1,206 research outputs found

    Shenfun -- automating the spectral Galerkin method

    Full text link
    With the shenfun Python module (github.com/spectralDNS/shenfun) an effort is made towards automating the implementation of the spectral Galerkin method for simple tensor product domains, consisting of (currently) one non-periodic and any number of periodic directions. The user interface to shenfun is intentionally made very similar to FEniCS (fenicsproject.org). Partial Differential Equations are represented through weak variational forms and solved using efficient direct solvers where available. MPI decomposition is achieved through the {mpi4py-fft} module (bitbucket.org/mpi4py/mpi4py-fft), and all developed solver may, with no additional effort, be run on supercomputers using thousands of processors. Complete solvers are shown for the linear Poisson and biharmonic problems, as well as the nonlinear and time-dependent Ginzburg-Landau equation.Comment: Presented at MekIT'17, the 9th National Conference on Computational Mechanic

    Spectral methods for CFD

    Get PDF
    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched

    Analysis of spectral element methods : with application to incompressible flow

    Get PDF

    High-order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling

    Get PDF
    Copyright @ 2014 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685ā€“6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension (rā€‰+ā€‰1)D and is usually regarded as being too large when rā€‰>ā€‰1. Werder et al. found that the space-time coupling matrices are diagonalizable over inline image for r ā©½100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without Kelvinā€“Voigt and Maxwellā€“Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease
    • ā€¦
    corecore