1,343 research outputs found

    Subliminal galvanic-vestibular stimulation influences ego- and object-centred components of visual neglect

    Get PDF
    Neglect patients show contralesional deficits in egocentric and object-centred visuospatial tasks. The extent to which these different phenomena are modulated by sensory stimulation remains to be clarified. Subliminal galvanic vestibular stimulation (GVS) induces imperceptible, polarity-specific changes in the cortical vestibular systems without the unpleasant side effects (nystagmus, vertigo) induced by caloric vestibular stimulation. While previous studies showed vestibular stimulation effects on egocentric spatial neglect phenomena, such effects were rarely demonstrated in object-centred neglect. Here, we applied bipolar subsensory GVS over the mastoids (mean intensity: 0.7. mA) to investigate its influence on egocentric (digit cancellation, text copying), object-centred (copy of symmetrical figures), or both (line bisection) components of visual neglect in 24 patients with unilateral right hemisphere stroke. Patients were assigned to two patient groups (impaired vs. normal in the respective task) on the basis of cut-off scores derived from the literature or from normal controls. Both groups performed all tasks under three experimental conditions carried out on three separate days: (a) sham/baseline GVS where no electric current was applied, (b) left cathodal/right anodal (CL/AR) GVS and (c) left anodal/right cathodal (AL/CR) GVS, for a period of 20. min per session. CL/AR GVS significantly improved line bisection and text copying whereas AL/CR GVS significantly ameliorated figure copying and digit cancellation. These GVS effects were selectively observed in the impaired- but not in the unimpaired patient group. In conclusion, subliminal GVS modulates ego- and object-centred components of visual neglect rapidly. Implications for neurorehabilitation are discussed

    Noisy galvanic vestibular stimulation modulates spatial memory in young healthy adults

    Get PDF

    Vestibular modulation of spatial perception

    Get PDF
    Vestibular inputs make a key contribution to the own sense of spatial location. While the effects of vestibular stimulation on visuo-spatial processing in neurological patients have been extensively described, the normal contribution of vestibular inputs to spatial perception remains unclear. To address this issue, we used a line bisection task to investigate the effects of galvanic vestibular stimulation (GVS) on spatial perception, and on the transition between near and far space. Brief left-anodal and right-cathodal GVS or right-anodal and left-cathodal GVS were delivered. A sham stimulation condition was included. Participants bisected lines of different lengths at six distances from the body using a laser pointer. Consistent with previous results, our data showed an overall left to right shift in bisection bias as a function of viewing distance: suggestive of a leftward bias in near space, and a rightward bias in far space. GVS induced strong polarity dependent effects in spatial perception, broadly consistent with those previously reported in patients: left-anodal and right-cathodal GVS induced a leftward bisection bias, while right-anodal and left-cathodal GVS reversed this effect, producing instead a bisection bias toward the right side of the space. Interestingly, the effects of GVS were comparable in near and far space. We speculate that vestibular-induced biases in space perception may optimize gathering of information from different parts of the environment

    A durable gain in motor and non-motor symptoms of Parkinson’s Disease following repeated caloric vestibular stimulation: A single-case study

    Get PDF
    Objective: To gain ‘first-in-man’ evidence that repeated caloric vestibular stimulation (CVS), a non-invasive form of neuro-modulation, can induce a lasting and clinically-relevant reduction in Parkinson’s Disease (PD) symptoms. Methods: A 70yr old male, diagnosed with PD 7 years prior to study enrolment, self-administered CVS at home 2x20 minutes per day for three months using a solid-state portable device. Standardised neuropsychological assessments of motor, cognitive, affective and independent function were carried out prior to stimulation, at the start and end of the sham (month 1) and active (months 2-3) phases, and 5 months post-stimulation. Results: Relative to the pre-stimulation baseline, behavioural improvements that exceeded the minimal detectable change were observed on the EQ5D, Unified Parkinson’s Disease Rating Scale, Schwab and England scale, 2 minute walk, Timed up and go, Non-motor symptom assessment scale for PD, Montreal cognitive assessment, Hospital depression scale and Epworth sleepiness scale. The level of change exceeded the threshold for a minimal clinically important difference on all scales for which a threshold has been published. By contrast, little improvement was seen during the sham (i.e. placebo) phase. Conclusion: Caloric vestibular stimulation may offer a novel, home-based method of relieving everyday symptoms of PD, and merits further evaluative study

    Sensorimotor processing for balance in spinocerebellar ataxia type 6.

    Get PDF
    We investigated whether balance impairments caused by cerebellar disease are associated with specific sensorimotor processing deficits that generalize across all sensory modalities. Experiments focused on the putative cerebellar functions of scaling and coordinate transformation of balance responses evoked by stimulation of single sensory channels. Vestibular, visual, and proprioceptive sensory channels were stimulated in isolation using galvanic vestibular stimulation, moving visual scenery, and muscle vibration, respectively, in 16 subjects with spinocerebellar ataxia type 6 (SCA6) and 16 matched healthy controls. Two polarities of each stimulus type evoked postural responses of similar form in the forward and backward directions. Disease severity was assessed using the Scale for Assessment and Rating of Ataxia. Impaired balance of SCA6 subjects during unperturbed stance was reflected in faster than normal body sway (P = 0.009), which correlated with disease severity (r = 0.705, P < 0.001). Sensory perturbations revealed a sensorimotor processing abnormality that was specific to response scaling for the visual channel. This manifested as visually evoked postural responses that were approximately three times larger than normal (backward, P < 0.001; forward P = 0.005) and correlated with disease severity (r = 0.543, P = 0.03). Response direction and habituation properties were no different from controls for all three sensory modalities. Cerebellar degeneration disturbs the scaling of postural responses evoked by visual motion, possibly through disinhibition of extracerebellar visuomotor centers. The excessively high gain of the visuomotor channel without compensatory decreases in gains of other sensorimotor channels provides a potential mechanism for instability of the balance control system in cerebellar disease. © 2015 International Parkinson and Movement Disorder Society

    Electrical vestibular stimulation in humans. A narrative review

    Get PDF
    Background: In patients with bilateral vestibulopathy, the regular treatment options, such as medication, surgery, and/ or vestibular rehabilitation, do not always suffice. Therefore, the focus in this field of vestibular research shifted to electri- cal vestibular stimulation (EVS) and the development of a system capable of artificially restoring the vestibular func- tion. Key Message: Currently, three approaches are being investigated: vestibular co-stimulation with a cochlear im- plant (CI), EVS with a vestibular implant (VI), and galvanic vestibular stimulation (GVS). All three applications show promising results but due to conceptual differences and the experimental state, a consensus on which application is the most ideal for which type of patient is still missing. Summa- ry: Vestibular co-stimulation with a CI is based on “spread of excitation,” which is a phenomenon that occurs when the currents from the CI spread to the surrounding structures and stimulate them. It has been shown that CI activation can indeed result in stimulation of the vestibular structures. Therefore, the question was raised whether vestibular co- stimulation can be functionally used in patients with bilat- eral vestibulopathy. A more direct vestibular stimulation method can be accomplished by implantation and activa- tion of a VI. The concept of the VI is based on the technology and principles of the CI. Different VI prototypes are currently being evaluated regarding feasibility and functionality. So far, all of them were capable of activating different types of vestibular reflexes. A third stimulation method is GVS, which requires the use of surface electrodes instead of an implant- ed electrode array. However, as the currents are sent through the skull from one mastoid to the other, GVS is rather unspe- cific. It should be mentioned though, that the reported spread of excitation in both CI and VI use also seems to in- duce a more unspecific stimulation. Although all three ap- plications of EVS were shown to be effective, it has yet to be defined which option is more desirable based on applicabil- ity and efficiency. It is possible and even likely that there is a place for all three approaches, given the diversity of the pa- tient population who serves to gain from such technologies

    Differential postural effects of plantar-flexor muscles fatigue under normal, altered and improved vestibular and neck somatosensory conditions

    Full text link
    The aim of the present study was to assess the effects of plantar-flexor muscles fatigue on postural control during quiet standing under normal, altered and improved vestibular and neck somatosensory conditions. To address this objective, young male university students were asked to stand upright as still as possible with their eyes closed in two conditions of No Fatigue and Fatigue of the plantar-flexor muscles. In Experiment 1 (n=15), the postural task was executed in two Neutral head and Head tilted backward postures, recognized to degrade vestibular and neck somatosensory information. In Experiment 2 (n=15), the postural task was executed in two conditions of No tactile and Tactile stimulation of the neck provided by the application of strips of adhesive bandage to the skin over and around the neck. Centre of foot pressure displacements were recorded using a force platform. Results showed that (1) the Fatigue condition yielded increased CoP displacements relative to the No Fatigue condition (Experiment 1 and Experiment 2), (2) this destabilizing effect was more accentuated in the Head tilted backward posture than Neutral head posture (Experiment 1) and (3) this destabilizing effect was less accentuated in the condition of Tactile stimulation than that of No tactile stimulation of the neck (Experiment 2). In the context of the multisensory control of balance, these results suggest an increased reliance on vestibular and neck somatosensory information for controlling posture during quiet standing in condition of altered ankle neuromuscular function

    Beyond the Vestibulo-Ocular Reflex:Vestibular Input is Processed Centrally to Achieve Visual Stability

    Get PDF
    The current study presents a re-analysis of data from Zink et al. (1998, Electroencephalography and Clinical Neurophysiology, 107), who administered galvanic vestibular stimulation through unipolar direct current. They placed electrodes on each mastoid and applied either right or left anodal stimulation. Ocular torsion and visual tilt were measured under different stimulation intensities. New modelling introduced here demonstrates that directly proportional linear models fit reasonably well with the relationship between vestibular input and visual tilt, but not to that between vestibular input and ocular torsion. Instead, an exponential model characterised by a decreasing slope and an asymptote fitted best. These results demonstrate that in the results presented by Zink et al. (1998), ocular torsion could not completely account for visual tilt. This suggests that vestibular input is processed centrally to stabilise vision when ocular torsion is insufficient. Potential mechanisms and seemingly conflicting literature are discussed
    corecore