

mtr
i (uS , L)

)

=
1

|T (L)|
∑

tr∈T (L):
i=itr(S)

1

= hT,S
i (L),

so that for any i ∈ N and any j ∈ N , the equality hT,S
i (L)ATT

j (uS , L) =
hT,S
j (L)ATT

i (uS , L) holds. �

By linearity, ATT on CN can be written as follows:

∀(v, L) ∈ CN ,∀i ∈ N, ATT
i (v, L) =

∑
S∈2N :

i∈D(hT,S(L))

hT,S
i (L)∆v(S) (8)

In order to determine whether ATT is a Harsanyi solution, we provide
an alternative expression of this solution. For any T , it is easy to see that
ATT satisfies linearity and the inessential restricted game property.2 In fact,
consider any (v, L) ∈ CN such that vL is additive. For any tr ∈ T (L) and any
i ∈ N we have:

mtr
i (v, L) = vL(Sr(i))− vL(Sr(i)\{i}) = vL({i}) = v({i}),

so that (7) ensures that the axiom is satisfied. Therefore, we can use the
previous results obtained in this section to prove the following statement.

Corollary 1 For any T , ATT on CN can be written as follows:

∀(v, L) ∈ CN ,∀i ∈ N, ATT
i (v, L) =

∑
S∈C(L):

i∈D(hT,S(L))

hT,S
i (L)∆vL(S) (9)

Moreover, ATT is a Harsanyi solution on CN if and only if, for each connected
graph (N,L) and each S ∈ C(L), it holds that D(hT ,S(L)) ⊆ S.

2 Observe that the Myerson value (Myerson [15]) and the position value (Borm et al. [3])
also satisfy linearity and the inessential restricted game property.
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Proof. Fix a function T and any (v, L) ∈ CN . By linearity of ATT and
(3), we have ATT (vL, L) =

∑
S∈C(L)\{∅}∆vL(S)ATT (uS , L). Because ATT

satisfies the inessential restricted game property, the equality ATT (v, L) =
ATT (vL, L) follows from Proposition 1. From the proof of Theorem 1 we
have, for each S ∈ 2N\{∅}, ATT

i (uS , L) = hT,S
i (L) if i ∈ D(hT,S(L)) and

ATT
i (uS , L) = 0 otherwise, which proves the first part of the result. The

moreover part follows from expressions (4) and definition (9) of ATT . �

In the next two sections we will expose the properties on T such that
the condition D(hT ,S(L)) ⊆ S for each connected graph (N,L) and each
S ∈ C(L) is met. Before concluding this section, it is interesting to illustrate
why expressions (8) and (9) coincide. In (8), ATT is obtained by summing
on the set of all coalitions and considering coefficients of v. In (9) the sum is
computed on the smaller set of all connected coalitions, but with coefficients
of vL: the changes in coefficients between games vL and v compensate the
smaller number of arguments in the sum. As an example, consider the player
set N = {1, 2, 3} and the communication situation (v, L) ∈ CN such that:

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
v(S) 0 2 1 1 4 1 6

and L = {12, 23}. Assume that T (L) contains all the three rooted spanning
trees of (N,L). Then we have:

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

∆v(S) 0 2 1 −1 3 −2 3
vL(S) 0 2 1 1 1 1 6
∆vL(S) 0 2 1 −1 – −2 6
hT,S

1 (L) 3/3 0 0 1/3 1/3 0 1/3
hT,S

2 (L) 0 3/3 0 2/3 1/3 2/3 1/3
hT,S

3 (L) 0 0 3/3 0 1/3 1/3 1/3

Now consider player 2. All coalitions except {1, 3} are connected in (N,L).
Thus, among the coalitions that contain player 2, only N has a different divi-
dend in v and vL. However the compensation occurs because 2 has a positive
weight hT,{1,3}

2 for the disconnected coalition {1, 3} to which he does not be-
long. While this coalition has no dividend in vL, it has a dividend of 3 in v.
Therefore, player 2 does not benefit anymore from the share 1/3 of the divi-
dend 3 when AT is computed from the dividends of vL. However the reduction
of the worth of {1, 3} in vL also increases the dividend of coalition N in vL

of the same amount, which compensates exactly the loss of player 2 on the
dividend of coalition {1, 3}. Formally, AT2(v, L) is:

3
3

2 +
2
3

(−1) +
2
3

(−2) +
1
3

3 +
1
3

3 = 3,
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and is equal AT2(vL, L):

3
3

2 +
2
3

(−1) +
2
3

(−2) +
1
3

6 = 3.

4 Distribution of the Harsanyi dividends

For simplicity, we assume that the communication graph is connected. We first
recall the expression of the average tree solution for tree-graph communication
situations provided by Herings et al. [9] in terms of distribution of the Harsanyi
dividends of the restricted game. Then we consider the set of rooted spanning
trees introduced by Herings et al. [10] in their extension of the average tree
solution to arbitrary communication situations. We provide a characterization
of this set and use it to prove that the average tree solution ATT is a Harsanyi
solution if and only if, for each (N,L), T (L) is a subset of this set.

4.1 Trees

The approach taken by Herings et al. [9] for tree-graph communication sit-
uations in definition (6) is to consider the function T a that assigns the set
T a(L) of all possible rooted spanning trees of a graph (N,L). Each player
i induces exactly one rooted spanning tree ti on N . Hence T a(L) contains
exactly n elements. It has been shown (Herings et al. [9], Theorem 5.1) that,
for each i ∈ N , the corresponding average tree solution, given by (6), can be
written as:

ATi(v, L) = ATT a

i (v, L) =
∑

S∈C(L):
i∈S

1 + pLS(i)
|S|+

∑
j∈S p

L
S(j)

∆vL(S)

where pLS(j), j ∈ S, is the number of players outside S that j represents. Player
j ∈ S represents player k outside S if k is connected to j and, on the unique
path connecting j and k, all players between j and k are outside S. Because
(N,L) is a tree, it holds that D(hT a,S(L)) = S, and it is easy to check that:

∀i ∈ S, hT a,S
i (L) =

1 + pLS(i)
|S|+

∑
j∈S p

L
S(j)

(10)

Firstly, note that {pLS(j)}j∈S forms a partition of N\S, i.e. pLS(j)∩pLS(i) =
∅ for each i, j ∈ S, i 6= j, and ∪j∈SpLS(j) = N\S. It follows that |S| +∑
j∈S p

L
S(j) = n. Secondly, for each i ∈ S there is a unique ti ∈ T a(L), and

player i is such that iti(S) = i. This corresponds to the unit in the numerator
of (10). Thirdly, for each tk ∈ T a(L), tk(S) is the subtree of tk induced by S.
If i represents k, then S is a subset of the set of subordinates of i in tk so that
itk(S) = i. If i does not represent k, there exists a player j ∈ S who represents
k and so i is a subordinate of j in tk. This implies that i 6= itk(S). Conclude
that itk(S) = i if and only if i represents k. Therefore, |{tk ∈ T a(L) : i =
itk(S)}| = 1 + pLS(i). Thus, (10) holds.
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4.2 Harsanyi trees of arbitrary graphs

In [10], Herings et al. [10] consider the average tree solution with respect to a
specific set of rooted spanning trees constructed as follows. Fix any communi-
cation graph (N,L). Let B = {Bi}i∈N be a collection of coalitions satisfying:

1. For each i ∈ N , it holds that i ∈ Bi and for some j ∈ N , Bj = N ;
2. For each i ∈ N and each component K of the subgraph of (N,L) induced

by Bi\{i}, it holds that K = Bj and ij ∈ L for some j ∈ N .

For a given graph (N,L), any collection B satisfying the above two condi-
tions has the following property (see Lemma 3.2 in Herings et al. [10]):

(a) For all i, j ∈ N , i 6= j, it holds that either Bi ⊆ Bj\{j} or Bj ⊆ Bi\{i},
or both Bi ∩Bj = ∅ and Bi ∪Bj 6∈ C(L).

In addition B induces a unique rooted spanning tree, say tBr , such that
(i, j) is a directed link of tBr if and only if Bj is a component of Bi\{i}.
Therefore, tBr is such that Sr(i) = Bi for each i ∈ N . Denote by T B the
function that assigns to each connected graph (N,L) the set T B(L) of all
such rooted spanning trees. For reasons that will appear subsequently, each
element of T B(L) will be called a Harsanyi tree of (N,L). The following result
provides a simple and useful characterization of T B(L).

Proposition 2 Let (N,L) be any connected communication graph on N . A
rooted spanning tree tr belongs to T B(L) if and only if, for each ij ∈ L, it
holds that either i ∈ Sr(j) or j ∈ Sr(i).

Proof. Consider any connected graph (N,L), any tr ∈ T B(L) and any ij ∈ L.
We have to show that either i ∈ Sr(j) or j ∈ Sr(i). Consider the unique player
k ∈ N such that both ij ⊆ Bk = Sr(k) and for any other player q ∈ N where
ij ⊆ Bq = Sr(q), we have k ∈ Sr(q). Assume that k 6∈ ij. Because ij ∈ L,
condition 2 in the definition of B implies that there exists a successor of k,
say ik ∈ sr(k), such that ij ⊆ Sr(ik) = Bik . This contradicts the definition of
k. Conclude that k ∈ ij, which gives the result.

For the converse part, pick any rooted spanning tree tr of (N,L) such that
for each ij ∈ L, it holds that either i ∈ Sr(j) or j ∈ Sr(i). We have to show
that the collection of coalitions {Sr(1), . . . , Sr(n)} satisfies conditions 1 and 2
described above. Condition 1 follows from definition of Sr(i), i ∈ N .

In order to prove that condition 2 is satisfied, we first show that the collec-
tion {Sr(1), . . . , Sr(n)} satisfies property (a). By definition of a rooted span-
ning tree, for each pair of distinct players {i, j}, only one of the three possi-
bilities holds: Sr(i) ⊆ Sr(j)\{j}, Sr(j) ⊆ Sr(i)\{i} or Sr(i) ∩ Sr(j) = ∅. The
first two possibilities guarantee that the first part of property (a) is satisfied.
For the proof of the second part of (a), assume that there is a pair of distinct
players {i, j} such that Sr(i) ∩ Sr(j) = ∅. Then, for each ic ∈ Sr(i) and each
jc ∈ Sr(j), we have ic 6∈ Sr(jc) and jc 6∈ Sr(ic) and so icjc 6∈ L. Therefore,
Sr(i) ∪ Sr(j) cannot be a connected coalition of (N,L). We conclude that
property (a) holds.
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Now pick any i ∈ N and consider the subgraph (Sr(i)\{i}, L(Sr(i)\{i}))
of (N,L) induced by Sr(i)\{i}. Assume, for the sake of contradiction, that
there exists a connected component K of (Sr(i)\{i}, L(Sr(i)\{i})) such that
K 6= Sr(j) for each j ∈ sr(i). Then there necessarily exists a set of distinct
players {j1, j2, . . . , jq} included in sr(i) such that {Sr(j1), Sr(j2), . . . , Sr(jq)}
forms a partition of K. Hence the union of at least one pair of elements in
{Sr(j1), Sr(j2), . . . , Sr(jq)} must be a connected coalition in (N,L) since K is
connected in (Sr(i)\{i}, L(Sr(i)\{i})). This is a contradiction with property
(a), which implies that condition 2 holds. �

We have the following corollary.

Corollary 2 If (N,L) is a tree, then the set T B(L) of Harsanyi trees coincides
with the set T a(L) of all rooted spanning trees. If (N,L) is the complete graph
KN , then the set T B(LN ) of Harsanyi trees coincides with the set of all n!
line-trees, i.e. the set of all rooted spanning trees where each player has at
most one successor.

From Corollary 2, Herings et al. [10] exhibit the following two properties
of the corresponding average tree solution.

Proposition 3 (Herings et al. [10], Theorems 3.2 and 3.3) If (N,L) is a tree,
then, for each (v, L) ∈ CN , the average tree solution defined with respect to
T B(L) and given by (7) is the average of n contribution vectors and coincides
with (6). If (N,L) is the complete graph KN , then, for (v, LN ) ∈ CKN

, the
average tree solution defined with respect to T B(LN ) and given by (7) is the
average of n! contribution vectors and coincides with the Shapley value given
by (1).

Theorem 2 below points out another advantage of considering Harsanyi
trees. It states that the average tree solution ATT is a Harsanyi solution on
CN if and only if, for each connected communication graph (N,L), T (L) is a
subset of the set T B(L) of Harsanyi trees of (N,L).

Theorem 2 Consider any function T . The average tree solution ATT is a
Harsanyi solution on CN if and only if, for each connected communication
graph (N,L), T (L) ⊆ T B(L).

Proof. Consider any function T . Given that the average tree solution ATT

can be written as (9), Theorem 2 can be proved by showing for each connected
graph (N,L), that D(hT,S(L) ⊆ S holds for each S ∈ C(L)\{∅} if and only if
T (L) ⊆ T B(L).

Firstly, let T be such that T (L) ⊆ T B(L) for each connected communica-
tion graph (N,L). Fix any connected graph (N,L) and assume, for the sake of
contradiction, that there is i ∈ D(hT,S(L))\S for some nonempty S ∈ C(L).
Then, there is tr ∈ T (L) ⊆ T B(L) such that i = itr(S) ∈ N\S. Consider
the subgraph of tr induced by S. It follows that this subgraph is a forest.
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Moreover for any pair of players in S belonging to distinct components of this
subgraph, one player of this pair cannot be the subordinate of the other in tr.
Because S ∈ C(L), there is at least one such pair of players incident to the
same link in (N,L). By Proposition 2, tr 6∈ T B(L), a contradiction. Conclude
that D(hT,S(L)) ⊆ S.

Secondly, let T be such that T (L) 6⊆ T B(L) for some connected com-
munication graph (N,L). Then there exists tr ∈ T (L) not in T B(L). By
Proposition 2, there is ij ∈ L such that neither i ∈ Sr(j) nor j ∈ Sr(i). There-
fore consider coalition {i, j} ∈ C(L) and tr({i, j}), the smallest subtree of tr
that contains {i, j}. It follows that itr({i,j}), the subroot of tr({i, j}), does not
belong to coalition {i, j}. Hence D(hT ,{i,j}(L)) 6⊆ S as desired. �

5 Constructing communication hierarchies

In this section a general algorithm, called Tree-Growing, is given for con-
structing spanning trees of a given graph. It is borrowed from computer science
(see Gross and Yellen [7]) and consists in growing a subtree, one link and one
player at a time. Then, two particular instances of this algorithms will be
considered and connected to the average tree solutions. The associated sets of
rooted spanning trees have a meaningful interpretation, which is discussed in
the concluding section.

5.1 Tree-growing algorithms

Consider a communication graph (N,L) which is assumed to be connected for
the sake of simplicity. The algorithm introduced in this section can be easily
applied to the connected components of a non-connected graph. A pair (S,LS)
with S ∈ 2N\{∅} and LS ⊆ L(S) is a subtree of (N,L) if (S,LS) is a tree
on S. Denote by G any such subtree. For any given subtree G of a graph
(N,L), the links and players of G are called tree links and tree players, and
the links and players in (N,L) that are not in G are called non-tree links and
non-tree players. A frontier link for G is a non-tree link with one endpoint in
G, called its tree endpoint, and one endpoint not in G, its non-tree endpoint.
By definition, the graph resulting from adding any frontier link of G and its
associated non-tree endpoint to the subtree G is still a subtree of (N,L).

An essential component of algorithm Tree-Growing is the rule nextLink
which selects a frontier link to add to the current subtree. For any subtree
G of a graph (N,L), let F denote the set of frontier links for G. Then the
function nextLink((N,L), F ) chooses and returns as its value a frontier link
in F that is to be added to subtree G. Then, the selected frontier link and its
non-tree endpoint are added to the subtree G. Note that the rule nextLink
may not be deterministic, depending on how it has been specified to select a
frontier link in F . After a frontier link is added to the current subtree, the
function updateFrontier((N,L), F ) removes from F those links that are no
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longer frontier links and adds to F those links that have become frontier links.
The pseudocode of Tree-Growing is given by Algorithm 1.

Algorithm 1 – Tree-Growing
Input: a finite connected graph (N, L) and a starting player r ∈ N .
Output: a spanning tree G of (N, L).
Initial conditions: G = ({r}, ∅), F = {ri ∈ L : i ∈ N}.

1: While F 6= ∅
2: e←− nextLink((N, L), F )
3: Let i be the non-tree endpoint of e
4: Add link e and player i to G.
5: updateFrontier((N, L), F )
6: Return tree G.

Each different specification of rule nextLink creates a different instance
of Tree-Growing. In the remaining part of this section, we describe two
well-known instances of Tree-Growing called Depth-First Search (DFS) and
Breadth-First Search (BFS). Both algorithms rely on the discovery order. For
each subtree G of (N,L) induced by Tree-Growing, the discovery order is a
listing of players in N in the order in which they are added as subtree G is
grown. Once the spanning tree G has been returned by Tree-Growing, one
can easily consider its oriented version tr, where the root is the starting player
r specified as input in Tree-Growing. Henceforth, we will refer to tr as the
output of algorithm Tree-Growing. For any output tr of Tree-Growing,
the position of player i in the discovery order, starting with 0 for player r, is
called the discovery number of i in tr.

In algorithm DFS, nextLink selects a frontier link in F whose tree end-
point has the largest discovery number. In other words, DFS chooses a frontier
link incident to the most recently discovered player. If such a link fails to ex-
ist, then DFS “backtracks” to the second most recently discovered player and
tries again, and so on. Therefore, DFS discovers players “deeper” in the graph
whenever possible. In this way, DFS creates spanning trees containing max-
imal directed paths starting at the root r. Let DFS(L) denote the set of all
rooted spanning trees of graph (N,L) that DFS creates. For any tr ∈ DFS(L),
the discovery number of a player i ∈ N is denoted dfnumber(tr, i). Since
nextLink is not necessarily a deterministic function, several different execu-
tions of DFS on a graph (N,L) can create the same rooted spanning tree
tr. In such a situation, dfnumber(tr, i) can take different values depending on
which region of the graph (N,L) is first explored.

In algorithm BFS, nextLink selects a frontier link in F whose tree end-
point has the smallest discovery number. In other words, algorithm BFS
chooses a frontier link incident to the less recently discovered player. If such
an link fails to exist, then BFS considers the second less recently discovered
player and tries again, and so on. Therefore, BFS explores the graph by se-
lecting frontier links incident to players as close to the root as possible. In this
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way, BFS creates shortest directed paths from the root to any other player
(see Proposition 4.2.4 in Gross and Yellen [7]). Let BFS(L) denote the set of
all rooted spanning trees of graph (N,L) that BFS creates.

As an example, consider the undirected graph (N,L) on the left hand side
of the picture below, where N = {1, 2, 3, 4} and L = {12, 13, 24, 34}. Assume
that DFS and BFS both have graph (N,L) and player 1 as input. Without
any loss of generality, assume further that after one step of exploration, the
tree is grown by adding player 3 and link 13. At this step of the execution of
both algorithms, the current set of frontier links is {12, 34}. Because player 3
is the most recently discovered agent, DFS will select link 34 to grow the tree.
Because player 1 is the least recently discovered agent, BFS will select link 12
to grow the tree and so on. As a consequence, the rooted spanning tree t1 can
be constructed by DFS but not by BFS, whereas the rooted spanning tree t′1
can be constructed by BFS but not by DFS.

1 3

2 4

1 3

2 4

1 3

2 4

(N, L) t1 t′1

The next two sections compare the average tree solutions with respect to
the set of spanning trees created by DFS and BFS respectively. When the
communication graph is complete the resulting AT solutions are shown to
coincide with the Shapley value and the equal surplus division on ΓN .

5.2 DFS, Harsanyi Trees and the Shapley value

We start this section by proving that the set DFS(L) of all rooted spanning
trees of the connected graph (N,L) that algorithm DFS creates coincides with
the set of Harsanyi trees introduced in Herings et al. [10].

Proposition 4 Let (N,L) be a connected graph. Then tr ∈ DFS(L) if and
only if tr is a Harsanyi tree of (N,L).

Proof. By Proposition 2, it is sufficient to show that tr ∈ DFS(L) if and only
if, for each ij ∈ L, either j ∈ Sr(i) or i ∈ Sr(j). Proposition 2.4.1 in Gross and
Yellen [7] establishes the only if part of this claim. Thus, it remains to show
that if part.

So, consider any rooted spanning tree tr of (N,L) such that ij ∈ L
implies either j ∈ Sr(i) or i ∈ Sr(j). Let (N,L(tr)) denote the underly-
ing graph of tr, i.e. the undirected graph on N with link set L(tr) = {ij :
(i, j) is a directed link of tr}. Since (N,L(tr)) is a tree, any execution of DFS
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on (N,L(tr)) with initial conditions G = ({r}, ∅) and F = {ri ∈ L(tr) : i ∈ N}
will constructs tr. Consider any such execution and denote by π its discovery
number, i.e. π(i) = dfnumber(tr, i) for each i ∈ N . Now, consider the de-
terministic version nextLinkπ of rule nextLink in DFS that is obtained by
breaking ties according to π. More specifically, if F contains several frontier
links incident to the most recently discovered player, then nextLinkπ chooses
the link such that the non-tree endpoint is the player with the minimal rank in
π. Denote by DFSπ the deterministic algorithm that is obtained by replacing
nextLink by nextLinkπ in DFS. By construction, if the (unique) execution of
DFSπ on (N,L) with initial condition G = ({r}, ∅) and F = {ri ∈ L : i ∈ N}
constructs tr, then there exists an execution of DFS on (N,L) that con-
structs tr. In the rest of the proof, we omit to mention that algorithms DFSπ

and DFS are both run on (N,L) with initial conditions G = ({r}, ∅) and
F = {ri ∈ L : i ∈ N}. We show that the execution DFSπ on (N,L) returns
the same output than the execution of DFSπ on (N,L(tr)), that is output tr.

Because L ⊇ L(tr), the execution of DFSπ on (N,L) is identical to the one
of DFSπ on (N,L(tr)) until no frontier link is incident to the most recently
discovered player, say player i, during the execution of DFSπ on (N,L(tr)).
At that time, DFSπ on (N,L(tr)) backtracks to the second most recently
discovered player, whereas DFSπ on (N,L) can grow the current tree by
adding a frontier link incident to i if such a link exists in F . We show that F
cannot contain such a link during the execution of DFSπ on (N,L). By way
of contradiction, assume that any such link ij ∈ L\L(tr) belongs to F . By
assumption, either j ∈ Sr(i) or i ∈ Sr(j). If i ∈ Sr(j), then player j has already
been discovered by DFSπ on (N,L(tr)) (and so on (N,L)) so that ij has no
non-tree endpoint at that step of the execution of the algorithm. This means
that ij cannot be a frontier link, a contradiction. If j ∈ Sr(i), there exists
k ∈ sr(i) on the unique path between i and j in tr and k is not yet discovered.
Thus ik is a frontier link, and DFSπ on (N,L(tr)) cannot backtrack from
player i, another contradiction. Conclude that ij 6∈ F and cannot be chosen
by nextLinkπ to grow the tree. Because ij was an arbitrary link incident to i
in L\L(tr), we obtain that DFSπ on (N,L) backtracks from i. Continuing in
this fashion for any other discovered player i during the execution of DFSπ

on (N,L(tr)), we obtain two cases:

(1) the execution of DFSπ on (N,L(tr)) backtracks from i. Then, at this step
of the execution of DFSπ on (N,L), F will never contain links in L\L(tr),

(2) the execution of DFSπ on (N,L(tr)) does not backtrack from i. Then,
at this step of the execution of DFSπ on (N,L), function nextLinkπ will
select a frontier link ij in F such that ij ∈ L(tr).

In both situations, the execution of DFSπ on (N,L) will not use links in
L\L(tr) to grow the tree. Therefore, DFSπ on (N,L) returns the output tr
and we can conclude that tr ∈ DFS(L), as desired. �

Combining this result with Proposition 3 and Theorem 2 immediately
yields the following result.
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Theorem 3 If (N,L) is a tree, then, for each (v, L) ∈ CN , the average tree
solution defined with respect to DFS(L) and given by (7) is the average of
n contribution vectors and coincides with (6). If (N,L) is the complete graph
KN , then, for (v, LN ) ∈ CKN

, the average tree solution defined with respect to
DFS(LN ) and given by (7) is the average of n! marginal vectors and coincides
with the Shapley value given by (1). Moreover, the average tree solution ATT

is a Harsanyi solution on CN if and only if T (L) ⊆ DFS(L) for each connected
graph (N,L).

5.3 BFS and the equal surplus division

In this section, we show that for each communication situations on CN with
a complete graph KN , the average tree solution with respect to BFS(LN )
coincides with the equal surplus division given by (2).

Theorem 4 If (N,L) is a tree, then, for each (v, L) ∈ CN , the average tree
solution defined with respect to BFS(L) and given by (7) is the average of n
contribution vectors and coincides with (6). If (N,L) is the complete graph
KN , then, for (v, LN ) ∈ CKN

, the average tree solution defined with respect to
BFS(LN ) and given by (7) is the average of n marginal vectors and coincides
with the equal surplus division given by (2).

Proof. The proof of the first statement in Theorem 4 is immediate and is
omitted. For the proof of the second statement, consider the complete graph
KN and any (v, LN ) ∈ CKN

. Note that for each r ∈ N , any player i ∈ N\{r}
is at distance 1 of r since KN is the complete graph. Hence, for any r ∈ N ,
the execution of BFS on KN starting at r yields a unique spanning tree tr
in which r is the predecessor of all other players. The set BFS(LN ) contains
n such rooted spanning trees, one for each r ∈ N . The vector of marginal
contributions in tr is then given by mtr

r (v, LN ) = v(N) −
∑
j∈N\{r} v({j})

and mtr
i (v) = v({i}) for each i ∈ N\{r}. Therefore, for each i ∈ N , we can

write

ATBFS
i (v, LN ) =

1
n

∑
r∈N

mtr
i (v, LN )

=
1
n

(
v(N)−

∑
j∈N\{i}

v({j}) + (n− 1)v({i})
)

= ESDi(v),

which gives the result. �

6 Concluding remarks

In [18], van den Brink provides a characterization of the equal surplus division
that is comparable to the classical characterization of the Shapley value in the
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sense that both results differ only with respect to a property concerning null or
nullifying players. In this article, we proved that these two solutions can also be
related to each other by mean of the AT operator for communication situations
with a complete graph. The proof of Theorem 4 provides a characterization
of the equal surplus division in terms of an average of marginal contributions.
The interpretation is similar to the usual interpretation of the Shapley value,
except that the involved marginal contribution vectors are different. We al-
ready pointed out that these contribution vectors have a significant meaning
from a hierarchical point of view.

On the one hand, when the communication graph is complete, algorithm
DFS can always go on by visiting some unexplored player. Any created span-
ning tree is shaped like a directed line, and DFS(LN ) coincides with the set of
all n! such directed lines. The AT solution on CKN

with respect to DFS(LN )
coincides with the Shapley value on ΓN . For any directed line, a player in
position k in the line benefits from the information held and reported to him
by the player in position k+ 1, who in turn benefits from the information held
and reported to him by the player in position k + 2 and so on. Therefore a
player in position k in the line benefits from the information of each of the
n−k players located downstream from him. Thus, the line architecture defines
the most delegated type of communication hierarchy.

On the other hand, when the communication graph is complete, algorithm
BFS starts from an initial player and can always visit directly any other
player. Any created spanning tree is shaped like a (outward pointing) star and
BFS(LN ) coincides with the set of all n such directed stars. The AT solution
on CKN

with respect to BFS(LN ) coincides with the equal surplus division
on ΓN . For any star, the player at the center of the star benefits from the
information held and reported to him by each other player. Thus, the star
architecture defines the most centralized type of communication hierarchy.

The average tree solutions offers a new way of looking at the old economic
debate about centralization versus decentralization. Advantages claimed for
the two solutions have been extensively studied (see for instance Marschak
[13]). From the regulator point of view, the allocation choice between the
Shapley value and the equal surplus division can be seen as a choice between
delegation and centralization. The regulator knows the worth produced by the
grand coalition that should be allocated among the players. Because commu-
nication can be costly, only hierarchical structures of communication can be
considered to be efficient. No doubt that the worth ultimately achieved by any
communication hierarchy is the same, because all agents eventually commu-
nicate and cooperate with each other. Nevertheless, the share of this worth
that a particular agent can claim will typically depend on the communication
hierarchy under consideration and on his/her position in the hierarchy. The
regulator might not know which particular communication hierarchy has been
used by the players for producing the worth of the grand coalition. In order to
redistribute this worth among the players, he can focus on a particular class
of communication hierarchies that he considers as plausible, and compute the
average marginal contribution of each player over the communication hierar-
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chies in this class. This is the viewpoint as reflected in definition of the Shapley
value, where each player obtains the average over all orderings of the players
of his marginal contribution. If the regulator considers that the communica-
tion between players has been established by a delegated channel but does not
know which particular one, he will allocate the value of the grand coalition
among the players according to the Shapley value as the average marginal con-
tribution vector over all these n! delegated channels. If the regulator considers
that the communication between players has been established by a centralized
channel but does not know who was the central authority, he will allocate the
value of the grand coalition among the players according to the equal surplus
sharing as the average marginal contribution vector over all these n centralized
channels.
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