10 research outputs found

    Sparse Compression of Expected Solution Operators

    Get PDF
    We show that the expected solution operator of prototypical linear elliptic partial differential operators with random coefficients is well approximated by a computable sparse matrix. This result is based on a random localized orthogonal multiresolution decomposition of the solution space that allows both the sparse approximate inversion of the random operator represented in this basis as well as its stochastic averaging. The approximate expected solution operator can be interpreted in terms of classical Haar wavelets. When combined with a suitable sampling approach for the expectation, this construction leads to an efficient method for computing a sparse representation of the expected solution operator

    Sparse compression of expected solution operators

    Get PDF
    We show that the expected solution operator of prototypical linear elliptic partial differential operators with random coefficients is well approximated by a computable sparse matrix. This result is based on a random localized orthogonal multiresolution decomposition of the solution space that allows both the sparse approximate inversion of the random operator represented in this basis as well as its stochastic averaging. The approximate expected solution operator can be interpreted in terms of classical Haar wavelets. When combined with a suitable sampling approach for the expectation, this construction leads to an efficient method for computing a sparse representation of the expected solution operator

    A probabilistic finite element method based on random meshes: Error estimators and Bayesian inverse problems

    Full text link
    We present a novel probabilistic finite element method (FEM) for the solution and uncertainty quantification of elliptic partial differential equations based on random meshes, which we call random mesh FEM (RM-FEM). Our methodology allows to introduce a probability measure on standard piecewise linear FEM. We present a posteriori error estimators based uniquely on probabilistic information. A series of numerical experiments illustrates the potential of the RM-FEM for error estimation and validates our analysis. We furthermore demonstrate how employing the RM-FEM enhances the quality of the solution of Bayesian inverse problems, thus allowing a better quantification of numerical errors in pipelines of computations

    Probabilistic Gradients for Fast Calibration of Differential Equation Models

    Get PDF
    Calibration of large-scale differential equation models to observational or experimental data is a widespread challenge throughout applied sciences and engineering. A crucial bottleneck in state-of-the art calibration methods is the calculation of local sensitivities, i.e. derivatives of the loss function with respect to the estimated parameters, which often necessitates several numerical solves of the underlying system of partial or ordinary differential equations. In this paper we present a new probabilistic approach to computing local sensitivities. The proposed method has several advantages over classical methods. Firstly, it operates within a constrained computational budget and provides a probabilistic quantification of uncertainty incurred in the sensitivities from this constraint. Secondly, information from previous sensitivity estimates can be recycled in subsequent computations, reducing the overall computational effort for iterative gradient-based calibration methods. The methodology presented is applied to two challenging test problems and compared against classical methods

    Sparse operator compression of higher-order elliptic operators with rough coefficients

    Get PDF
    We introduce the sparse operator compression to compress a self-adjoint higher-order elliptic operator with rough coefficients and various boundary conditions. The operator compression is achieved by using localized basis functions, which are energy-minimizing functions on local patches. On a regular mesh with mesh size hh, the localized basis functions have supports of diameter O(hlog(1/h))O(h\log(1/h)) and give optimal compression rate of the solution operator. We show that by using localized basis functions with supports of diameter O(hlog(1/h))O(h\log(1/h)), our method achieves the optimal compression rate of the solution operator. From the perspective of the generalized finite element method to solve elliptic equations, the localized basis functions have the optimal convergence rate O(hk)O(h^k) for a (2k)(2k)th-order elliptic problem in the energy norm. From the perspective of the sparse PCA, our results show that a large set of Mat\'{e}rn covariance functions can be approximated by a rank-nn operator with a localized basis and with the optimal accuracy

    Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis

    Get PDF
    We show how the discovery of robust scalable numerical solvers for arbitrary bounded linear operators can be automated as a Game Theory problem by reformulating the process of computing with partial information and limited resources as that of playing underlying hierarchies of adversarial information games. When the solution space is a Banach space BB endowed with a quadratic norm \|\cdot\|, the optimal measure (mixed strategy) for such games (e.g. the adversarial recovery of uBu\in B, given partial measurements [ϕi,u][\phi_i, u] with ϕiB\phi_i\in B^*, using relative error in \|\cdot\|-norm as a loss) is a centered Gaussian field ξ\xi solely determined by the norm \|\cdot\|, whose conditioning (on measurements) produces optimal bets. When measurements are hierarchical, the process of conditioning this Gaussian field produces a hierarchy of elementary bets (gamblets). These gamblets generalize the notion of Wavelets and Wannier functions in the sense that they are adapted to the norm \|\cdot\| and induce a multi-resolution decomposition of BB that is adapted to the eigensubspaces of the operator defining the norm \|\cdot\|. When the operator is localized, we show that the resulting gamblets are localized both in space and frequency and introduce the Fast Gamblet Transform (FGT) with rigorous accuracy and (near-linear) complexity estimates. As the FFT can be used to solve and diagonalize arbitrary PDEs with constant coefficients, the FGT can be used to decompose a wide range of continuous linear operators (including arbitrary continuous linear bijections from H0sH^s_0 to HsH^{-s} or to L2L^2) into a sequence of independent linear systems with uniformly bounded condition numbers and leads to O(NpolylogN)\mathcal{O}(N \operatorname{polylog} N) solvers and eigenspace adapted Multiresolution Analysis (resulting in near linear complexity approximation of all eigensubspaces).Comment: 142 pages. 14 Figures. Presented at AFOSR (Aug 2016), DARPA (Sep 2016), IPAM (Apr 3, 2017), Hausdorff (April 13, 2017) and ICERM (June 5, 2017
    corecore