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Summary 

The objective of this thesis is to develop highly accurate and highly effi
cient solution methods for incompressible flow problems with a dominating 
convective part, using a high-order spectral element method. The reason to 
apply spectral elements is the high accuracy that can be achieved when ap
proximating 'sufficiently' smooth phenomena within a geometrically flexible 
framework. 

The first part of this thesis is mainly concerned with the spectral el
ement method. Spectral element methods are high-order p-type weighted 
residual techniques for the solution of partial differential equations. They 
combine the geometric flexibility of the well-known h-type :finite element 
method with the attractive approximation properties of spectral methods. 
For a special class of basis functions, spectral element methods exhibit ex
ponential convergence when approximating sufficiently smooth functions, a 
clear advantage compared to the algebraic convergence that can be obtained 
using a conventional low-order method. Of great importance for a numerical 
method is also the efficiency, both with respect to memory usage and com
puting time, with which the resulting system of discrete equations can be 
solved. For the spectral element method efficiency is achieved :firstly by the 
use of iterative solution algorithms using low-order finite element precondi
tioning, and secondly by the use of a tensorial basis that is derived from 
the one-dimensional basis. This allows a method to decrease the number of 
operations needed to compute the residuals in an iterative technique. Using 
an iterative solver, the full spectral element system matrix no longer needs 
to be stored, resulting in a more efficient memory usage. 

The second part of this thesis deals with the solution of incompressible 
flow problems. A good starting point is the solution of general unsteady 
convection-diffusion problems. If the convection part dominates the prob
lem, application of low-order Galerkin methods often leads to spurious os
cillations in the numerical solution. The spectral element approximation on 
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xiv Summary 

the other hand exhibits minimal numerical dispersion and diffusion. For 
unsteady problems the choice of time-integration becomes also important. 
Since convection and diffusion are totally different phenomena, it is appro
priate to treat them separately using an operator splitting approach that 
decouples the problem into a pure convection problem and a pure diffusion 
problem. This choice is influenced by the need for an efficient numerical 
scheme, since then the diffusion equation can be solved using an implicit 
time-integration with a large time-step, and the convection equation can be 
solved using an explicit time-integration with, if necessary, a smaller time
step. The use of a high-order spectral element method has a great advantage 
because in that case it is valid to apply a diagonal mass matrix, since it is not 
as restrictive with respect to accuracy as is the case for low-order methods. 
Consequently, the resulting discrete system does not involve the solution of 
a system, but only the calculation of matrix-vector products which can be 
performed on elemental level. The diffusion system can be solved using a 
standard iterative procedure. 

The next step is the solution of the Navier-Stokes equations for incom
pressible fiow. Again, the choice of solution method is largely determined 
by the need for an efficient method, which is found in a modified continuous 
pressure correction {or predictor-corrector) scheme. The reason to choose a 
continuous decoupling algorithm is because in that case the degree of ap
proximation for velocity and pressure can be taken the same, since there is 
no need to satisfy any form of the Brezzi-Babuska condition. The resulting 
set of discrete equations is is then very easy to implement. In a pressure cor
rection method the set of equations is split into a set of problems for both 
velocity and pressure. This results in a convection-diffusion problem for an 
intermediate velocity field that can be solved using the operator splitting 
technique. Enforcing the incompressibility constrai!lt yields a Poisson equa
tion for the pressure correction which can be solved using a finite element 
preconditioning technique. Next, the velocity is 'corrected'. The main ad
vantage of a pressure correction scheme is that the final velocity obtained 
is guaranteed to be divergence-free. In this thesis a modification to the 
standard approach is proposed in order to derive a second-order consistent 
scheme. Using this modification there are no longer any problems relating 
'artificial' boundary conditions for the pressure correction. 
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Chapter 1 

Introduction 

1.1 Numerical analysis of carotid artery flow 

Due to the enormous developments in computer facilities in recent years nu
merical simulations of physiological flows, which often involve large compu
tations of three-dimensional unsteady phenomena, have become increasingly 
interesting. An example of the application of large scale numerical compu
tations of physiological flow, or more specific blood flow, can be found in the 
research project 'Atherosclerosis' at the Eindhoven University of Technology. 
This project shows that, in addition to in-vivo and in-vitro experiments, a 
numerical analysis of blood flow patterns in the carotid artery bifurcation 
plays an important role in studies of both the genesis and the detectability 
of atherosclerosis. Atherosclerosis is an arterial disease resulting in localized 
stiffening and thickening of the arterial wall (atherosclerotic laesions) and 
may lead to narrowing or even occlusion of the artery affected. Especially 
arterial bifurcations and bends are found to be sites of preference. Besides 
biochemical and cytological aspects, hemodynamical aspects are assumed to 
play an important role in the genesis of the atherosclerotic disease. 

In previous studies of this project, both experimental and numerical tech
niques have been developed and used to analyze the flow in non-diseased 
arteries. As regards the numerical simulation of the flow field, Van de Vosse 
et al. (1990) studied the steady and unsteady flow in two-dimensional bifur
cation geometries with rigid walls. The numerical technique employed was 
a standard finite element method based on the software package SEPRAN 
(Segal, 1984). The finite element technique was used to solve the unsteady 
Navier-Stokes equations for incompressible Newtonian flow; the effect of 
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2 Chapter 1 

the non-Newtonian (visco-elastic) properties of blood being currently inves
tigated in this group. Comparison with data obtained from experiments 
showed that the finite element simulation was accurate for laminar two
dimensional flow, but also demonstrated that fully three-dimensional flow 
simulations including the analysis of secondary motion are needed for obtain
ing valid information about the flow phenomena in bifurcation geometries. 
The extension to three-dimensional simulations of Newtonian flow was de
scribed by Rindt et al. {1990), who gave detailed information about both the 
primary and secondary velocity distributions of the steady and unsteady flow 
in three-dimensional rigid bifurcation geometries. In order to analyze the in
fluence of the distensibility of the arterial wall, the numerical model has been 
extended by means of a decoupled fluid-structure interaction model. To this 
end Reuderink et al. {1993) developed a wave-propagation model based on 
pressure-radius relations appropriate for bifurcation geometries. This model 
was used to compute the motion of the arterial wall. The wall motion serves 
as as boundary condition for the velocity computations. 

Having dealt extensively with the analysis of flow phenomena in non
stenosed bifurcation geometries, the obvious next step is to look more closely 
at the influence of minor stenoses on the local velocity distributions in the 
carotid artery. Recently performed experiments {Palmen et al., 1993) con
firm information from literature (Ku, 1983) that stenoses may influence the 
stability of the flow. Since flow instabilities originate from relatively small 
scaled disturbances, a highly accurate numerical technique with minimal 
numerical diffusion (or damping) is necessary to ensure an accurate simula
tion of these flow patterns. Moreover, since flow instabilities are essentially 
unsteady phenomena, also much attention must be paid to the choice of 
time-integration for the simulation of unsteady incompressible flow. Former 
numerical results (Van de Vosse, 1987) showed that standard finite element 
solution of the incompressible N a vier-Stokes equations, may not be accurate 
enough to resolve the apparent flow instabilities. 

Rather than submit to a severe refinement of mesh and time-step, which 
is not very practical, an alternative numerical technique may be employed 
in order to obtain a more accurate numerical solution of the flow field. In 
this study, a possible substitute is found in a high-order spectral element 
method (Maday and Patera, 1989). This technique combines the geometri
cal flexibility of the finite element method with the rapid convergence for 
smooth phenomena (as occur in incompressible fluid dynamics) of spectral 
methods (Gottlieb and Orszag, 1977j Canuto et al., 1988). The spectral 
element method is of importance in a wide range of applications where flow 
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instabilities and transition from laminar to turbulent flow occur (Kaiktsis 
et al., 1991). Moreover, since this technique exhibits minimal numerical 
damping and dispersion, it is of importance in all numerical simulations 
where the diffusion is dominated by the convection (differential models in 
visco-elastic flow, conversion in reactive flows, particle tracking). 

1.2 Objectives and methodology employed 

The research in this thesis has the following goals: 

• to analyze and implement a spectral element method suitable for the 
approximation of partial differential equations in general. 

• to optimize the spectral element method with respect to computing 
time and memory allocation. 

• to compare the spectral element method (where possible) to the finite 
element method as regards accuracy and computational costs. 

• to address important aspects ofincompressible flow computations, such 
as the choice of time-integration and the choice of solution method for 
the Navier-Stokes equations. 

To begin with, in chapter 2 the spectral element method is analyzed from 
a theoretical point of view. The technique is derived within the general 
framework of Galer kin weighted residual approximation methods. Of special 
importance is the choice of basis functions; for a special class of basis func
tions spectral methods exhibit exponential convergence when approximating 
smooth functions. In order to get more insight in spectral element methods, 
the discretization process is described by means of a one-dimensional model 
equation. The basis for the discretization process is formed by the weak or 
variational formulation. Important aspects such as the choice of numerical 
integration and interpolation and the form of the resulting discrete matrix
vector system are addressed. The discretization process in more dimensions 
is essentially an extension of the process in one dimension. However, several 
aspects have to be discussed separately, such as the use of isoparametric 
elements to describe the geometry. The key to efficiency for a high-order 
spectral method in more dimensions is the use of a tensorial basis; the ap
proximate solution is expanded in a tensor-product of one-dimensional basis 
functions. As an example the discretization process for the two-dimensional 
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steady convection-diffusion equation is given. In order to verify the theor
etical accuracy of spectral methods (in comparison to that of finite element 
methods), numerical results are presented. The spectral element code is 
based on an implementation in the software package SEPRAN. 

Chapter 3 deals with efficient iterative solvers for spectral element sys
tems. Due to the high-order character ofthe spectral element approximation, 
the resulting system matrix is in general fairly full. In order to obtain an ef
ficient solution procedure iterative solvers are virtually necessary, especially 
in more dimensions. The drawback of an iterative procedure is the condi
tioning of the spectral matrix. If the degree of approximation becomes large, 
the condition number also becomes large compared to low-order .methods. 
As a consequence, the number of iterations needed to obtain convergence 
increases significantly if the degree of approximation increases. A strat
egy to overcome this problem is the use of finite element preconditioning 
(Deville and Mund, 1985). In this procedure the spectral matrix is pre
conditioned by the spectrally close finite element matrix based on the same 
interpolation points. The preconditioned system is well-conditioned and the 
condition number is practically independent of the degree of approximation. 
Moreover, the full spectral matrix no longer needs to be stored since the 
spectral residual is computed in an element-by-element procedure. The idea 
of finite element preconditioning is incorporated into 11everal iterative algo
rithms, both for symmetric and non-symmetric systems. Numerical results 
are given for various two-dimensional problems. The gain in computing time 
and memory allocation is also addressed. 

As already indicated in the previous section, a real challenge for a high
order spectral element method is formed by numerical simulations in which 
the diffusion is dominated by the convection. Application of conventional 
low-order Galerkin methods to such problems often leads to spurious os
cillations or 'wiggles' in the numerical solution. The high-order spectral 
element approximation on the other hand exhibits minimal numerical dis
persion and diffusion if the order of the approximation is large enough. In 
chapter 4 unsteady convection-diffusion problems with dominating convec
tion are considered. It appears that for convection-diffusion problems it 
is appropriate to decouple the treatment of convection and diffusion using 
an operator splitting technique. The diffusion part and convection part are 
then treated by different suitable time-integrations with different time-steps, 
when needed. The splitting approach provides the possibility to apply an 
explicit time-integration for the convective terms, resulting in an efficient sol
ution procedure that requires the evaluation of matrix-vector products only. 
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A useful class of explicit time-integration methods for convection problems 
is given by Taylor-Galerkin schemes (Donea, 1984). These methods add 
in a natural way a stabilizing diffusion term to the numerical scheme as 
part of the time-integration. For the diffusion step standard (semi-)implicit 
time-integration is chosen. This system can be solved using the iterative 
techniques described above. The Taylor-Galerkin schemes for convection 
problems and the splitting scheme for convection-diffusion are extensively 
tested. 

The operator splitting scheme for unsteady convection-diffusion problems 
with a dominating convective part is the basis for the approximation of the 
unsteady incompressible Navier-Stokes equations in chapter 5. An essential 
step in the solution procedure for the N a vier-Stokes equations is the decoup
ling of the velocity and pressure components. This can be done in various 
ways; in former research of the 'Atherosclerosis' group a penalty function 
approach was used to decouple velocity and pressure. In the present study 
a modification to a second-order pressure-correction or projection method 
(Van Kan, 1986) is proposed for this purpose. In the first step the pressure 
is taken at the previous time level, yielding an intermediate velocity field 
that in general is not divergence-free. In this way the computation of the 
intermediate velocity field results in the solution of a convection-diffusion 
problem which can be solved using the operator splitting approach described 
above. The non-linear convective term is treated in an explicit way, thereby 
prohibiting a linearization. Enforcing the incompressibility constraint yields 
a Poisson equation for the pressure correction which can be solved using finite 
element preconditioning. In the next step both the velocity and pressure are 
'corrected' to the new time level. In order to derive a second-order consistent 
scheme, special attention is also given to the choice of boundary conditions 
for velocity and pressure. All theoretical aspects of the algorithm are tested 
extensively by means of the approximation of an analytical solution to the 
Navier-Stokes equations. The numerical technique is further validated by 
simulating a buoyancy-driven cavity flow and comparing the results to a 
benchmark solution. 

Finally, in chapter 6 conclusions are drawn and recommendations are 
given. Future research will mainly focus on the extension of the spectral 
element approximation to complex geometries in three dimensions, and con
sequently also the use of isoparametric elements. Important implementation 
aspects such as mesh generation and parallelization of the code are then of 
importance. As regards the applications within the project 'Atherosclerosis', 
spectral element simulation of flow patterns in three-dimensional bifurcation 
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geometries can then be performed. Another aspect for future research is the 
extension of the spectral element method and of the solution algorithms for 
incompressible flow to visco-elastic flow simulations. 



Chapter 2 

Spectral element methods 

2.1 Introduction 

Spectral element methods are domain decomposition methods using high
order p-type weighted residual approximation for the solution of partial dif
ferential equations. The key feature of p-type methods is that they achieve 
convergence by increasing the degree of the approximation. Spectral el
ement methods were first presented by Patera (1984); more recent overviews 
are given by R0nquist (1988) and by Maday and Patera (1989). Spectral el
ement methods have the geometric flexibility of all other domain decomposi
tion methods, such as the well-known h-type finite element method (Ciarlet, 
1978; Axelsson and Barker, 1984; Girault and Raviart, 1986). The technique 
is very similar to the p-type finite element method proposed by Babuska et 
al. (1981). 

The spectral element technique belongs to the large class of spectral 
methods (Gottlieb and Orszag, 1977; Gottlieb et al., 1984; Canuto et al., 
1988; Zang et al., 1989). Spectral methods are characterized by the prop
erty that for problems with a solution that is sufficiently smooth, exponen
tial accuracy is obtained by expanding the solution in a series of special 
expansion functions. These expansion functions are solutions of singular 
Sturm-Liouville problems. Of particular interest among these solutions are 
the Chebyshev and the Legendre polynomials. 

In the spectral element approximation the domain is divided into non
overlapping, conforming elements. The discretization process is based on a 
variational formulation of the partial differential equation. The main effect 
of the variational approach is that the continuity requirements at element 

7 
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boundaries are lowered. The integral equations appearing in the variational 
formulation are integrated by high-order Legendre Gauss-Lobatto quadra
ture. The variables in each element are expanded in a series of high-order 
polynomial basis functions. For reasons of efficiency, in more dimensions a 
tensorial basis is used. The discrete matrix-vector system is generated in the 
standard Galerkin way, leading to a block-banded system. 

Due to their high-order character, spectral element methods are appro
priate for problems in which high-order regularity is guaranteed or (in any 
case) not the exception, such as is the case for incompressible flow problems. 
If the regularity of the solution is low, or if the required accuracy is not very 
high, spectral element methods perform no better than conventional low
order methods. Since spectral element methods are domain decomposition 
techniques, complex geometries (even singularities) can be treated by local 
mesh refinement. Moreover physically originated difficulties, such as bound
ary layers, can be handled by locally increasing the number of elements or 
even the degree of the approximation (Bernardi et al., 1990). 

In section 2.2 the fundamentals of spectral element discretization are de
scribed. As a starting point the concept of p-type approximation methods is 
discussed. Next, the high accuracy of spectral-type methods is explained by 
analyzing the approximation of a sufficiently smooth function ~c( x) in terms 
of a series of expansion functions. Finally, the spectral element discretization 
process is extensively discussed by means of a one-dimensional linear elliptic 
model equation. 

Section 2.3 deals with spectral elements in more dimensions. Key fea
tures that do not occur in one dimension, such as tensor product formula
tion and the influence of geometry (isoparametric elements), are addressed. 
The discretization process in more dimensions is shown by applying spec
tral elements to the two-dimensional steady convection-diffusion equation. 
In chapter 4 of this thesis attention will be given to the approximation of 
unsteady convection-diffusion problems. 

In section 2.4 numerical results are given. Firstly, the spectral element 
approximation is applied to several test cases with an analytical solution. 
Exponential convergence to this solution is shown. Next, the influence of 
the convective term in a model convection-diffusion problem and the use 
of upwinding in a spectral element approximation is analyzed. Finally, the 
problem of heat transfer in a Poiseuille flow is approximated. 
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2.2 Spectral element discretization in one dimen-
• SlOn 

2.2.1 p-type weighted residual methods 

In this section the concept of p-convergence of a numerical approximation 
method is discussed from a general point of view. The following partial 
differential equation in one dimension is taken as a starting point 

Cc= f inn. (2.1) 

Here C is a continuous positive-definite differential operator with domain 
the linear vector space U, a subspace of a Hilbert space V ( C : U C V .....,.. V) 
and f E C0(fi). The corresponding weighted residual formulation is 

Find c E U such that: 

(Cc- j,v)v = 0, "'v E V, (2.2) 

with (-, · )v the inner product in V. The functions v E V are called the 
test functions. It is a well-known result from the Lax-Milgram lemma, 
see e.g. Ciarlet (1978), that if the operator C satisfies certain conditions, 
problem (2.2) has a unique solution c E U. 

The next step is to choose an (n +I)-dimensional subspace Uh C U with 
basis 'Pi ( i = 0, ... , n ). The approximate solution ch E Uh is then written as 

n 

Ch( X) = L Cjlpi( X). (2.3) 
i=O 

The coefficients Ci are the unknowns. In an analogous way the space of test 
functions v is discretized by an ( n + 1 )-dimensional subspace vh with basis 
1/Jk ( k = 0, ... , n ). The discrete weighted residual formulation then reads 

Find Ch E uh such that: 

(Cch- f, vh)v = 0, 

or equivalently 

Find Ch E uh such that: 

(2.4) 

k = o, ... ,n. (2.5) 



10 Chapter 2 

Since Vh is also a Hilbert space, the Lax-Milgram lemma again can be 
applied yielding a unique approximate solution Ch E Uh. If the bases </)i 

and 1/J~c are the same, i.e. U h = Vh, the method is called a Galer kin method, 
otherwise the method is called a Petrov-Galerkin method. The Galerkin 
weighted residual approach is shown in Figure 2.1. 

£c= f 

Figure 2.1: Galerkin weighted residual approximation method, 

The class of p.type weighted residual techniques can be divided into 
global methods, such as spectral methods, and methods that use any form 
of domain decomposition, such as the spectral element method. The main 
advantage of domain decomposition techniques is that they are able to handle 
complex geometries. Another consequence of the use of domain decomposi
tion is that the system matrix is block-banded, which results in less comput
ing time and memory storage compared to global methods. Moreover, these 
techniques provide a very useful application for parallel computing, since a 
lot of operations can be performed on domain level. 

If a Galerkin domain decomposition method is used, the basis for the 
numerical scheme is the variational or weak formulation to equation (2.1) 

Find c E V such that: 

a(c, v) = (!, v)v, Vv E V, (2.6) 

where the functions v E V are again the test functions. This is done in order 
to lower the continuity requirement at element boundaries. If the bilinear 
form a(·, ·) is bounded and positive-definite, application of the Lax- Milgram 
states that problem (2.6) has a unique solution c E V. Again approximating 
v by the (n +!)-dimensional subspace vh with basis tPk (k = 0, ... ' n) gives 
the discrete problem 



Find Ch, E v~~, such that: 

a(c~~,,vh) = (f,vh)v, 

or equivalently 

Find Ch, E vh such that: 

k = 0, ... , n. 
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(2.7) 

(2.8) 

An important result of the variational Galerkin formulation is the following 
lemma of Cea (Ciarlet, 1978) also known as the 'best approximation result' 

(2.9) 

where ll·llv denotes the norm induced by the inner product(·, ·)v and co is 
a constant. The lemma states that the error lie- chllv is bounded by the 
smallest distance lie - vhliv. In other words, the approximation Ch is the 
best approximation for c in the space V~t. This result is shown in Figure 2.2. 

v 

Figure 2.2: Galerkin 'best approximation result'. 

The idea behind p-type methods is to obtain a more accurate solution 
by decreasing the distance inf lie- vhllv· This is done by increasing n, the 
dimension of the approximate space V~~, (p-convergence). Before describing 
the spectral element discretization, it is therefore first analyzed how accu
rate a function c( x) can be approximated by increasing the degree of its 
approximation. 

2.2.2 Spectral approximation 

In a weighted residual approximation method the approximate solution to 
the partial differential equation is expanded in a truncated series of expansion 
functions 

n 

Snc(x) = L Ci<fi(x), (2.10) 
i=O 



12 Chapter 2 

with Ci the expansion coefficients and 'Pi the expansion functions. In p-type 
methods convergence is achieved by letting n-+ oo, that is by increasing the 
degree of the expansion. 

The essential point behind spectral methods is that the expansion func
tions are chosen such that the expansion (2.10) has the property of ex
ponential accuracy if the approximated function is sufficiently smooth. The 
convergence rate is therefore determined by the smoothness of that function. 
In order to establish this, consider the expansion of an analytical function 
c( x) in terms of an infinite sequence of orthogonal functions 'Pi 

00 

c(x) = LCi'Pi(x). (2.11) 
i=O 

If the system of orthogonal functions is complete in a suitable Hilbert space, 
relation (2.11) can be inverted. Thus the function c(x) can be described both 
through its values in physical space and through its coefficients in spectral 
space. 

In the case of periodic functions the obvious expansions are Fourier series. 
A well-known result of the Fourier theory states that if a function c(x) is 
periodic and analytical with periodic derivatives, the ith coefficient of its 
Fourier series decays faster than any inverse power of i, that is 

Vm > 0 3io Vi > io : Ci < i-m. (2.12) 

The exponential (or spectral) accuracy can also be obtained for expansions 
in non-periodic functions. If the function c( x) is expanded in a series of 
eigenfunctions of singular Sturm-Liouville problems defined on the domain 
( -1, 1), the ith coefficient of the expansion decays faster than any inverse 
power of the corresponding eigenvalue of the associated Sturm-Liouville 
problem, that is 

Vm > 0 3io Vi > io : Ci < >.;-m. (2.13) 

In appendix A.l more results on Sturm-Liouville expansions are given. In 
particular polynomial expansions are of importance, for reasons of efficiency. 
In Canuto et al. (1988) it is shown that the only polynomial solutions to 
singular Sturm-Liouville problems on ( -1,1) are encompassed in the class of 
Jacobi polynomials. The two most common applications in this class are the 
Chebyshev and Legendre polynomials. For a detailed survey of properties 
of these polynomials see Abramowitz and Stegun (1972). Since spectral 
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element methods use Legendre-type expansions, some properties of Legendre 
polynomials and Legendre expansions are given in appendix B. 

It is clear that spectral approximation can be seen as a special case of 
the expansion of a function c( x) in terms of an infinite sequence of general 
orthogonal polynomials. The theory hereof is provided in appendix A.2. 

2.2.3 Pseudospectral approximation 

The approximation (2.11) defines a continuous transform between physical 
space and spectral space. In general, the spectral expansion coefficients Ci 
are not computed exactly, since they depend on all values of the function in 
physical space. In pseudospectral methods a set of approximate coefficients 
Ci is calculated using the values of c( x) at a finite number of interpolation 
points. The finite series defined by the discrete coefficients Ci is then the 
interpolating polynomial of c( x) at the interpolation points. It is given by 

n 

Inc(x) = L Ci<;?i(x). 
i=O 

The interpolating polynomial satisfies 

Inc(x~r) = c(x~r), k = 0, ... , n, 

(2.14) 

(2.15) 

where the Xk are the interpolation points. Equation (2.15) gives the discrete 
transform between the values of c( x) and the set of its discrete coefficients. 
For more details on interpolating polynomials see appendix A.3, in which the 
more general case of discrete expansions in terms of orthogonal polynomials 
is described. 

It will be convenient if the spectral accuracy is retained in replacing the 
continuous transform with the discrete transform. In Canuto et al. (1988) it 
is shown that if the interpolation points are Gauss-type quadrature points, 
the discrete expansion shows spectral accuracy. An overview of Gauss-type 
quadrature is given by Davis and Rabinowitz {1984). In practice the inter
polating polynomial is often written as 

n 

Inc(x) = I:ci¢>i(x), (2.16) 
i=O 

with Ci = c(xi) and ¢>i the Lagrangian interpolant in the Gauss-type quadra
ture points. For Legendre interpolation explicit values for ¢>i and its deriva
tives in the collocation points are given in appendix B. For more theory on 
pseudospectral methods see e.g. Gottlieb et al. (1984) and Hussaini et al. 
(1989). 
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2.2.4 A one-dimensional model equation 

In order to establish the concepts of spectral elements, consider the following 
linear symmetric elliptic boundary value problem in one dimension 

{ 
-! (a(:c}!:)+b(x}c=f(x) infi=(xr,xr), 

c(:ct) = c(xr) = 0. 

(2.17) 

Define a0 , a1 and b1 such that a( x ), b( :c) E C0(Ii) satisfy 

0 < ao < a(:c) < a11 0 < b(x) < b11 (2.18) 

where C0(IT) is the space of continuous functions in I!. Also, f(x) E L2(0) 
with the Lebesgue space L2(0) defined by 

(2.19) 

The natural inner product in this space is defined as 

(v,w) = j v(x)w(x) dx, (2.20) 
0 

with induced norm llv!! 2 = (v, v). The basis for the numerical scheme is the 
variational equivalent to problem (2.17). The space of acceptable solutions 
is defined to be the Sobolev space HJ(O) given by 

HJ(O) = { v E L2(0) I :: E L2(0), v(xr) = v(xt) = 0}. (2.21) 

The variational equivalent to problem (2.17) can then be written as 

Find c(x) E HJ(O) such that: 

a(c,v)=(f,v), V v E HJ(O), (2.22) 

where the bilinear continuous form a(·,·) is defined by 

a(c, v) = j a;::: dx + j bc(x)v(x) dx, c, v E HJ(O). (2.23) 

n n 
It is easily verified that the bilinear form a(·, ·) is bounded and positive
definite. Application of the Lax- Milgram lemma therefore yields that prob
lem (2.22) has a unique solution c(x) E HJ(O). 
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The first step in the spectral element discretization process is to break 
up the domain n into ne non-overlapping elements fle 

(2.24) 

The next step is to discretize the space of acceptable solutions HJ(fl). The 
space of approximation for the solution c( z) is taken to be the ( n + 1 )
dimensional subspace Vh of HJ(fl) defined as 

Vk = { v E HJ(fl) jvlne E Pn(fle)}, (2.25) 

where Pn(fle) denotes the space of polynomials in fle of degree S n. The 
discrete variational problem can now be written a.s 

Find Ch E vh such that: 
nc ne 

Ea(ch,vh)ne = L(/,vh)n~, {2.26) 
e=l e=l 

where the subscript fle denotes the restriction to element fle. In general 
equation (2.26) can not be implemented without numerical quadrature. The 
choice of numerical quadrature corresponds to the choice of a discrete inner 
product. The high-order discretization suggests a Gauss-type quadrature 
formula. A Legendre-type quadrature is chosen since it has a. natural weight 
function equal to 1. For reasons to be explained at the end of this section 
Gauss-Loba.tto integration is chosen. This quadrature is defined by 

1 n 

j p(y) dy = E p(~~chk, 
-1 k=O 

\:1 p E P2n-1( -1, 1), (2.27) 

where the ~k are the Legendre Gauss-Lobatto points and the ik the Leg
endre Gauss-Lobatto weights. In order to be able to apply the quadrature, 
an affine transformation is used to map each element fle to the standard 
element e = [ -1, 1] ( x E fle - y E e). Due to this transformation the terms 
in equation (2.26) can be written as 

J 8ch 8vh _1 j 
a(ch, Vk)ne = a By By J dy + b ch(y)vh(Y) J dy, (2.28) 

e e 

(/, vh)n~ = j I vh(Y) J dy. (2.29) 
e 
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The transformation Jacobian J is given by 

J = dx (x E Oe- y E e). 
dy 

(2.30) 

Applying the Legendre Gauss-Lobatto quadrature to the system (2.26) 
yields the following fully discrete problem 

Find Ch E vh such that: 
ne ne 

La( ch, vh)gl = l:U, vh)9 1. (2.31} 
e=l 

The corresponding discrete inner product ( ·, · )91 with induced norm ll·llot is 
given by 

n 

(v, w)gl = L Jk v(ek)w(ek) i'k· y v, wE C0(e), (2.32) 
k:O 

where Jk = J(ek)· Furthermore, the discrete bilinear form a(·, ·)91 is given 
by 

a(c, v)9r 

n 

+ L Jk b(xk)c({k)v({Tc) ilc. v c,v E C1(e), (2.33) 
k=O 

where the Xk are the global points corresponding to the local Gauss-Lobatto 
points {k· Equation (2.31) can be seen as the complete spectral element 
discretization of the original differential equation (2.17). Again, application 
of the Lax-Milgram lemma shows that problem (2.31) has a unique solution 
Ch E Vh. 

In order to implement the discrete system (2.31) it is necessary to choose 
a basis for the approximation space Vh. The choice of basis affects the form 
and conditioning of the discrete equations. Moreover, it is important with 
respect to inter-elemental coupling. Therefore a Legendre Gauss-Lobatto 
Lagrangian interpolant basis is chosen to represent a function in Vh, since 
the Lobatto points include the boundary points of the reference element 
e = [ -1, 1]. The basis functions </>i(Y) ( i = 0, ... , n) satisfy 

{ 

</>i(Y) E Pn(e), i = O, ... ,n, 

<l>i(ej) = 6ij, i,j = 0, ... ' n. 
(2.34) 
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An explicit expression for the basis functions is given by 

1- y2 lJLn 
</>i(Y) =- n(n + 1)Ln({i)(y- {i) lJy ' (2.35) 

with Ln(Y) the Legendre polynomial of degree n. Plots of the basis functions 
for several values of n are shown in appendix B. The approximate solution 
Ch in each element fle can be written as 

n 

. Ch(x) = L:Ci¢i(Y) (x E fle - y E e), (2.36) 
i=O 

where Ci = ch(Xi)· The approximate solution is continuous over element 
boundaries since ch E HJ(O). As a consequence the coefficients satisfy 

Cnl =col ' Oe-1 Oc 
e = 2, ... , ne. 

Moreover, ch must satisfy the Dirichlet boundary conditions 

Co1 = Cn1 = 0. 
01 One 

(2.37) 

{2.38) 

It is convenient to represent the source term f( x) in terms of the basis in 
vh. Substitution of Ch, /h and the test function Vh into equation (2.31) in 
the standard Galer kin way yields the discrete (block-banded) matrix system 

(D + H)c = Mf, 

or equivalently 
~ n ~ n 

L:'L: (DJi + HJi) Cj = L:'L:MJifi, 
e=l i=O e=l i=O 

(2.39) 

j = 0, ... , n. (2.40) 

In equation (2.40) 2: 1 denotes direct stiffness summation, i.e. the contribu
tions of corresponding global element boundary points are summed to ensure 
condition (2.37) and the Dirichlet boundary conditions (2.38) are taken into 
account by eliminating from the system the rows and columns corresponding 
to the boundary points (matrix condensation). The elemental matrices are 
given by 

e Ln 1 (1) (1) ( D ·· = -Pk. Pk · a Xk)"fk, 
Jl Jk I ] 

k=O 
i, j = 0, ... , n, 

i,j=O, ... ,n, (2.41) 

i,j = 0, ... , n, 
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with 

pk<~) = 8<Pi(ek), 
I 8y k,i = 0, . .. ,n. (2.42) 

Explicit values for the first derivative matrix p(l) are given in appendix 
B. A detailed error analysis for linear elliptic problems is given by Maday 
and Patera (1989). Here it suffices to say that if the solution and data are 
analytical, exponential convergence to the exact solution c( x) is obtained for 
Ch if n- oo. 

To conclude this section a remark can be made about the matrix system. 
As already mentioned, elements only couple at boundary nodes because of 
the Gauss-Lobatto interpolation. The choice of Gauss-Lobatto numerical 
integration ensures an exact evaluation of the stiffness or diffusion matrix 
D in the case of a constant coefficient a( x ). The matrix H and the mass 
matrix M are not computed exactly. However, the use of Gauss-Lobatto 
integration has two advantages. Firstly, it enables an efficient use of tensor 
product basis functions in more dimensions, see also section 2.3.1. Moreover, 
it results in a diagonal mass matrix M, a property that is very useful when 
approximating time-dependent problems with an explicit time-integration, 
see chapter 4. 

2.3 Spectral elements in more dimensions 

2.3.1 Tensor product formulation 

The efficiency of high-order methods such as the spectral element method 
in more dimensions depends on the use of a tensorial basis for the approxi
mate space of solution. To show this consider the discretization of a three
dimensional problem. The approximate solution Ch is written as a tensor 
product of the one-dimensional basis functions ¢i ( i = 0, ... , n) 

n n n 

Ch = L L L Cpqr</>p</>q</Jr • (2.43) 
p=Oq=Or=O 

A discrete matrix-vector system resulting from the spectral element dis
cretization of a three-dimensional problem has the following form 

Su=Mf, (2.44) 
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where S is the system matrix consisting of e.g. a stiffness, convection or 
Helmholtz part and M the mass matrix. Extending the results of the one
dimensional case from section 2.2.4, this can also be written as 

ne n n n ne n n n 

E' E E E s:tvpqrCpqr = E IEEE M:tvpqr/pqr, 
e=l p=Oq=Or=O e=l p=Oq=Or=O 

s, t, v = 0, ... , n. (2.45) 

At first sight it seems that evaluation of the elemental sum 
n n n 

E E E S!tvpqrCpqr, s, t, v = 0, ... ' n, (2.46) 
p=Oq=Or=O 

requires 0( n6 ) operations, since one must sum over p, q, r = 0, ... , n for 
s, t, v = 0, ... , n. Moreover, since S is full, in general the operation requires 
O(n6 ) storage. This does not look promising in comparison to a low-order 
h-type method for which the equivalent operation count and storage both 
scale as 0( n3 ). 

The use of the tensor product formulation (2.43) however, enables an 
efficient evaluation ofthe elemental sum (2.46). This is due to the fact that 
the one-dimensional basis functions satisfy 

i,k = 0, .. . ,n, (2.47) 

where the ~k are the Legendre Gauss-Lobatto collocation points. Applica
tion of property (2.47) in the evaluation of elemental sums gives the pos
sibility to 'skip' a number of summations. In the case that S consists of a 
stiffness part, the operation count can be reduced to 0( n4 ) and the storage 
requirement can be reduced to O(n3 ). For other cases this reduction is even 
larger; e.g. the spectral element mass matrix is always a diagonal matrix. In 
the general case, that is if there is a stiffness contribution, the reduction in 
operation count in d dimensions is found to be 0( nd-l ). 

Finally, it must be noted that the above reasoning only holds, if the 
integration and interpolation coincide. Since spectral elements use Legendre 
Gauss-Lobatto basis functions, also Legendre Gauss-Lobatto numerical 
integration must be applied. Otherwise the basis functions are not evaluated 
in the Legendre Gauss-Lobatto points and property (2.47) can not be used. 

2.3.2 The steady convection-diffusion equation 

As an example of the spectral element method in more dimensions, in this 
section the discretization of the two-dimensional convection-diffusion equa-
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tion is considered. Results for the three-dimensional case can be deduced 
in an analogous way. The spectral element discretization process in two di
mensions is essentially a straightforward extension of the one-dimensional 
case. However, several computational details such as tensor product for
mulation and geometry (aspects that do not appear in the one-dimensional 
discretization process) need to be addressed. 

Consider the two-dimensional steady convection-diffusion equation in a 
bounded region n with boundary r 

-(V · TJV)c + ( u · V)c = I inn, {2.48) 

with homogeneous Dirichlet boundary conditions. Here TJ is the dynamic 
viscosity (which is assumed to be constant for simplicity) and u is the velocity 
vector. The variational formulation for this differential equation is 

Find c(x) E HJ(Sl) such that: 

a(c, v) = (!, v), 'V v E HJ(Sl), (2.49) 

where the bilinear form a(·,·) is given by 

a(c,v)= jTJVc·Vvdx+ j<u·V)cvdx, c,veHJ(Sl). (2.50) 

0 0 

The domain Sl is divided into (generally) deformed disjoint quadrilateral 
elements with the intersections either a whole edge or a vertex 

(2.51) 

As in the one-dimensional case we approximate the solution space HJ(Sl) by 
the subspace vh defined as 

(2.52) 

where Pn(Sle) is the tensor product space of polynomials of degree ~ n in 
Sle with respect to each spatial variable x1 and x2 • Equation (2.49) can then 
be written as 

n., n., 

L a(ch, vh)O., = 2:U, vh)o.,, (2.53) 
e=l e=l 
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where 

a(ch, Vh)o. = j 1J'i!Ch · Vvh dx + j (u · V)chvh dx, 
Oe 0 4 

(!, Vh)Oe = J f Vh dx. 
o. 

(2.54) 

(2.55) 

Each quadrilateral element fle is mapped via an isoparametric transfor
mation, see also Figure 2.3, onto the standard element in two dimensions 
e = [-1, l] X [-1, 1] (x = (Xt,X2) E fle- Y = (Yld/2) E e). 

(1,1) 

Y1 

(-1,-1) e 

Figure 2.3: Isopara.metric transformation from fie to the standard element e in two 
dimensions. 

Due to this transformation equation (2.54) can be rewritten as 

a(ch,Vh)Oe = j 'fJ(J-1'ilyCh .J-1Vyvh) IJI dy 
e 

+ jcu · J-hvy )chvh IJI dy. (2.56) 
e 

The transformation Jacobian J is given by 

(2.57) 
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Here IJI is the determinant of J. With the definition 

( 

ax2 a ax2 a ) 
- - ay2 ayl - ayl ay2 
V- ' 

axl a axl a 
- ay2 ayl + ayl aY2 

(2.58) 

the bilinear form a(·,· )n .. corresponding to the standard element e is 

a(ch,vh)n .. = j11 1 ~ 1 vch·Vvhdy + jCu·V)chvhdy. 
e e 

(2.59) 

In an analogous way can be deduced 

(!, vh)n .. = j I vh Ill dy. (2.60) 
e 

The integral equations can be numerically integrated by applying Legendre 
Gauss-Lobatto quadrature. This yields 

ne n., 

L a(ch, Vh)gl = l:U, Vh)gh (2.61) 
e=l e=l 

where 
n n 1 

= L L 11"Yk'Yl-IJI Vch(~A:,~t) · Vvh(~~~:,~t) 
k=O l=O kl 

n n 

+ L L 'Yk"Yt(u · V)ch(~k,~t)vh(~k,~l), (2.62) 
k=OI=O 

n n 

(!, vh)gl = L L 'Yk'Yl IJ!kz I vh(~~~:, ~,). (2.63) 
k=Ol=O 

The €~~: and "Yk are the Legendre Gauss- Lobatto points and weights respec
tively. 

The approximate solution ch E Vh in each element fie is expressed in a 
tensor product of basis functions 

n n 

ch(x) = L L Cpq¢p(Yt)¢q(Y2) (X E fie - y E e). (2.64) 
p=Oq=O 

Substitution in equation (2.61) of ch, vh and lh in the usual way yields the 
discrete matrix system 

(D + C)c = Mf, (2.65) 
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or equivalently 

~ n n ~ n n 

E' E E ( D~qq + c:qq) epq = E' E E M;llpqfpq, 
e=l p=O q=O e=l p=O q=O 

r, s = 0, ... , n. (2.66) 

The elemental matrices are given by 
n n 

1 
_ _ 

D;llpq = 1J L L "Yk''Yl-IJI vklpq. Vklrl! 
k=O 1=0 kl 

(2.67) 

M;llflq = "Yp"Yq IJipq DprDqll• 

In equation (2.67) the discrete gradient is given by 

- ( ( ~::) kl p~~> Dtq - ( ~::) kl lj~t) Dkp l 
V~= ' 

(OXt) p(lh (OXt) p(l)~ 
- I Ukp - - k U/q 
01Jt kl q 01/2 kl p 

(2.68) 

with the first derivative matrix p(l) given by equation (2.42) and the partial 
derivatives given by 

(2.69) 

Note that due to the use of tensor products the equations can be evaluated in 
an efficient way. For the rectilinear case detailed theoretical error estimates 
can be found in Maday and Patera (1989), again indicating exponential con
vergence for analytical solution and data. In the case of deformed geometry 
quadrature errors occur in the evaluation of equations (2.62) and (2.63). 
However, for smooth solutions they are of the same order as the approxima
tion error. For a general analysis of spectral approximation in the case of 
deformed geometry see Maday and R0nquist {1990). Another remark on the 
more-dimensional case concerns the effect of singularities arising from a non
smooth geometry. In a spectral element method this effect will be localized 
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if the number of elements is greater than one. Moreover, it should be noted 
that by a suitable refining procedure even in the presence of singularities 
exponential convergence can be achieved, see e.g. Mavriplis (1989). 

2.4 Numerical results 

2.4.1 Application to problems with analytical solution 

The key point of spectral-type methods is that they achieve exponential 
accuracy for problems with a sufficiently smooth solution. To demonstrate 
numerically the rapid convergence, several test cases are considered of the 
partial differential equations described in the previous sections. 

The first test case is the one-dimensional linear elliptic problem, de
scribed by equation (2.17), on the domain n = (0, 1) with homogeneous 
Dirichlet boundary conditions. The coefficients are given by 

a(z) = e1rx, b(z) = -11' 2e11'x, f(z) = -1r2eu cos(1rz). (2.70) 

The exact solution to this problem is 

c( z) = sin( 1rz ). (2.71) 

Figure 2.4 shows the discrete maximum error e = lie- chlloo,gl for a 
spectral element approximation with ne = 2, n varying, and for a finite 
element approximation with ne varying, n = 2. The subscript oo,gl means 
that the maximum error is evaluated in the Gauss-Lobatto points. The 
spectral element approximation clearly shows exponential convergence; only 
algebraic convergence is achieved for the finite element approximation. 

The second test case is the two-dimensional convection-diffusion equa
tion, described by equation (2.48), on the domain {} = (0, 1) X (0, 1) with 
Dirichlet boundary conditions. The velocity u is taken to be [-1, O]T, the 
source term /( x) is equal to zero. Two values of the viscosity are considered, 
TJ = 1 and the strongly convective case TJ = k· The analytical solution to 
this problem represents a two-dimensional boundary layer, see Strikwerda 
(1980). It is given by 

(2.72) 

The analytical solution is shown in Figure 2.5 for TJ = 1 (left) and TJ = Jo 
(right). 
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Figure 2.4: One-dimensional linear symmetric elliptic problem. Evolution of the 
discrete maximum error e for spectral elements ( o) with ne = 2, n vary
ing, and finite elements ( •) with ne varying, n = 2. N is the number of 
degrees of freedom. 

c(x) 

t 0 

Figure 2.5: Two-dimensional boundary layer, 77 = 1 (left), 77 = iri (right). 
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Figure 2.6: Two-dimensional convection-diffusion problem, 11 = 1 (top), 11 = 3~ 
(bottom). Evolution of the discrete maximum error e for spectral 
elements ( o) with ne = 4, n varying, and finite elements ( •) with n, 
varying, n = 2. N is the number of degrees of freedom in one direction. 
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Figure 2.6 (top) shows the discrete maximum error for the first case 
( TJ = 1) for a spectral element approximation with ne = 4, n varying, and for 
a finite element approximation with ne varying, n = 2. Results for the second 
case (TJ = ~) are shown in Figure 2.6 (bottom). In both cases exponential 
convergence is achieved by the spectral element approximation. For the 
physically more difficult case TJ = :fa however, the degree of approximation 
in each element is much higher. 

2.4.2 The use of SUPG in spectral elements 

A very interesting aspect of the approximation of convection-diffusion prob
lems is that the numerical solution is often rather difficult, especially if 
the convective term dominates the problem. Due to the fact that the 
resulting system matrix is no longer diagonally dominant because of the 
non-symmetric convective term, application of standard Galerkin low-order 
methods usually results in poor solutions that suffer from numerical oscil
lations or 'wiggles'. A possible strategy to improve these solutions is the 
use of some kind of upwinding. In Brooks and Hughes (1982) a Streamline 
Upwind/Petrov-Galerkin (SUPG) technique for finite element schemes is 
described. The basic idea of the Streamline Upwind method is to add sta
bilizing diffusion to the numerical scheme which acts only in the direction 
of the velocity. Extended to a Petrov-Galerkin formulation the standard 
Galerkin test functions are modified by adding a Streamline Upwind per
turbation which again acts only in the flow direction. The modified test 
function is applied to all terms in the equation resulting in a consistent 
weighted residual formulation. 

Consider again the steady convection-diffusion equation in two dimen
sions given by equation (2.48). The SUPG method uses discontinuous test 
functions of the form 

v=v+Jt(u·V)v, (2. 73) 

where v E V is the Galer kin test function and Jt( u · V)v the Streamline 
Upwind contribution. The weak formulation of (2.48) is then given by 

a(c, v) + (Jt(U · V)v, -(V · qV)c + (u · V)c- f)=(!, v), (2.74) 

with the bilinear form a(·,·) given by equation (2.50). For finite elements Jt 
is defined as 

hd 
ft = iTUIT' (2.75) 
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For linear elements h is the width of the element in the direction of the 
flow, for quadratic elements h is the the width divided by 2. The upwind 
parameter fJ can be chosen to give optimal valuest in some sense, at least 
for one-dimensional problemst see Christie et al. (1976), Brooks and Hughes 
(1982). A clear disadvantage of the SUPG scheme is that the expensive 
second-order term must be evaluated. 

One of the advantages of the use of a high-order Galerkin method such as 
the spectral element method, is said to be the minimizing of the numerical 
oscillations that occur in convection dominated problems (R"nquist, 1988). 
The application of a high degree of approximation weakens the necessity 
to use some kind of upwinding in order to obtain good results for convec
tion dominated problems. In this section the use of SUPG in a spectral 
element approximation is briefly addressed by means of a one-dimensional 
convection-diffusion problem. In a spectral element method the nodal points 
are of course not equidistant. However, similar to the finite element case the 
upwind coefficient p, for a spectral element method that uses a degree of 
approximation n, can be formulated as 

hfJ 
p, = nllull' (2.76) 

with h the width of the element. 
Consider the convection-diffusion equation in one dimension with varying 

viscosity Tf, velocity u = 1 and source term 

f(:r:) = !!_ 1 - (:r:- :r:o) e- 2CT2 
( 

2) (:r:- :r:o)2 

a2 a2 

(:r:- :r:o)2 
(:r:- :r:o) 2 2 
-'----::-2 --"-€ (T 

(T 
(2.77) 

The boundary conditions are of homogeneous Dirichlet type. The exact 
solution c( :r:) is a Gaussian hill given by 

(:r:- :r:o)2 

c(:r:) = e 2a2 (2.78) 

centered around :r:0 = 0.4 with standard deviation a = 0.04. 
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Figure 2.7: One-dimensional convection-diffusion problem. Gaussian hill. Galerkin 
approximation for 71 = 10-5 using ne = 16 elements with degree of 
approximation n = 2. 

Table 2.1: Discrete maximum error e for the Gaussian hill problem for decreasing 
viscosity 17 using ne = 16 elements and varying degree of approximation. 
The use of SUPG is indicated by a + sign. 

1J n=2 n=4 n=8 n = 16 

10-3 - 0.55 ·10-1 0.16 ·10-2 0.68 ·10-6 0.67. 10-14 

+ 0.52. 10-1 0.12. 10-1 0.95 ·10-1 0.92 ·10-12 

10-5 - 0.22 ·10° 0.76 ·10-2 0.70 ·10-5 0.12 ·10-10 

+ 0.50. 10-1 0.10. 10-2 0.15 ·10-3 0.14 ·10-3 

10-7 - unstable 0.71. 10° 0.62 ·10-3 0.17. 10-6 

+ 0.50. 10-1 0.92. 10-3 0.14 ·10-5 0.15 ·10-5 

10-9 - unstable unstable 0.63 ·10-2 0.15 ·10-6 

+ 0.50 ·10-1 0.91·10-3 0.30. 10-6 0.15. 10-7 
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In Table 2.1 results are given of several spectral element approximations 
using ne = 16 elements for decreasing viscosity. The results confirm that 
if the viscosity decreases, yielding a more convection dominated problem 
that is almost hyperbolic, a low-order Galerkin approximation gives rather 
inaccurate solutions and can even become unstable. This is illustrated in 
Figure 2. 7 where the Galerkin solution for q = 10-5 using a degree of ap
proximation n = 2 is shown. The solution clearly suffers from oscillations. 
The low-order approximations can be significantly improved by the use of 
SUPG. On the other hand, if the degree of approximation becomes larger, 
the Galerkin approximation still proves to be accurate for decreasing vis
cosity. In that case also, the SUPG extension is more accurate only for the 
smallest viscosity. Since the SUPG approach is significantly more expen
sive due to the need to evaluate the second-order derivatives, the high-order 
Galerkin approximation is in fact preferable. 

The results of this test case seem to indicate that for convection domi
nated problems the application of a SUPG method can improve the solution 
for low-order approximations. For high-order computations the Gfl}erkin so
lution seems to be sufficient. In chapter 4 a closer look is taken at unsteady 

. convection or transport problems. It will be seen that in that case a stabi-
lizing diffusion operator can be built into the numerical scheme in a natural 
way as part of the time-integration, thus excluding the necessity to apply 
some kind of upwinding. 

2.4.3 Application to heat-transfer in a Poiseuille flow 

Consider the application of a spectral element discretization to the problem 
of heat-transfer in a Poiseuille flow between two flat plates. The heat dissi
pation is neglected and there are no heat sources. This problem is described 
by the convection-diffusion equation in two dimensions 

-(V · qV)T + (u · V)T = 0 inn, (2.79) 

where T(x) is the temperature and u the velocity vector. 
The computational domain n with the corresponding boundary condi

tions is shown in Figure 2.8. For reasons of symmetry only the upper half of 
the channel is shown. Note that the solution is discontinuous in the upper 
left corner. The velocity profile is parabolic and taken such that the average 
velocity is equal to 1 

(2.80) 
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Figure 2.8: Two-dimensional heat transfer in a Poiseuille flow. Computational do
main with boundary conditions. 

The viscosity is taken to be q = 5~0 • The boundary condition on r3 is 
a homogeneous Neumann boundary condition, as the channel is not long 
enough for the flow to be of homogeneous temperature on r3. 

In Figure 2.9 the isotherms T(x) = O.lk (k = 0, ... , 10) of the approxi
mate solution are shown. In (a)-(b) the number of degrees of freedom of 
the computation is the same, in (a) n = 2, ne = 32 (8 elements in the x1 

direction, 4 elements in the x2 direction), in (b) n = 4, ne = 8 ( 4 elements 
in the x1 direction, 2 elements in the x2 direction). It can be seen that all 
the computations suffer slightly from the singularity in (0,1). If the degree 
of the approximation increases, while keeping the total number of degrees of 
freedom constant, the solution satisfies the homogeneous boundary condition 
on r 2 in a more accurate way. Finally, in (c) the effect of p-convergence is 
shown. This solution uses the same division of elements as in (b), but the 
degree of the approximation is now n = 8. The effect of the singularity is 
very small and the boundary conditions are satisfied very accurately. 
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(a) 

(b) 

(c) 

Figure 2.9: Heat transfer in a Poiseuille flow, isotherms of the temperature. (a) 
ne = 32, n = 2, {b) ne = 8, n = 4, {c) ne = 8, n = 8. 
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Finite element 
preconditioning 

3.1 The conditioning of a spectral matrix 

Due to the global character of the approximation, the system matrix S of a 
high-order or spectral system 

Sc=Mf (3.1) 

is in general fairly full. Even when applying a spectral domain decomposition 
method, such as the spectral element method, this will be the case. As a 
consequence, a direct method for the solution of the spectral system becomes 
rather costly with respect to both storage and processing time, especially for 
more-dimensional problems. An efficient solution procedure for the spectral 
element system therefore requires an iterative algorithm. 

The evident drawback of such an iterative procedure is the conditioning 
of the system matrix S. In Canuto et al. (1988) it is shown for spectral 
methods that there are two constants c1 and c2 such that the eigenvalues of 
the elliptic part of the equation, that is of the second derivative operator, 
satisfy 

(3.2) 

with N the maximum of the number of nodes in each spatial direction. Equa
tion (3.2) holds both in the presence of Dirichlet and Neumann boundary 
conditions, apart from the zero eigenvalue of the Neumann problem. Nu
merical evidence shows that the largest negative eigenvalues grow like 0( N 4 ) 

33 
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as N-+ oo. Consequently, for a spectral method the condition number K(S) 
grows like a constant times N 4 ( N -+ oo ). In the case of a spectral element 
method the condition number is empirically found to be O(neN3 ), with ne 
the total number of elements in the spectral element discretization, see Ma
day and Patera ( 1989). This ill-conditioning of a spectral (element) system 
is a clear disadvantage compared to the conditioning of low-order h-type 
finite element and finite difference methods, which scales as O(N2), again 
for the elliptic part of the equation. 

For symmetric problems the number of iterations in an iterative solver 
becomes very large if the degree of approximation is large; e.g. for a Con
jugate Gradient iteration the number of iterations needed for convergence 
scales as JK("S). Therefore some kind of low-order preconditioning has to be 
applied to improve the condition number. If the equation has a convective 
contribution, yielding :t non-symmetric system matrix, the eigenvalues also 
have a considerable imaginary part. In that case the condition number is not 
directly coupled to the convergence of the iterative algorithm. Indeed, there 
is now no totally satisfactory scheme for non-symmetric problems. However, 
by looking at the eigenvalues of the system matrix also in this case some 
indication can be obtahied about the quality of the preconditioner. 

In Orszag (1980) an iterative procedure is presented that uses finite differ
ence preconditioning of the spectral system matrix. In the present study the 
idea of finite element preconditioning, proposed simultaneously for Cheby
shev pseudospectral systems by Deville and Mund (1985), and by Canuto 
and Quarteroni (1985), is used to precondition the spectral element system. 
Both methods are based on the concept of 'spectral equivalence'. Two sys
tem matrices of the same problem are said to be spectrally equivalent if they 
are derived from the same interpolation points, see e.g. Axelsson and Barker 
(1984). In that case the low-order matrix is a good preconditioner for the 
high-order matrix. 

In section 3.2 the eigenvalues of the preconditioned system matrix are 
numerically evaluated for two one-dimensional test cases, symmetric and 
non-symmetric. The condition number of the preconditioned matrix is ana
lyzed. In section 3.3 the basic preconditioned algorithm is given and several 
acceleration techniques are presented with the idea of finite element precon
ditioning incorporated. For symmetric systems the point of departure is the 
Minimum Residual method, in which in each iteration step the Euclidean 
norm of the residual is minimized. An extension of this algorithm yields the 
Conjugate Gradient method. For non-symmetric systems, the Bi-CGSTAB 
algorithm proposed by Vander Vorst (1992) is applied. Finally, in section 3.4 
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the iterative algorithms are evaluated by applying them to both symmetric 
and non-symmetric two-dimensional problems. 

3.2 Eigenvalues of the preconditioned matrix 

An efficient solver for the spectral element system requires an iterative pro
cedure. The evident drawback of the system matrix S is its conditioning. 
In order to improve the ill-conditioning of the spectral system an iterative 
procedure can be applied that uses low-order preconditioning. Here the lead 
of finite element preconditioning proposed by Deville and Mund {1985) for 
Chebyshev pseudospectral methods is followed. The idea is to precondition 
the full spectral element matrix S by the sparse and linear finite element 
matrix F based on the spectral element Legendre Gauss-Lobatto nodes, see 
Figure 3.1. 

• • • 

• • • -
• • • 

Figure 3.1: A single two-dimensional spectral element containing 25 Legendre 
Gauss-Lobatto nodes (n = 4) (left), and the corresponding linear ele
ment mesh containing 16 elements (right). 

The reason to expect that the low-order finite element matrix is a good 
preconditioner for the spectral element matrix, is that the matrices are spec
trally equivalent, that is both matrices are derived from the same Legendre 
Gauss-Lobatto interpolation points. In Axelsson and Barker (1984) a sim
ilar concept is described in which a linear element matrix is used as a pre
conditioner for a quadratic element matrix. Moreover, it is shown that the 
low-order preconditioning is a good one, in the sense that the condition num
ber of the preconditioned matrix is bounded with respect to the number of 
degrees of freedom. 
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Figure 3.2: Eigenvalues of the preconditioned matrix F-1s with N = 29, for a 
symmetric Poisson problem. 

Table 3.1: Condition number ~C(F- 1 S) for several values of N for a Poisson problem 
with two types of boundary conditions (BC). 

I N I Dirichlet B C I mixed B C 

17 2.19 2.20 

21 2.23 2.24 

25 2.25 2.28 

29 2.27 2.30 

33 2.30 2.32 

In order to analyze the conditioning of the preconditioned matrix F-1 S, 
the eigenvalues of F-1 S are numerically evaluated. This is done for two 
one-dimensional test cases, symmetric and non-symmetric. For simplicity 
only one element is used ( ne = 1) for the moment. 

The first test case consists of a Poisson problem with either homogeneous 
Dirichlet boundary conditions or homogeneous mixed boundary conditions. 
For the Dirichlet case the eigenvalues of the preconditioned matrix F-1s are 
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shown in Figure 3.2. In this case N is equal to 29. The eigenvalues are real 
and positive. The spectral condition number of the preconditioned matrix, 
defined as 

(F-1 8 ) _ IAmaxl 
K - !Amini' (3.3) 

where u(F-18) denotes the eigenvalue spectrum of F-18, is given for both 
types of boundary conditions in Table 3.1 for several values of N. In all 
cases the condition number increases only very slightly with respect to N, 
thus confirming that F is spectrally close to 8. Consequently, the rate of 
convergence hardly depends on the number of nodes used, contrary to the 
unpreconditioned case. 

The second test case consists of a convection-diffusion problem with con
stant viscosity TJ = :k, see equation (2.48). The boundary conditions are 
again of homogeneous Dirichlet type or of homogeneous mixed type. This 
problem yields a non-symmetric spectral element system matrix. 

1.0 I I 

• 
0.5 • -

• • • 
Im(A) 0.0 • 

• • • 
• 

-0.5 • -
• 

-1.0 I I 

0 1 2 3 
Re(A) 

Figure 3.3: Eigenvalues of the preconditioned matrix F-1s with N = 29, for a 
non-symmetric convection-diffusion problem. 

The eigenvalues of the preconditioned matrix F-18 are shown in Fig
ure 3.3 for the Dirichlet case with N = 29. For this highly convective 
problem, the eigenvalues have a relatively large imaginary part. As already 
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stated, at least some information about the quality of the preconditioner 
can be obtained by looking at the eigenvalues. Although the matrix is now 
non-symmetric, the condition number K(F-1S), is still assumed to be given 
by equation (3.3), see also Demaret and Deville (1989) who also take this 
approach. The condition number is given in Table 3.2 for several values of N. 
It is seen that in the non-symmetric case the condition number is bounded 
with respect to N. 

Table 3.2: Condition number ~~:(F- 1 S) for several values of N for a convection
diffusion equation with two types of boundary conditions (BC). 

I N I Dirichlet BC I mixed BC I 
17 2.20 2.23 

21 2.17 2.19 

25 2.17 2.18 

29 2.17 2.18 

33 2.18 2.19 

Table 3.3: Condition number ~~:(S) for several values of N for both a Poisson and a 
convection-diffusion equation. 

J N I Poisson I convection-diffusion [ 

17 232 10 

21 442 19 

25 751 34 

29 1179 53 

33 1604 80 

For the sake of completeness, in Table 3.3 the condition number K(S) 
of the spectral element matrix is given for the corresponding values of N 
for both problems. Only Dirichlet boundary conditions are considered. It is 
clear that the spectral element matrix is extremely ill-conditioned, especially 
in the Poisson case. In both cases, the condition number grows with N. For 
the case N = 29 the eigenvalues of S are shown in Figure 3.4 and Figure 3.5. 
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Figure 3.4: Eigenvalues ofthe spectral element matrix S with N = 29, for a Poisson 
problem. 
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Figure 3.5: Eigenvalues of the spectral element matrix S with N = 29, for a 
convection-diffusion problem. 
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3.3 Finite element preconditioned algorithms 

3.3.1 The basic iterative scheme 

The iterative algorithm proposed by Deville and Mund (1985) is a simple 
Richardson scheme. The initial guess is obtained by solving a finite element 
system. Subsequent approximations are obtained via a correction of the 
previous solution with the spectral residual 

Fc0 = Mf 
Fck = Fck-1 + a:(Mf- Sck-1) k = 1,2, ... , (3.4) 

with k the iteration counter. It should be noted that since the spectral 
residual rk = Mt'- Sck-l is computed in an element-by-element procedure, 
storage of the full spectral element matrix S is in this way avoided. 

The relaxation parameter a: controls the convergence rate of the algo
rithm. It is well-known that the process converges if the spectral radius of 
the operator I- a:F-1S satisfies 

(3.5) 

In section 3.3.2 a possible choice for a: is given, resulting in a Minimum 
Residual algorithm. In Deville and Mund (1990) the choice of the relaxation 
parameter is extensively analyzed for Chebyshev methods. 

3.3.2 Acceleration techniques for symmetric systems 

The results of section 3.2 indicate that the preconditioned matrix F-1s is in 
general well-conditioned. However, to ensure convergence of the algorithm 
some relaxation is necessary, otherwise equation (3.5) is not satisfied. In 
general, the determination of a relaxation parameter a: that works well for 
the complete iteration process is rather difficult. An optimal value of the 
relaxation parameter is given by (Fox and Parker, 1968) 

2 
(3.6) a:opt = I I I I' Amin + Amax 

In order to obtain a relaxation parameter a: that approximates this optimal 
value, a fairly accurate estimate of the eigenvalues of F-1s is required. How
ever, it is possible to select a sequence of relaxation parameters in a dynamic 
way, i.e. by picking a new a:k in each iteration step. In this way, one can 
efficiently obtain relaxation parameters that perform well. 
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As a starting point for symmetric systems, a Minimum Residual tech
nique is chosen. The same approach is taken by Quarteroni and Zampieri 
(1992) in the case of Legendre pseudospectral methods. In this method the 
relaxation parameter is taken to be the real number minimizing the discrete 
Euclidean norm of the preconditioned residual. In section 3.4.1 numerical 
values of this relaxation parameter are given. The finite element precondi
tioned version of this algorithm is given in appendix C. 

A substantial improvement in convergence rate can be achieved by the use 
of conjugate-type methods. For positive-definite symmetric linear systems 
these methods produce the exact answer in a finite number of steps. Here 
the well-known Conjugate Gradient method is chosen, see e.g. Reid (1971) 
and Concus et al. (1976). The finite element preconditioned version is also 
given in appendix C. The performance of these algorithms for several two
dimensional problems is tested in section 3.4.1. 

3.3.3 A Bi-CGSTAB algorithm for non-symmetric systems 

In the case that the spectral element system to be solved is non-symmetric, 
the algorithms of the previous section no longer suffice. The subject of 
iterative schemes for non-symmetric problems has received a lot of atten
tion in the last decade, resulting in methods like Generalized Conjugate 
Residual (GCR) (Eisenstat et al., 1983), Generalized Minimum Residual 
(GMRES) (Saad and Schultz, 1986), and Conjugate Gradients Squared 
(CGS) (Sonneveld, 1989). However, there is no totally satisfactory scheme 
for non-symmetric problems that is guaranteed to converge under all cir
cumstances. 

In this study a variation on the CGS method, the Bi-CGSTAB method 
is chosen as an iterative solver for non-symmetric systems. This method, 
proposed by Van der Vorst (1992), can easily be implemented in an efficient 
way, contrary to e.g. GMRES. The finite element preconditioned version is 
given in appendix C. It should be noted that the Bi-CGSTAB algorithm can 
also be applied for the iterative solution of symmetric systems. However, 
in general this algorithm is more costly than e.g. the Conjugate Gradient 
algorithm since two finite element systems have to be solved per iteration 
instead of one. In the next section the Bi-CGSTAB is tested and, for sym
metric systems, compared to the algorithms of the previous section: the 
Minimum Residual method and the Conjugate Gradient method. 
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3.4 Numerical results 

3.4.1 Application to a (symmetric) Poisson problem 

In order to evaluate the various preconditioned algorithms presented in the 
previous sections, numerical results are given for several two-dimensional 
problems, some of which are adapted from Deville and Mund (1985) and 
(1992). Some of these results appear also in Timmermans and Van de Vosse 
(1993a). This section deals with symmetric two-dimensional problems. The 
non-symmetric case is discussed in section 3.4.2. 

The test problem consists of a two-dimensional Poisson equation 

inn, (3.7) 

with domain n = (0, 1) X (0, 1) and homogeneous Dirichlet boundary condi
tions. The source term is chosen such that the exact solution to this problem 
is given by 

c(x) = sin(411'x1)sin(411'x2)· (3.8) 

Table 3.4: Two-dimensional Poisson problem. Evolution of the discrete maximum 
error e for spectral element approximation with ne = 1 and n varying. 

I n discrete maximum error e 

8 0.14 ·10-1 

16 0.36 . 10-1 

32 0.28. 10-13 

Table 3.4 shows the results of a direct spectral element approximation 
to this Poisson problem using one element ( ne = 1) and a varying degree of 
approximation n. Again, spectral accuracy is obtained if the degree of the 
approximation increases. 

Consider now the application of the iterative algorithms for symmetric 
systems to the solution of the Poisson problem for n = 32. The condition 
number of the preconditioned matrix F-1s is equal to 2.30. Figure 3.6 
shows the performance of the algorithms for the evolution of the discrete 
maximum error c = lie- chl\oo,gl in the solution with respect to the iteration 
index k ( ch is the corrected solution in every iteration step). For all three 
algorithms convergence to the spectral element solution is obtained within 
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few iterations. In Table 3.5 a processing time comparison between the three 
methods is given. 

10-1 

10-3 • Minimum Residual • w-s Conjugate Gradient ... 
Bi-CGSTAB 0 
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0 '· 0 *. c *·· 
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Ooo **** •••• 

10-15 
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k 

Figure 3.6: Evolution of the discrete maximum error t with respect to the iteration 
index k for the two-dimensional Poisson problem (ne = 1, n = 32). 

Table 3.5: Two-dimensional Poisson problem (ne = 1, n = 32). Processing time 
comparison between the Minimum Residual method (MR), the Conju
gate Gradient method (CG) and the CGSTAB method. 

I MR I CG I CGSTAB 

time per iteration 2.60 2.63 5.23 

number of iterations 20 14 8 

total time 52.00 36.82 41.84 

The processing time per iteration of the Minimum Residual method and 
Conjugate Gradient method is comparable; the number of iterations needed 
to converge in the Conjugate Gradient method is less. As already stated, 
the Bi-CGSTAB method takes about twice as much processing time per 
iteration, although less iterations are required to converge. A comparison 
for this relatively large two-dimensional problem between the direct solver 
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and the iterative solver shows that, despite the fact that in each iteration step 
a spectral residual is computed, the iterative solver is 2.1 times faster than 
the direct solver. Moreover, a storage reduction by a factor 30 is obtained 
using an iterative procedure. 

1.0 
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0.6 
o:k 
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0.0 
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k 

Figure 3.7: Evolution of the relaxation parameter ak in the Minimum Residual 
algorithm with respect to the iteration index k for the two-dimensional 
Poisson problem (ne = 1, n = 32). 

Figure 3. 7 shows the value of the dynamic relaxation parameter o:k with 
respect to the iteration index k for the Minimum Residual method. It is 
seen that after the first iterations the value of o:k oscillates around a value 
of slightly above 0.6. The optimal value of the Richardson iteration for this 
problem, given by equation (3.6), is indeed equal to 0.62. 

In order to test the influence of domain decomposition consider a Poisson 
problem with computational domain n as shown in Figure 3.8 and homoge
neous Dirichlet boundary conditions. The exact solution is given by 

c(x) = sin(21rx1) sin(21rx2). (3.9) 

A direct spectral element solution using a degree of approximation n = 16 
achieves spectral accuracy. The performance of the three algorithms is shown 
in Figure 3.9. 
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Figure 3.8: Two-dimensional Poisson problem with domain decomposition (ne = 3). 
Computational domain. 
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Figure 3.9: Evolution of the discrete maximum errore with respect to the iteration 
index k for the two-dimensional Poisson problem (ne = 3, n = 16). 
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Table 3.6: Two-dimensional Poisson problem (ne = 3, n = 16). Processing time 
comparison between the Minimum Residual method (MR), the Conju
gate Gradient method (CG) and the CGSTAB method. 

I MR I CG I CGSTAB 

time per iteration 0.84 0.86 1.70 

number of iterations 19 13 7 

total time 15.96 11.18 11.90 

The processing time comparison between the three methods is given in 
Table 3.6. Again the Conjugate Gradient iteration converges fastest; the 
processing time of the CGSTAB algorithm is now comparable. The iterative 
solver is a factor 2.6 faster than the direct spectral element simulation. Also 
a storage reduction by a factor 8 is obtained using an iterative solver. 
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Figure 3.10: Evolution of the relaxation parameter ak in the Minimum Residual 
algorithm with respect to the iteration index k for the two-dimensional 
Poisson problem (ne = 3, n = 16). 

Figure 3.10 shows the value of the dynamic relaxation parameter ak 

with respect to the iteration index k for the Minimum Residual method. 
The results are comparable to those in Figure 3.7. 
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3.4.2 Application to a (non-symmetric) convection-diffusion 
problem 

As an example of a two-dimensional non-symmetric test case, consider again 
the approximation of a two-dimensional boundary layer described by the 
convection-diffusion equation, see section 2.4.1. For T/ = 1 direct spectral 
element solution using a degree of approximation n = 12 achieves spectral 
accuracy; for T/ = io, the highly convective problem, this is the case using a 
degree of approximation n = 32. In both cases ne = 1. 

. . . . . . . , 
-1.0 L..._ __ --~... ___ ....~.-__ ____.J 

0 1 2 3 
Re(.\) 

Figure 3.11: Eigenvalues of the preconditioned matrix F-1s for a two-dimensional 
convection-diffusion problem ( TJ = fa). 

For the case T/ = io the eigenvalues of the preconditioned matrix F-1s 
are shown in Figure 3.11. The condition number ~~:(F- 1 8) defined by equa
tion (3.3) is equal to 2.07 for T/ = 1 and equal to 2.19 for T/ = ]o. 

Figure 3.12 shows the evolution of the discrete maximum error in the 
solution with respect to the iteration index k for the Bi-CGSTAB method. 
It should be noted that even in the case T/ = 1, in which the imaginary 
part of the eigenvalues of the preconditioned matrix can be neglected, the 
Minimum Residual and Conjugate Gradient method fail to converge; since 
the preconditioned matrix is non-symmetric, several orthogonality relations 
in these algorithms are not satisfied. The Bi-CGSTAB method on the other 
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Figure 3.12: Evolution of the discrete maximum errore with respect to the iteration 
index k for the two-dimensional convection-diffusion problem. 

hand converges to the spectral element solution again within a few iterations. 
A comparison between the direct solver and the iterative solver shows 

that in both cases ( n = 12 and n = 32}, a considerable storage reduction is 
obtained; a factor 8 for the case n = 12 and a factor 30 for the case n = 32. 
For the large computation also a gain in processing time is achieved of a 
factor 2.0. 

3.5 Conclusions 

Concluding it can be said that the use of low-order finite element precondi
tioning in iterative solvers for a spectral element system seems to be a good 
choice. The preconditioned matrix is well-conditioned, also for large values 
of N, where N is the maximum of the number of degrees of freedom in each 
spatial direction. Moreover, whereas the condition number of the spectral 
element matrix grows if the degree of approximation grows, the condition 
number of the preconditioned matrix remains practically constant, indica
ting that the finite element and the spectral element systems are spectrally 
equivalent. 

For symmetric problems a Conjugate Gradient algorithm is preferable, 
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whereas for non-symmetric systems the Bi-CGSTAB algorithm gives very 
good results. Also, by no longer storing the relatively full spectral element 
matrix a considerable reduction in storage can be obtained. Moreover, 
for large two-dimensional computations also a gain in processing time is 
achieved, despite the fact that in each iteration step a spectral residual must 
be computed. For three-dimensional computations the gain in processing 
time and storage requirements will be even higher. Finally, it should be 
noted that when using an iterative procedure, the processing time can also 
be reduced by stopping the iteration after only a few steps when a desired 
accuracy is obtained. 
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Chapter 4 

Solution of unsteady 
convection-diffusion 

problems 

4.1 Convection-diffusion problems 

The point of departure in this chapter is the unsteady convection-diffusion 
equation for divergence-free velocity fields u 

{ 

{}{}ct + (u · V)c- (V ·1i~7)c = f in 0, 
( 4.1) 

v. u = 0 inn, 

with 0 c R d an open and bounded region with boundary r. The velocity 
field u(x, t) in 0 = 0 u r is given for t ~ 0. Note that the case c = u 
yields a non-linear Burgers equation. For convenience, homogeneous Dirich
let boundary conditions are assumed, given by 

c(x, t) = 0, X on r, t ~ 0. (4.2) 

The initial conditions are given by 

c(x,O) =co, X in 0. (4.3} 

Equation ( 4.1) is important for several classes of problems: 

• General convection-diffusion problems (energy equation, constitutive 
equations in visco-elastic flow). In that case the viscosity f1 is positive 
but it can be a function of c. 

51 
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• Pure convection problems (particle tracking, free-boundary problems). 
In the case Tl = 0 equation (4.1) results in a convection (or transport) 
problem and describes the convection of the quantity c. A convec
tion problem also arises if an operator splitting method is applied to 
equation (4.1). This case is discussed in the subsequent sections. 

• Splitting methods and pressure correction (projection) methods for the 
incompressible Navier-Stokes equations. In that case the equations 
are non-linear (c = u). This will be discussed in chapter 5. 

Standard Galer kin approximations of convection-diffusion problems are often 
unstable and show spurious oscillations or 'wiggles' related to the fact that 
the resulting system matrix is no longer diagonally dominant. Especially 
if the convection part dominates the problem, these oscillations can only 
be suppressed by severe mesh and time-step refinement, which is often not 
practical. 

An overview of recently developed methods that stabilize the numerical 
approximation of convection dominated problems is given by Donea (1991). 
For steady problems a common approach is the use of some kind of upwin
ding. Among such techniques are Streamline Upwind methods (SU) (Hughes, 
1978), Streamline Upwind/Petrov-Galerkin methods (SUPG) (Brooks and 
Hughes, 1982; Johnson, 1987) and Galerkin Least Squares methods (GLS) 
(Hughes et al., 1989). 

For unsteady problems various generalized Galerkin methods have been 
developed in the last decade. An important class of these methods is formed 
by the Taylor-Galerkin methods. These methods, introduced for finite 
elements by Donea (1984), add in a natural way a stabilizing diffusion term 
to the numerical scheme, using Taylor series expansions in time including 
second- and third-order terms. In the finite difference context, similar tech
niques are provided by Lax-Wendroff schemes (Lax and Wendroff, 1960). 
In contrast to the general procedure, Taylor-Galerkin methods usually con
sider the time-integration before the spatial discretization. A recent analysis 
of Taylor-Galerkin schemes is given by Donea and Quartapelle (1992). 

In this chapter Taylor-Galerkin time-integration is combined with a 
spectral element spatial discretization for the approximation of convection
diffusion problems. In section 4.2 an operator splitting approach is described, 
which decouples a convection-diffusion problem into a pure convection prob
lem and a pure diffusion problem. The splitting method is based on the 
classical splitting methods (Yanenko, 1971; Marchuk, 1975), but also fol
lows an approach proposed by Maday et al. (1990). In section 4.3 several 
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Taylor-Galerkin schemes are deduced that are specificly suited for (non
linear) convection problems with time-dependent and divergence-free veloc
ity. The schemes are applied to several convection problems, both linear 
and non-linear. In section 4.4 the full operator splitting scheme is given 
for convection-diffusion problems. Numerical results are given also for this 
scheme. The approach for convection-diffusion problems is the basis for the 
treatment of the Navier-Stokes equations in chapter 5. Finally, in section 
4.5 some conclusions are drawn. 

4.2 Operator splitting approach 

With respect to the choice of time-integration it is preferable to decouple 
the treatment of convection and diffusion. For spectral-type methods the 
eigenvalues of the diffusion system are real and strictly negative and grow 
like O(N4 ), if N -+ oo, see chapter 3. Here N is the maximum of the 
number of degrees of freedom in each spatial direction. As a consequence, 
the diffusion (or stiff) part requires a time-integration with a stability area 
that includes the negative real axis; in -order to satisfy this requirement a 
time-integration needs to be A-stable or at least A(a)-stable, see appendix 
D. As is well-known, some type of (semi- )implicit time-integration is then 
in order. For the diffusive part the system matrix does not depend on time 
and suitable iterative solvers like finite element preconditioning can be ap
plied in each time-step. On the other hand, especially in the case that the 
problem is non-linear or in the case that the velocity u is time-dependent, 
an implicit time-integration of the convective terms requires an evaluation of 
the convective matrix in each time-step. Therefore, explicit time-integration 
is virtually necessary to ensure efficiency of the numerical scheme; in that 
case the solution of the system only involves matrix-vector products which 
can be evaluated in an element-by-element procedure. Moreover, for the 
convective part the eigenvalues are complex and grow 'only' like O(N2 ), if 
N -+ oo (Canuto et al., 1988). The restriction to the time-step is therefore 
not too severe if explicit time-integration is applied. 

In view of this, it appears appropriate to treat unsteady convection
diffusion problems by an operator splitting technique in which the problem 
is decomposed in a pure convection problem and a pure diffusion problem. 
Both problems are then solved by suitable time-integrations with different 
time-steps, if necessary. 
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Thereto the convection-diffusion problem ( 4.1) is rewritten as follows 

8c 
{}t = Vc + Cc + f, (4.4) 

where V = (V · 17V) is the diffusion operator and C = -( u · V) is the con
vection operator. Following the idea of Maday et al. (1990), equation (4.4) 
is written in terms of an integrating factor in C 

(4.5) 

with t* an arbitrary fixed time. The integrating factor Qg" ,t) is defined by 

~1"\W,t) = _1"\W,t>c 1"\(t•,t•) _I at l(;!;c l(;!;c , l(;!;c - ' (4.6) 

where I is the identity operator. Equation ( 4.5) can be viewed as a diffusion 
problem for the new variable Qr ,t) c. It is integrated by a suitable time
integration for the diffusion operator V. A useful class of A(o}stable time
integration methods is given by the so-called 'backward differences formulae' 
(Hairer et al., 1987). These schemes are accurate for all components around 
the origin in the stability diagram and absolutely stable away from the origin 
in the left imaginary plane. Thus it is possible to use high-order backward 
differences schemes without the severe constraints on the time-step that 
are needed for other high-order multistep schemes like the Adams-Moulton 
methods, which are not A(a)-stable for any order higher than 2. Stability 
regions of backward differences schemes can be found in appendix D. 

Taking t* = tn+l, application of a backward differences scheme with a 
time-step ~t = tn+I - tn to equation ( 4.5) gives the following semi-discrete 
system 

(4.7) 

where e.g. the superscript n+ 1 denotes the approximation at time tn+l, Note 
(tn+l tn+l) 

that use has been made of the fact that Qc ' =I. For consistency it 
is required that 

k 

/3o = L!3i· (4.8) 
i=l 
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The coefficients of the various schemes are listed in appendix D. 
Obviously, integration of the diffusion equation ( 4.5) requires the evalu-

(tn+I tn+l-i) 1 . 
ation of integrating terms of the form Qc ' en+ -•(i = 1, 2, ... ). To 

avoid explicit construction of Qg"+l ,tn+t-•) an auxiliary variable c( s) is in
troduced that satisfies the following associated initial value problem 

{ 

oc(s) - Cc(s) o < s < it:t.t, 
OS - ' 

c(O) = enH-i. 
(4.9) 

It then follows that 

r~(tn+l,tn+l-i) n+l-i _ -( • "t) 
~c c. - e ~~ . (4.10) 

Problem ( 4.9), accounting for the convection part, can be solved using a 
suitable (and preferably explicit) scheme with a time-step .6.s which can 
be taken different from .6.t. In the next section several Taylor-Galerkin 
time-integration methods, appropriate for both linear and non-linear con
vection problems are proposed and discussed. It is important to note that 

(tn+l tn+l-i) 
the integrating factor Qc ' is never constructed explicitly; rather, 
the 'action' of the integrating factor is evaluated through solution of the 
associated convection problem ( 4.9). 

Remark 
An alternative approach for the diffusion step is to use the 9-method (or the 
trapezoidal method). The semi-discrete equation for the diffusion operator 
then becomes 

+1 (tn+l tn) en - Qc I en 

.6.t 
= 9(Vc11+1 + £11+1) 

+ (1- 8)Qgn+l,t")(ven + £11). (4.11) 

(tn+l tn) (tn+l t") 
The terms Qc I en and Qc ' (Ven + £11) are calculated according to 
a convection problem similar to problem ( 4.9). 

For 8 = ! this scheme results in a second-order accurate Crank-Nicolson 
method. This scheme is commonly used for diffusion problems. In approxi
mations of Navier-Stokes problems it is frequently applied to the viscous 
and pressure terms. Although the Crank-Nicolson scheme is A( a)-stable for 
such terms, it has the disadvantage that it damps high frequency components 
very weakly, whereas these components in reality decay very rapidly. In cases 
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where this is undesirable, a possible strategy is to use e = ! + oD..t, where 
{j is a small positive constant. This method damps all components of the 
solution and is formally second-order in time. 

4.3 Taylor-Galerkin time-integration 

4.3.1 Schemes for linear convection 

Taylor-Galerkin time-integration methods are an extension of some typical 
time-stepping methods on the basis of Taylor series expansions including 
up to third-order terms. They are appropriate for pure convection prob
lems, both linear and non-linear, since a stabilizing diffusion term is added 
to the numerical scheme in a natural way as part of the time-integration. 
Taylor-Galerkin methods were first proposed by Donea (1984) for linear con
vection equations with both constant and variable, but not time-dependent, 
velocity. 

In this section several Taylor-Galerkin for linear convection problems 
are discussed (the Galerkin discretization is given in section 4.3.3). For 
reasons mentioned in the previous section, explicit schemes are preferable. 
An overview is given of second-order methods that lead to explicit schemes 
with special emphasis to convection problems with a time-dependent and 
divergence-free velocity field. For velocity fields that are not divergence-free 
some of the schemes are not applicable. Keeping in mind possible applica
tions, e.g. the incompressible Navier-Stokes equations, this seems to be a 
valid assumption. In Donea (1984) third-order methods are given; however, 
these result in semi-implicit schemes. 

Consider the linear convection equation 

{ 
:: = - (u · V) c in n, 

\7. u = 0 inn, 

( 4.12) 

with initial and boundary conditions. Following the notation of the previous 
section the variable s is used for the time in a convection problem. The 
velocity field u( x, s) can depend both on space and on time. 

Explicit Euler Taylor- Galer kin (EETG) 
The schemes for linear convection are Euler schemes, i.e. the Taylor series 
of the time-derivative is based on forward differences. The approximation of 
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e at s = m~s is denoted by em. The discretization in time is derived from 
the explicit Taylor series 

oe ~s2 82e 
em+l =em+ ~s-lm +--1m+ O(~s3). (4.13) as 2 8s2 

Using the original differential equation ( 4.12), the second derivative can be 
expressed as 

a2e (au ) - = - - · V e + ( u · V)( u · V)e. 8s2 os ( 4.14) 

Substitution of equation ( 4.14) and of the original equation ( 4.12) into equa
tion { 4.13) yields a second-order EETG method 

em+l = em _ ~s ( ( um + ~8 ~:1m) . V) em 

~82 + -(um · V)(um · V)cm + 0(~83). (4.15) 
2 

The third term on the righthand side is not to be thought of as an artifi
cial diffusion term, but rather as part of the time-integration. It possesses 
the tensorial structure similar to the Streamline Upwind/Petrov-Galerkin 
formulation proposed by Brooks and Hughes (1982). 

In fact, the derivation of this scheme is similar to that of the schemes 
proposed by Donea et al. (1984) for convection-diffusion problems. However, 
if there is a diffusion term, the method becomes a semi-implicit one. The 
coefficient of the convective term in equation ( 4.15), containing the time
derivative of the velocity, can either be approximated implicitly as 

m ~8 au,m ~8 (um+l- um )) 
u + 2 os um + 2 ~s + O(~s 

m + m+l 
u 2u + O(~s2) 
um+t + O(~s2 ), (4.16) 

or explicitly as 

m ~sau,m 
u +2as ; um t ~8 ( um ~;m-l t 0(8s)) 

3 m m-1 
u - u + O(~i) = 

= um-~ + O(~s2 ). (4.17) 
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In equation (4.17) the notation um-t is introduced for simplicity. If the 
implicit approximation ( 4.16) is applied, only one old velocity um has to 
be stored; in the explicit case ( 4.17) two old velocities um and um-l must 
be stored. However, it is not always possible to have the velocity at the 
time-level m + 1 available, e.g. in non-linear or coupled problems. In that 
case the explicit approximation has to be applied. 

The two-step EETG scheme 
Equation ( 4.13) can be rewritten as 

cm+l = em + ds :: jm+i + O(ds3 ), 

where 

(4.18) 

(4.19) 

Substituting the original equation (4.12) at the time-level m +!into equa
tion ( 4.18) yields 

cm+l =em- ds (um+i · V')em+i + O(ds3 ). (4.20) 

The explicit Taylor series for em+i reads 

1. ds {}c 2 cm+2 =em+ T 
88

im + O(ds ). (4.21) 

Again substituting the original equation, now at time-level m, gives 

+!. ds 
em 2 =em- 2(um ·V')cm. (4.22) 

Equations ( 4.20) and ( 4.22) give a second-order accurate two-step explicit 
scheme. Morgan et al. {1991) propose this scheme for general linear con
servation problems. The same scheme is classified by Hirsch (1988) as a 
second-order Runge-Kutta predictor-corrector method. For convection prob
lems the two-step scheme is not asymptotically stable. However, it is quite 
useful for integration over a fixed time-interval. Since the growth rate of 
the numerical solution is proportional to As3

, one need merely choose the 
time-step sufficiently small so that the numerical growth of the solution is 
insignificant. This property is often referred to as weak instability, see e.g. 
Canuto et al. (1988). 
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The two-step scheme possesses the same accuracy as the EETG method. 
However, there is no need to evaluate the 'expensive' second-order term. 
Moreover, application of a Galer kin spatial discretization (spectral elements) 
to this scheme is simpler than is the case for the EETG scheme. This aspect 
will be discussed in section 4.3.3. 

4.3.2 Schemes for non-linear convection 

In this section Taylor-Galerkin schemes for non-linear convection prob
lems are discussed. Although most schemes are practically the same as 
the schemes for linear convection, several aspects must be addressed sepa
rately. Consider the non-linear convection equation (Burgers equation with 
zero diffusivity) 

{ 

~; = - ( u . V) u in n, 

\7. u = 0 inn, 
( 4.23) 

with initial and boundary conditions. 

Explicit Euler Taylor- Galer kin (EETG) 
The derivation of a second-order accurate explicit Euler Taylor-Galerkin 
scheme for the non-linear Burgers equation for divergence-free velocity is 
completely analogous to the linear case. The scheme reads 

um+l = um - ~8 ( ( um + ~s ~; jm) . \7) um 

~82 + -(um · V)(um · V)um + O(~s3) 2 . (4.24) 

In order to keep the scheme explicit, the coefficient of the convective term 
must now be approximated according to equation ( 4.17). 

A different Taylor-Galerkin scheme for non-linear convection equations 
is proposed by Laval and Quartapelle (1990). Their scheme is more general 
in the sense that the velocity is not required to be divergence-free. Moreover, 
the treatment of the time-derivative of the velocity differs from the one pro
posed in equation ( 4.17). As the equations are non-linear, in their scheme 
the original equation ( 4.23) is substituted for the time-derivative of the ve
locity; this leads to a rather complicated scheme, especially if a Galerkin 
spatial discretization is applied. The treatment of the time-derivative of the 
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velocity proposed here is quite simple and does not lower the second-order 
accuracy of the original scheme. 

The two-step EETG scheme 
Again analogous to the linear case, the two-step Euler Taylor-:-Galerkin 
scheme can be written as 

1 ~s 
um+2 = um-2{um·V)um, 

(4.25) 

For reasons of stability, in chapter 5 this method is extended to a three-step 
scheme. For non-linear problems another way to construct a two-step EETG 
scheme is to substitute in the second equation of ( 4.25) the following Taylor 
series for u m+ ~ 

{4.26) 

Then for divergence-free velocity fields the following scheme is obtained 

~s ( m n) m 2 U ·v U, 

~s ( um+t. v) um 

~82 
+ -

2
-(um · V)(um · V)um. (4.27) 

This scheme can be viewed as a stabilized version of the original two-step 
scheme ( 4.25). The second equation of ( 4.27) is similar to the one-step EETG 
scheme (4.24). The difference is that, since the problem is non-linear, it is 
possible to derive the coefficient for the convective term using the original 
equation. The most efficient and easiest to implement scheme is, also for 
non-linear convection problems, the two-step scheme ( 4.25); especially in an 
operator splitting procedure. 

4.3.3 Spectral element discretization 

Application of the Galerkin spectral element discretization to the semi
discrete systems of the previous sections is performed in the standard way. 
For details of the spectral element discretization process in more dimensions 
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and the resulting matrix-vector system see section 2.3.2, where the applica
tion to the steady convection-diffusion equation is given. Since the schemes 
for linear convection can be derived from those for non-linear convection, 
only the latter case is considered. As already stated in section 4.1, for sim
plicity homogeneous boundary conditions are considered. 

The Galer kin weighted residual formulation of the EETG method ( 4.24) 
is given by 

( 4.28) 

with v the standard Galerkin test function. Application of Green's formula 
to the second-order term and substituting V · um = 0 gives the variational 
or weak formulation 

(4.29) 

For non-homogeneous boundary conditions also a non-trivial boundary inte
gral must be taken into account. Applying the spectral element discretization 
then leads to 

( 4.30) 

1 1 
The matrix cm-2 is the convective matrix with velocity um-2 (see equa-
tion ( 4.17)); the matrix nm is a symmetric diffusion matrix arising in a 
natural way as part of the time-integration. The matrix M is the mass 
matrix, which is diagonal due to the Legendre Gauss-Lobatto quadrature. 
Consequently, the solution of equation ( 4.30) (and of every other subsequent 
system) does not involve the inversion of a matrix but only matrix-vector 
products which are evaluated in an element-by-element procedure. In gen
eral, for low-order methods the consistent mass matrix approach has ad
vantages as regards the accuracy of the numerical scheme, see e.g. Gresho 
and Chan (1990). For high-order methods it is shown numerically by Tim
mermans and Van de Vosse (1993b) that the use of a diagonal mass matrix 
approach is a valid approach with relatively little loss of accuracy, compared 
to low-order methods. 
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In an analogous way the spectral element discretization of the two-step 
EETG scheme ( 4.25) reads 

m .O.sM-lcm m = u -- u 
2 ' 

um+l = um- .O.sM-lcm+tum+i_ (4.31) 

And likewise for the extended stabilized two-step scheme ( 4.27) 

( 4.32) 

For the two-step scheme ( 4.31) no boundary integral arises in the case of 
non-homogeneous boundary conditions, due to the absence of the second
order term. This scheme is therefore not only the most efficient but also the 
most easiest to implement. 

4.3.4 Numerical results 

In this section the performance of the explicit Taylor-Galerkin methods 
and the spectral element approximation is tested by applying the numeri
cal schemes to several more or less difficult convection problems, see also 
Timmermans et al. (1993). Firstly, the proposed schemes are compared by 
means of a one-dimensional linear test case, the convection of a Gaussian 
hill. As an example of one-dimensional non-linear convection, the Burgers 
problem is approximated. In more dimensions the efficiency of the scheme 
becomes rather important. Therefore the fast two-step EETG scheme is ap
plied to several two-dimensional linear problems. The first one consists of 
an unsteady rotation of a Gaussian hill. Since this a smooth problem it can 
be expected that in the spectral element approximation better results can 
be obtained by increasing the degree of approximation n (p-convergence) 
than by increasing the number of elements ne (h-convergence). The second 
problem consists of the rotation of a non-smooth cone. In that case some 
optimum has to be found between p- and h-convergence. 

One-dimensional linear convection 
Consider as a test case for the Taylor-Galerkin schemes for linear convection 
problems in one dimension the convection of a Gaussian hill described by 

(x- xo- ut)2 

c(x, t) = e 2cr2 (4.33) 
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The initial hill (t = 0) is centered around x0 = 0.15 and has a standard 
deviation of q = 0.04. The hill is convected with constant velocity u = 1 
and t E [0, 0.6]. 

For this problem the one-step EETG scheme and the two-step EETG 
scheme for linear convection are compared with a Crank-Nicolson time
integration. The spatial discretization is performed by a spectral element 
method using n, = 16 elements of degree of approximation n = 2, 4 and 
8. The discrete maximum errore = lie- chlloo,gl for these cases is given in 
Table 4.1. The exact solution and the approximation for n, = 16, n = 4 for 
256 time-steps is shown in Figure 4.1. 

Table 4.1: Linear convection in one dimension. Discrete maximum errore for the 
convection of a Gaussian hill. ne = 16 elements with varying degree 
of approximation n. Two-step EETG scheme (TG2), one-step EETG 
scheme (TGl) or Crank-Nicolson scheme (CN). 

method n number of time-steps 

128 256 512 1024 

2 0.20. 10° 0.21·10° 0.21·10° 0.21·10° 

TG2 4 0.44. 10-1 o.1o. 10-1 0.90 ·10-2 0.91·10-2 

8 unstable unstable 0.30 ·10-2 o.74. 10-3 

2 0.16 ·10° 0.19 ·10° 0.20 ·10° 0.21·10° 

TG1 4 0.47. 10-1 0.10. 10-1 0.77 ·10-2 0.84 ·10-2 

8 unstable 0.12 ·10-1 0.30 ·10-2 0.74 ·10-3 

2 0.22 ·10° 0.22 ·10° 0.21·10° 0.21·10° 

CN 4 0.30 ·10-1 0.13. 10-1 0.93 ·10-2 0.92 ·10-2 

8 o.24. w-1 0.59 ·10-2 0.15 ·10-2 0.37 ·10-3 

The results show that the one-step and two-step EETG method are com
parable with respect to accuracy. Both schemes need more time-steps to 
become stable if the degree of approximation of the spatial discretization 
increases; the one-step scheme being a little more stable. Note also that 
the solution becomes much more accurate if the degree of approximation 
increases. The Crank-Nicolson scheme is only slightly more accurate. All 
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Figure 4.1: Linear convection in one dimension. Convection of a Gaussian hill. 
Exact solution and two-step EETG approximation for ne = 16, n = 4 
with 256 time-steps. 

schemes show second-order accuracy if the degree of the approximation is 
large enough ( n = 8); for the approximations n = 2 and n = 4 the error is 
determined by the spatial discretization. Taking into account that the ex
plicit Taylor-Galerkin schemes require far less processing time, it is obvious 
that they are in fact preferable for this problem. 

One-dimensional non-linear convection 
Consider the one-dimensional non-linear Burgers equation ( 4.23) with do
main is n = (0,4) and t E [0,2]. The initial condition is given by 

{ 

co- c1 cos(27rx), 0::; x :5 1, 
u(x,O) = g(x) = 

co - ell elsewhere, 

with c0 = 1, c1 = 0.01. The boundary conditions are given by 

u(O, t) = u(4, t) =co- Ct. 

The exact solution to this problem is given by (Whitham, 1974) 

u(x, t) = g(y), x = y + u(g(y))t. 

(4.34) 

(4.35) 

(4.36) 
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For this initial solution no shock arises in the given time-segment. 
This non-linear is problem is solved with the explicit two.step EETG 

scheme and compared to a time-linearized Crank-Nicolson scheme. The 
latter scheme was in fact used to solve this problem in Timmermans and Van 
de Vosse (1993b). Since the boundary conditions are non-homogeneous, for 
this case the two-step scheme is easier to implement than the one.step EETG 
scheme ( 4.30) and the extended two-step scheme ( 4.32) both of which involve 
the evaluation of a boundary integral. The spectral element method uses the 
same number of elements and degree of approximation as in the linear case. 
Since the solution only varies over an interval of 0.02, the numerical solution 
is verified with respect to the following relative discrete maximum error 

llu- uhlloo, gl (4.37) 
Er = 0.02 ' 

Table 4.2: Non-linear convection in one dimension. Relative discrete maximum er
ror tr for the Burgers problem. ne = 16 elements with varying degree 
of approximation n. Two-step EETG scheme (TG2) or Crank-Nicolson 
scheme (CN). 

method n number of time-steps 

128 256 512 1024 

2 0.92 ·10-1 0.99 ·10-1 0.10 ·10° 0.10 ·10° 

TG2 4 0.21·10-1 o.14. w-1 o.u. w-1 0.11·10-1 

8 unstable unstable 0.33. 10-2 0.16 ·10-2 

2 0.11·10° 0.10 ·10° 0.10 ·10° 0.10 ·10° 

CN 4 0.22 ·10-1 o.15. 10-1 0.12 ·10-1 0.12 ·10-1 

8 0.15 ·10-1 0.57 ·10-2 o.29. w-2 0.18 ·10-2 

The results for the relative error of the three different spectral element 
discretizations are shown in Table 4.2. Figure 4.2 shows the exact solution 
and the approximation for ne = 16, n = 4 using 128 time-steps. 

For non-linear convection the results are much the same as for the linear 
convection problem, although for n = 8 no clear second-order accuracy is 
achieved due to the non-linearity; for n = 2 and n = 4 the error is again 
determined by the spatial discretization. The two-step EETG scheme is 
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Figure 4.2: Non-linear convection in one dimension (Burgers problem). Exact sol
ution and two-step EETG approximation for n., = 16, n = 4 with 128 
time-steps. 

quite comparable in accuracy to the Crank-Nicolson scheme. Again, for an 
increasing degree of approximation the solution becomes much more accu
rate; but then also more time-steps are needed to obtain a stable numerical 
scheme. However, as was already stated in the linear convection case, due to 
the efficiency of the two-step scheme it is more suited for this problem than 
the Crank-Nicolson method. 

Two-dimensional linear convection 
In more dimensions the choice of the time-integration becomes more and 
more important with respect to efficiency. From the previous sections it 
appears that the two-step EETG scheme ( 4.31) is the most suitable for large 
more-dimensional problems. In order to check the performance of the two
step scheme, consider the unsteady rotation of a Gaussian hill described by 
the convection equation in two dimensions with domain n = ( -1, 1) x ( -1, 1) 
and t E [0, 0.5]. The time-dependent velocity is given by 

u(x, t) = [ -1!'2 sin(21rt)x2, 1r2 sin(21rt)x1]T. ( 4.38) 

The initial solution is given by 

c(x,t) = O.Q14((xl+tr~+r~). (4.39) 
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It represents a smooth Gaussian hill with height equal to 1 and with radius 
equal to ~ centered at ( -!, 0). At t = 0.5 the hill is rotated halfway without 
diffusion, and therefore without loss of shape. 

The problem is solved using the two-step EETG scheme. Two types 
of convergence are examined. To check the p-convergence the number of 
elements is kept fixed at ne = 4; the degree of approximation is varying 
( n = 4, 8, 12, 16). To check the h-convergence the degree of approximation is 
kept fixed at n = 2 and the number of elements varies ( ne = 16, 64, 144, 256). 
The total number of degrees of freedom in the corresponding discretizations 
is the same. The results for the discrete maximum errore = lie- cklloo,gl for 
the first discretization are given in Table 4.3; for the second discretization 
they are found in Table 4.4. 

Table 4.3: Linear convection in two dimensions. Discrete maximum error e for the 
rotation of a Gaussian hill. Number of elements ne = 4 fixed with varying 
degree of approximation n. 

time-steps I n = 4 I n = 8 n = 12 n = 16 

256 0.33 ·10° 0.67 ·10-1 0.17 ·10-1 unstable 

512 0.33 ·10° 0.67 ·10-1 0.29 ·10-2 0.29 ·10-2 

1024 0.33 ·10° 0.67 ·10-1 0.29 ·10-2 0.33 ·10-3 

Table 4.4: Linear convection in two dimensions. Discrete maximum error e for the 
rotation of a Gaussian hill. Degree of approximation n = 2 fixed with 
varying number of elements ne. 

time-steps I ne = 16 I ne = 64 ne = 144 ne = 256 

256 0.53. 10° 0.18. 10° 0.77 ·10-1 0.34. 10-1 

512 0.53. 10° 0.19 ·10° 0.82 ·10-1 0.37. 10-1 

1024 0.53 ·10° 0.19. 10° 0.82 ·10-1 0.38 ·10-1 
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Figure 4.3: Linear convection in two dimensions. Unsteady rotation of a smooth 
Gaussian hill. Two-step EETG approximation using 1024 time-steps 
for ne = 4, n = 8 (top) and for n6 = 4, n = 16 (bottom). 
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It is evident that the two-step scheme and the spectral element discretiza
tion perform very well for this smooth problem. The results of Table 4.3 
show that the Gaussian hill is convected very accurately if the degree of 
the approximation n increases (p-convergence). These results are in good 
agreement with those for the steady rotation of a Gaussian hill presented by 
Timmermans and Van de Vosse (1993"). From Table 4.4 it can be deduced 
that also h-convergence is obtained, the solution becomes more accurate if 
the number of elements ne increases; the solutions obtained by increasing 
the degree of approximation however, are much more accurate. In Figure 4.3 
(top) the solution for ne = 4, n = 8 using 1024 time-steps is shown. There 
are still some 'wiggles' visible in this solution. Figure 4.3 (bottom) shows 
the solution for ne = 4, n = 16 using 1024 time-steps. This approximation 
is convected in an extremely accurate way. 

It is also interesting to observe how the two-step scheme and the spectral 
element discretization perform if the solution is no longer smooth. Con
sider again a linear convection problem in two dimensions with domain 
0 = ( -1, 1) x ( -1, 1) and t E [0, 1]. The initial solution is given by 

c(x,O)={ 1-4J(xt-~)2+x~, (xl-!)2+x~:5116' 
0, (xt-!)2 +x~>la· 

(4.40) 

It represents a non-smooth cone with height equal to 1 and with radius equal 
to t centered at ( !, 0). The velocity is now given by 

u(x, t) = [-21rx2, 211'xtf, (4.41) 

resulting in a steady rotation of the initial cone. As there is no diffusion 
present the end solution at t = 1 is exactly the same as the initial solution. 

Again both p- and h-convergence are examined. The discretizations are 
the same as in the approximation of the Gaussian hill. The results for the 
first discretization are given in Table 4.5; for the second discretization they 
are found in Table 4.6. 

The results of Table 4.5 show that for this problem no clear p-convergence 
is obtained. This is of course due to the fact that the solution is non-smooth. 
However, good results are still obtained if the degree of approximation and 
the number of time-steps are large enough, as can be seen in Figure 4.4, where 
the solution is shown for ne = 4, n = 12 using 1024 time-steps (top) and for 
ne = 4, n = 16 using 2048 time-steps (bottom). As regards the results of 
Table 4.6, it is seen that no clear h-convergence is obtained also. The solution 
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improves slightly if the number of elements is increased. With respect to 
accuracy and efficiency one may conclude that the high-order elements are 
preferable up to degree n = 8. For a higher degree of approximation the 
solution is indeed more accurate but also more expensive than the solutions 
obtained with elements of degree 2. Concluding it can be said that one has to 
look for an optimal combination of p- and h-convergence when approximating 
non-smooth problems. The spectral element method can then be a very 
useful tool. 

Table 4.5: Linear convection in two dimensions. Discrete maximum error c for the 
rotation of a cone. Number of elements ne = 4 fixed with varying degree 
of approximation n. 

time-steps n=4 n=8 n = 12 n = 16 

256 0.58 ·10° 0.30 ·10° unstable unstable 

512 0.58 ·10° 0.23 ·10° 0.32 ·101 unstable 

1024 0.58. 10° 0.21·10° 0.17·10° 0.38 ·101 

2048 0.58 ·10° 0.21·10° 0.17. 10° 0.97 ·10-1 

Table 4.6: Linear convection in two dimensions. Discrete maximum error e for the 
rotation of a cone. Degree of approximation n = 2 fixed with varying 
number of elements ne. 

time-steps ne = 16 ne = 144 ne = 256 

256 0.11. 101 0.54 ·10° 0.26. 10° unstable 

512 0.11· 101 0.54 ·10° 0.29. 10° 0.14 ·10° 

1024 0.11. 101 0.54 ·10° 0.29. 10° 0.15 ·10° 

2048 0.11. 101 0.54 ·10° 0.29. 10° 0.15. 10° 
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Figure 4.4: Linear convection in two dimensions. Steady rotation of a cone. Two
step EETG approximation using 1024 time-steps for n~ = 4, n = 12 
(top) and using 2048 time-steps for ne = 4, n = 16 (bottom). 
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4.4 Operator splitting for convection-diffusion 

4.4.1 The time-integration scheme 

Combining the semi-implicit backward differences schemes for the diffusion 
operator with the explicit Taylor-Galerkin time-integration of the previous 
section, a full operator splitting scheme for convection-diffusion problems 
can be derived, based on the theory of section 4.2. As an example the 
two-step Taylor-Galerkin method is chosen for the associated convection 
problem ( 4.9). 

According to equation ( 4. 7) the diffusion step reads (again only the non
linear case is considered) 

( 4.42) 

The terms Q{t'"+l-',t")un(i = 1, 2, ... ) are calculated according to the two
step explicit EETG scheme, with initial condition ii0 = un+I-i using a time
step .6-s such that .6-t = j.6.s with jan integer. The semi-discrete convection 
step then reads 

U
-m+l- -m .6-s(-m 'r'7)-m "=u--u·vu 

2 ' 
iim+l = iim- As(iim+! · V)um+t. (4.43) 

Analogous to equation ( 4.10) it then follows that 

-n+I-i _ -i(j+I) 
u - u ' (4.44) 

where the simpler notation u.n+I-i = Q(tn+l-',t"}un+I-i is introduced. The 
above splitting scheme for convection-diffusion problems is the basis for the 
treatment of the incompressible Navier-Stokes equations described in chap
ter 5. 

4.4.2 Spectral element discretization 

The application of a Galerkin spectral element discretization to the splitting 
scheme of the previous section is straightforward. The weighted residual 
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formulation of the diffusion step is given by (again homogeneous boundary 
conditions are assumed) 

leading to 

M ( Jluu•+l- t,)1;f1'+1
-;) = ll.t ( -ou•+' + Mf"+'). 

The terms un+l-i are evaluated through 

-m+l u }' 

with initial condition u.o = un+l-i. 

Remark 

( 4.45) 

( 4.46) 

(4.47) 

If a Crank-Nicolson scheme, see equation (4.11), is used to treat the diffu
sion step, the discrete Galerkin system for this step becomes 

(4.48) 

where 

(4.49) 

The term u.n is evaluated through solution of the two-step scheme ( 4.47) 
with initial condition ii0 = un. The term d.n is is evaluated according to the 
two-step scheme 

The initial condition to equation ( 4.50) reads 

a.o = dn = -M-lDun + fn. 

(4.50) 

(4.51) 
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H the term d.n in equation ( 4.48) is replaced by dn, such as is the case in 
splitting methods based on the classical splitting approach, the second-order 
accuracy of the diffusion step is lost. This has been found empirically by 
Maday et al. (1990) and will be shown also in the next section. Note that 
in the case of a backward differences scheme there is no need to convect the 
diffusion operator itself, thus prohibiting 'expensive' evaluations like (4.51). 

4.4.3 Numerical results 

In order to test the performance of the operator splitting approach, in this 
section a one-dimensional convection-diffusion problem is solved using an 
implicit backward differences time-integration for the diffusion step and the 
explicit two-step EETG scheme ( 4.31) for the convection step. 

Consider as a test case for the operator splitting scheme the problem of a 
Gaussian hill in one dimension travelling with a constant velocity u = 1 and 
spreading isotropically with a viscosity TJ = 2ix,. This problem is adapted 
from a test case in Donea et al. (1984). The exact solution has the form 

(x- xo- ut)2 

c(x t) = u(O) e- 2u(t)2 
' u( t) 

( 4.52) 

with the time-dependent standard deviation given by 

u(t) = Ju(O) + 2TJt. ( 4.53) 

The initial hill at t = 0 is centered around xo = 0.15 and has a standard 
deviation of u(O) = 0.04. The hill is convected with constant velocity u = 1 
and t E [0, 0.3]. 

This problem is solved using the operator splitting scheme described 
above for both a first-order and a second-order backward differences (BDF) 
scheme and for a Crank-Nicolson scheme. Moreover, it is checked whether 
the second-order accuracy of the Crank-Nicolson splitting scheme is lost 
if the term d.n in equation ( 4.48) is replaced by dn. This approach shall 
be indicated with 'classical' Crank-Nicolson. The number of time-steps 
for the associated convection problem is equal to 64. The spectral element 
discretization uses ne = 16 elements with degree of approximation n = 4. 
The discrete maximum error is given in Table 4. 7. Figure 4.5 shows the 
exact solution and the approximation for ne = 16, n = 4 using a second
order backward differences scheme with 4 diffusion time-steps. 
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Figure 4.5: Linear convection-diffusion in one dimension .. Convection and diffusion 
of a Gaussian hill. Exact solution and two-step EETG/second-order 
BDF approximation for ne = 16, n = 4 with 4 diffusion steps containing 
64 convection steps each. 

Table 4.7: Linear convection-diffusion in one dimension. Discrete maximum er
ror e for the convection and diffusion of a Gaussian hill. n" = 16 

· elements of degree n = 4. First-order BDF scheme (BDFl), second
order BDF scheme (BDF2), Crank-Nicolson scheme (CN) or 'classical' 
Crank-Nicolson (CCN). 

diff. steps BDF1 BDF2 CN CCN 

2 0.42. w-1 0.24 ·10-1 0.58 ·10-2 0.23 ·10° 

4 0.22. w-1 0.39 ·10-2 0.16 ·10-2 0.26 ·10° 

8 o.n· w-1 o.87. w-3 0.42 ·10-3 0.11. 10° 

16 0.58 ·10-2 0.31·10-3 0.24 ·10-3 0.43. w-1 

32 0.30 ·10-2 0.17 ·10-3 0.17 ·10-3 0.20 ·10-1 
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The performance of the operator splitting scheme is quite good. Only 
very few expensive diffusion steps are needed to obtain accurate solutions. It 
can also be seen that the backward differences schemes and the Crank-Ni
colson scheme achieve the theoretical order of accuracy for sufficient diffusion 
steps. The performance of the 'classical' Crank-Nicolson approach is very 
bad compared to the other results. For the small number of diffusion steps 
that are needed to obtain accuracy for the other schemes, the solution is not 
very accurate. The large number of convection steps in each diffusion cycle 
does not require much extra processing time, since each convection step is 
solved explicitly. 

4.5 Conclusions 

In this chapter a closer look has been taken at the application of a Galerkin 
high-order spectral element method to convection-diffusion problems with 
a time-dependent and divergence-free velocity field. In order to decouple 
the treatment of the convection operator and the stiff diffusion operator, 
an operator splitting integrating factor approach has been presented. The 
decoupled problems are then solved with suitable time-integrations using, if 
necessary, different time-steps. 

For pure convection problems explicit time-integration is virtually neces
sary to obtain an efficient numerical scheme; especially in the case that the 
problem is non-linear. A possible strategy to stabilize the numerical oscilla
tions that often occur in the solution of convection dominated problems, is 
to make use of so-called Taylor-Galerkin methods. Several explicit second
order schemes have been proposed and analyzed for both linear and non
linear convection problems with time-dependent and divergence-free veloc
ity. It should be noted that the second-order accuracy of the time-integration 
can only be obtained if the degree of approximation of the spatial discretiza
tion is large enough for the spatial error to be negligible with respect to 
the time error. The schemes have been tested by means of several model 
test cases. With respect to accuracy the Taylor-Galerkin schemes are quite 
comparable to an implicit Crank-Nicolson scheme; as regards efficiency, the 
explicit schemes are much faster than the implicit time-integration. Also for 
non-linear and for more-dimensional problems the Taylor-Galerkin schemes 
appear to be very well suited. 

For convection-diffusion problems the operator splitting technique gives 
good results. The splitting scheme has been applied to a one-dimensional test 
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case. The convection part is treated with a suitable Taylor-Galerkin scheme. 
The diffusion or stiff part of the equation can be solved with a second-order 
(semi-)implicit backward differences scheme or with a trapezoidal method 
(e.g. Crank-Nicolson), the former of the two being the more efficient one. 
Only very few diffusion steps are needed to obtain a second-order accurate 
splitting scheme. The number of convection steps can be taken relatively 
large, since the Taylor-Galerkin schemes are explicit. 

Finally, with respect to the spectral element spatial discretization it 
can be concluded that if the number of time-steps is large enough a clear 
p-convergence for smooth problems to the exact solution is seen. In the 
operator splitting technique here proposed the larger number of time-steps 
required for a higher-order spectral element approximation is not a problem 
with respect to efficiency. The number of 'expensive' diffusion steps is very 
low compared to the number of 'cheap' convection steps. Moreover, since in 
a high-order method the use of a diagonal mass matrix is not as restrictive 
with respect to accuracy than in the case of a low-order method, the explicit 
convection steps only involve matrix-vector products and not the inversion 
of a matrix to solve the system. If the problem is no longer smooth, an 
optimum has to be found between p- and h-convergence. In that case the 
spectral element method is a very useful tool, since both types of convergence 
can be realized by it. 
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Chapter 5 

Solution of N avier-Stokes 
problems 

5.1 Introduction 

The solution of the Navier-Stokes equations for unsteady incompressible 
fluid flow is still a major challenge in the field of computational fluid dy
namics. The aim of this chapter is to derive not only a solution algorithm 
that guarantees high accuracy, but also high efficiency through the use of 
iterative techniques. This means that it must be possible to incorporate 
the methods described in the previous chapters. As already stated in chap
ter 4, the Navier-Stokes equations form a specific case of general unsteady 
convection-diffusion problems for divergence-free velocity fields. The opera
tor splitting approach for these problems will also prove to be very useful for 
the Navier-Stokes equations. Then also it is possible to derive the solution 
algorithm in such a way that the iterative finite element preconditioning 
techniques of chapter 3 can be applied to the resulting system of discrete 
equations. 

An overview of the most important aspects with respect to the solu
tion of the incompressible N a vier-Stokes equations can be found in Fortin 
and Glowinski (1983), Peyret and Taylor (1983), Temam (1984), Girault 
and Raviart (1986) and Gresho (1991). A numerical solution algorithm for 
these equations faces several difficulties. Firstly, the N avier-Stokes equa
tions consist not only of the momentum equation but also of the continuity 
equation (or conservation of mass). For incompressible flow the latter equa
tion reduces to the incompressibility constraint, requiring that the velocity 
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is divergence-free instantaneously in the whole computational domain. Sec
ondly, the N a vier-Stokes equations form a set of coupled equations for both 
velocity and pressure (or better the gradient of the pressure). The pressure 
is not a thermodynamic variable as there is no equation of state for an in
compressible fiuid. It is an implicit variable which instantaneously 'adjusts 
itself' in such a way that the velocity remains divergence-free. The gradient 
of the pressure on the other hand is a relevant physical quantity: a force 
per unit volume. The mathematical importance of the pressure in an incom
pressible fiow lies in the theory of saddle-point problems (of which the steady 
Stokes equations are an example), where it acts as a Lagrangian multiplier 
that constrains the velocity to remain divergence-free (Fortin and Glowinski, 
1983; Girault and Raviart, 1986). 

There are numerous approaches to solve the Navier-Stokes equations. 
The set of equations can be solved directly in the coupled form {Bathe and 
Dong, 1987). However, an important disadvantage is that the system of 
equations becomes very large. Consequently, a lot of computing time is 
required. Moreover, since there are no pressure degrees of freedom in the 
continuity equation, the system matrix contains zeros on the main diagonal, 
which makes partial pivoting necessary, by which also the banded structure 
of the discrete system is distorted. Again, this causes an increase in com
puting time. Therefore it is preferable to adopt a solution procedure that 
decouples the treatment of velocity and pressure. One approach is to apply a 
penalty function method to the discrete Navier-Stokes system (Carey and 
Krishnan, 1984; Cuvelier et al., 1986). In a penalty function method the 
continuity equation is perturbed by a small parameter times the pressure. 
Next the pressure can be eliminated from the momentum equation, thus 
decoupling the momentum equation and the continuity equation. A disad
vantage of the penalty function method is that the perturbation parameter 
must be chosen carefully. It must be taken small enough for the approxima
tion of the continuity equation to be accurate enough. Unfortunately, this 
results in an ill-conditioned system matrix, precluding the use of iterative 
techniques. These restrictions can partly be taken away if iterative versions 
of the penalty function method are applied, such as the often used U zawa 
algorithm (Girault and Raviart, 1986; Maday et al., 1993). However, in 
general these techniques seem to he more suited for steady N avier-Stokes 
computations, since for unsteady problems the system matrix again becomes 
ill-conditioned due to the contribution of the unsteady inertia forces. 

For the solution of unsteady N avier-Stokes fiow perhaps one of the most 
successful approaches to-date is provided by the class of projection methods 
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(Chorin, 1968; Gresho, 1990). In a projection method the velocity and 
pressure are decoupled by taking the divergence of the momentum equation. 
This results in a general convection-diffusion equation for the velocity that 
can be solved using the operator splitting approach of chapter 4, and a 
Poisson equation for the pressure that can be solved using a finite element 
preconditioning technique described in chapter 3. While the pressure is well
defined up to an arbitrary constant by the original equations, it is less so 
when directly expressed in terms of a Poisson equation. This is because in the 
latter case the necessity arises to formulate a non-trivial boundary condition 
for the pressure. The choice of the pressure boundary condition is an aspect 
that is much discussed in literature, see e.g. Orszag et al. (1986), Gresho and 
Sani (1987) and Karniadakis et al. (1991). The obvious theoretical choice 
for the pressure boundary condition is a Neumann condition derived from 
the normal component of the momentum equation. The form in which this 
boundary condition is implemented is important not only because of the 
overall accuracy, but also because of the efficiency of the numerical scheme. 
This aspect is still very much open for improvement. 

In this chapter a pressure correction method, a particular application of 
the projection method, is used to decouple the velocity and pressure treat
ment. The technique presented here follows the ideas of Van Kan (1986) who, 
for finite difference methods, first presented a second-order pressure correc
tion scheme. In the finite element context a related scheme is presented 
by Hawken et al. (1990). In this thesis a modification to the algorithm is 
suggested. It will be shown that the solution of the decoupled equations 
coincides with that of the original equations. Section 5.2 presents the gov
erning equations for incompressible fluid flow: the Navier-Stokes equations. 
In section 5.3 the solution method for these equations is discussed. Before 
presenting the algorithm, the choice of solution method is explained. In or
der to discuss the theoretical background of the pressure correction scheme, 
it is first applied to the Stokes equations. For the Navier-Stokes problem 
the equations are first split according to an operator splitting procedure 
similar to the approach described in chapter 4 for convection-diffusion prob
lems, including the pressure term temporarily in the viscous part of the 
equations. This is discussed in section 5.4. Next, the velocity and pressure 
treatment is decoupled by applying the pressure correction algorithm. The 
properties of the algorithm are extensively analyzed by means of an ana
lytical test case. In section 5.5 more numerical results are presented for the 
problem of a buoyancy-driven flow in an enclosed cavity. Finally, in section 
5.6 conclusions are drawn. 
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5.2 Governing equations 

In this section two-dimensional incompressible transient Newtonian flow is 
considered, without thermal effects. The Navier-Stokes equations are then 
given by the momentum equation 

au 
pat + p(u · V)u- V · u = pf (5.1) 

and the continuity equation, which implies that the flow is incompressible 
always and everywhere 

V'. u = 0. (5.2) 

For a detailed derivation of these equations, see e.g. Batchelor (1967). In 
these equations u(x, t) = ( ub u 2)T is the velocity vector, f(x, t) the body 
force vector, p the fluid density and u(x, t) the Cauchy stress tensor with 
components 

q··- -pc .. + n -' + - 3 
(

8u· au·) 
I} - t} 'I £) Q l 

UXj Xi 
i,j = 1,2. (5.3) 

Here p(x, t) is the pressure and 17 is the dynamic viscosity. 
Consider the equations (5.1) and (5.2) in an open and bounded domain 

n C Rd with boundary r fort ~ 0. In order for the problem to be well
posed boundary and initial conditions have to be imposed. With respect 
to boundary conditions it is necessary to prescribe either velocity (essential 
boundary conditions) or surface traction force (natural boundary conditions) 
in the normal and tangential direction (Temam, 1984; Gresho and Sani, 
1987). Suppose for convenience that the boundary r is composed of two 
non-overlapping parts r u and r u and assume that on each part either the 
velocity or the stress is prescribed. The boundary conditions can then be 
formulated as 

u=k, xonru,t~O, 

0' • n = h, X on r 0', t ~ 0, 

(5.4) 

(5.5) 

where n is the outward unit normal. Using equation (5.3) the boundary 
condition (5.5) can also be written as 

{ 

8un 
hn = -p + 2T}B' X on ru, 

n (5.6) 
h _ (8un 8u-r) -r - T/ {); + {)n , X on r 0' , 
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with hn, Un the normal components and h,., u'T the tangential components of 
the stress and the velocity respectively. 

In general the application of pressure boundary conditions is inconsistent 
with equation (5.2). In an incompressible flow the pressure is an implicit 
variable whose value is (pointwise) determined by the requirement that the 
incompressibility constraint V · u = 0 is satisfied there. The pressure can 
be prescribed in an indirect way via boundary condition (5.5). If however 
Un is specified on all of f, thus prohibiting the boundary COndition (5.5), 
the pressure is only obtainable up to an arbitrary additive constant. In that 
case one can further require that 

jpd!l=O. (5.7) 
n 

Finally, initial conditions have to be imposed on the system. These read 

u(x, 0) = Uo, X in fl, (5.8) 

where u0 must satisfy 

'\7 · Uo = 0, X in fl, (5.9) 

n·Uo=n·k(x,O), xonfu. (5.10) 

If either (5.9) or (5.10) is omitted, the problem (5.1)-(5.2) is ill-posed, see 
e.g. Temam (1984). 

Substitution of the Cauchy stress tensor according to equation (5.3) into 
equation (5.1) and dividing by p yields for the momentum equation 

au 7ft+ (u · V)u- (V · vV)u + V'p = f, (5.11) 

in which p denotes the kinematic pressure (pressure divided by density) and 
v the kinematic viscosity. The complete set of Navier-Stokes equations for 
incompressible flow can thus be written as 

au 7ft+ (u · V)u- (V' · vV')u + V'p = f in n, 

'V·u=O inn, 

u=k on ru, (5.12) 

u·n=h on ru, 

u(x,O) = uo inn, 

with uo such that equations (5.9) and (5.10) are satisfied. 



84 Chapter 5 

5.3 Solution of the Stokes equations 

5.3.1 Projection methods 

Projection methods, first proposed by Chorin (1968), have been developed 
as a useful way for obtaining an efficient solution algorithm for unsteady 
incompressible flow. By decoupling the treatment of velocity and pressure 
terms, a set of easier to solve equations arises: a convection-diffusion problem 
for the velocity, yielding an intermediate velocity, and a Poisson equation for 
the pressure. There are essentially two approaches for projection methods: 
pressure correction methods and fractional step methods. 

Pressure correction methods (Van Kan, 1986; Hawken et al., 1990} con
sist of a basic predictor-corrector procedure between the velocity and the 
pressure :fields. Using an initial approximation of the pressure, the momen
tum equation can be solved to obtain an intermediate velocity field. This 
velocity in general does not satisfy the divergence-free constraint and must 
therefore be corrected. Since this correction has an impact on the pressure 
field, a related pressure correction is defined, obtained by enforcing that the 
corrected velocity satisfies the continuity equation. This leads to a Poisson 
equation for the pressure correction. The Poisson equation for the pressure 
correction is solved with Neumann boundary conditions on that part of the 
boundary where velocities are prescribed. This can be realized by taking 
the normal component of the momentum equation. On that part of the 
boundary where stress is prescribed, a Dirichlet boundary condition for the 
pressure correction must be given. 

The fractional step method (Donea et al., 1982; Laval and Quartapelle, 
1990; Karniadakis et al., 1991) is based on a full splitting of the treatment 
of the pressure/incompressibility constraint and the diffusion in different 
substeps. The intermediate step leads to a Poisson equation for the pressure 
at the new time-level. The remark on boundary conditions also holds here, 
but now of course for the pressure itself, instead of the pressure correction. 
An important difference with the pressure correction approach is that the 
divergence-free constraint is imposed on the intermediate velocity field, not 
on the velocity field on the new time-level, which is therefore not guaranteed 
to satisfy the continuity equation. 

The solution algorithms mentioned above can be applied either to the 
continuous or the discrete system of equations. In the latter case, the pro
cedure does not involve a rediscretization of the original equations. Conse
quently, the boundary conditions are then already built in directly in the 
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weak or variational formulation, thereby prohibiting the need to formulate a 
specific boundary condition for the discrete pressure 'Poisson' equation. In 
this case the choice of the element for the velocity and the pressure is impor
tant with respect to the well-posedness of the system. As is well-known from 
the theory of saddle-point problems, a discrete form of the Brezzi-Babuska 
condition (Babuska, 1971; Brezzi, 1974), must then be satisfied for obtaining 
a unique velocity and pressure. For a high-order spectral element approxi
mation this means that the degree of approximation for the pressure must 
be taken two degrees lower than that of the velocity (Maday et al., 1987). 

On the other hand, applying the decoupling procedure to the continu
ous equations leads to a more straightforward scheme, since in that case the 
original problem is reformulated into several new (and simpler) problems. 
The theory of saddle-point problems is then no longer applicable; as a con
sequence the degree of approximation for velocity and pressure can be taken 
the same, yielding a simpler to implement numerical scheme. Moreover, 
then also the iterative finite element preconditioning techniques described in 
chapter 3 can easily be applied to the resulting discrete equations. In that 
case however, the Poisson equation for the pressure (correction) requires a 
non-trivial boundary condition. In this thesis the continuous approach is 
chosen as it can be applied more easily within the framework of the operator 
splitting approach described in chapter 4. Moreover, it will be shown that 
the use of a homogeneous Neumann boundary condition for the pressure cor
rection Poisson equation is essential in obtaining a divergence-free velocity 
field. For the standard pressure correction approach this leads to problems, 
since then the pressure is not allowed to change in a boundary layer. Here, 
a modification to the standard approach is proposed in which this problem 
is circumvented. 

5.3.2 The pressure correction method 

In a pressure correction algorithm an intermediate velocity is computed by 
taking the pressure at the previous time-level. This intermediate velocity 
is in general not divergence-free. By taking the divergence of the momen
tum equation and enforcing the incompressibility constraint (5.2), a Poisson 
equation for the pressure correction (the difference between the new and the 
old pressure) is obtained. Using the pressure correction the new (divergence
free) velocity and the new pressure can then be computed. In this section 
the properties of a pressure correction method are analyzed by means of its 
application to the linear Stokes problem. Firstly, the algorithm similar to 
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the one used in Hawken et al. (1990) is deduced; next, a modification and 
its consequences are discussed. 

Consider the unsteady Stokes equations with, for simplicity, only essen· 
tial boundary conditions 

lJu Ft - vV2u + Vp = f inn, 

V·u=O inn, (5.13) 

u=k on r, 

u(x,O) =no inn, 

where for convenience it is assumed that the viscosity 11 is constant. If 
this is not the case, e.g. for generalized Newtonian or non-Newtonian flows, 
the theory becomes more complicated but still applicable. The momentum 
equation can be written in the following form 

lJu 
Ft = Vu- Vp+f, (5.14) 

with V = vV2 the diffusion operator. Equation (5.14) is integrated using 
an implicit backward differences scheme with time-step .:lt. This yields the 
following semi-discrete system 

k 
.Boun+l- L.Biun+l-i 

i=t = vun+l _ Vpn+l + r+~. 
.:lt 

(5.15) 

Again, the approximation of a quantity at time tn+l = ( n + 1 )At is denoted 
by the superscript n + 1. The coefficients .Bi of the backward differences 
schemes are listed in appendix D. For a second-order backward differences 
scheme, the following semi-discrete system results 

~un+l - AtVun+l = 2un- ~un-l 
2 2 

-AtVpn+l + Atfn+l in 0, 

inn, 
(5.16) 

on r. 

The pressure correction scheme proceeds as follows: 
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• Calculate an intermediate velocity field u* by choosing the pressure at 
the previous time-level 

(5.17) 

The intermediate velocity field u* is in general not divergence-free. 

• Calculate the pressure correction p* = p"+1 - p" by subtracting the 
equation for u* from the original equation (5.16). This yields 

~ (u"+l- u*)- At (vun+l- Vu*) = -At\lp*. (5.18) 

Neglecting the term 'Du"+l - 'Du*, taking the divergence of equa
tion (5.18) and using the incompressibility constraint at t = t"+l then 
gives the following Poisson equation for the pressure correction 

(5.19) 

• Calculate the velocity at the time-level n + 1 from equation (5.18) by 

(5.20) 

• Calculate the pressure at the time-level n + 1 by 

(5.21) 

Some comments on boundary conditions are in order. A general choice is 
to adopt for the intermediate velocity u* the original boundary conditions 
at the time-level n + 1, that is to choose u* s u"+l on r. Due to the con
tinuous formulation an 'artificial' boundary condition must be formulated 
for equation (5.19). The obvious way to formulate this boundary condition 
would be by taking either the normal or the tangential component of the mo
mentum equation. However, in a pressure correction scheme a homogeneous 
Neumann boundary condition arises naturally for the Poisson equation for 
the pressure correction 

8p* 
8n = 0 on r, (5.22) 
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due to the assumption that u* = un+l on r. Moreover, this is the only 
condition that can guarantee the velocity to be divergence-free because of 
equations (5.19) and (5.20). For a fractional step method, in which a Poisson 
equation for the pressure arises, the need does exist to use the normal com
ponent of the momentum equation as a boundary condition for the pressure. 
As a consequence, in such an algorithm the velocity is not guaranteed to be 
divergence-free. 

The above algorithm has two disadvantages. Firstly, it can easily be 
shown that its solution ( u n+l, pn+l) is not consistent with the solution of 
the system (5.16), due to the fact that the second-order term 1Jun+l-1Ju* in 
equation (5.18) is neglected. Secondly, since p* = pn+I - pn and p* satisfies 
equation (5.22), the pressure is not allowed to change in a boundary layer. 
To overcome these disadvantages, the following modified scheme is proposed: 

• Calculate u* from 

3 1 --u* - at1Ju* = 2un - -un 1 - ~t\7pn + ~tr+1 

2 2 ' 
(5.23) 

with u* = un+I on r. 
• Calculate p* from 

(5.24) 

with ¥n = 0 on r. 

• Calculate u n+I from 

(5.25) 

• Calculate pn+l from 

(5.26) 

Note that in the modified scheme both the velocity and the pressure are first 
predicted in the first step and then corrected in the remaining three steps. 
It is clear from equation ( 5.26) that the pressure can now also adapt in the 
boundary layer. 
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It can easily be shown that the solution ( un+l, pn+l) of the modified 
scheme is consistent with that of the original system (5.16). Equation {5.25) 
also ensures that the normal component of the boundary conditions for un+l 
is satisfied on the boundary; the tangential component of the boundary 
condition can not be satisfied exactly. However, it can be shown that if the 
acceleration ~ and the source term are continuous in time (sudden starts 
and sudden sources are not allowed), the tangential boundary condition for 
the velocity is satisfied with accuracy O(~t2 ). 

Applying the Laplace operator to equation (5.26), taking the divergence 
of equation (5.23) and using equation (5.24) yields that pn+l satisfies the 
pressure Poisson equation (PPE) 

inn. (5.27) 

Taking the normal derivative of equation (5.26), substituting the pressure 
derivatives from equations (5.23) and (5.25) and using equation (5.24) gives 

opn+l ( ) ---an= n. rn+l - ~2un+l + v\72un+l on r, (5.28) 

where ~ 2un+l denotes the second-order backward differences discretization 
of the time-derivative of the velocity. Equation (5.28)is in fact the Neumann 
boundary condition for the pressure which can be derived from the original 
system (5.16). Now using continuity in time for the acceleration and the 
source term it follows that pn+l satisfies 

{ 

\72pn+t = \7 · r + O(~t) 
{) n+l 
~n = n · (rn- ~2un + v\72un) + O(~t) 

leading to 

pn+l = pn + O(~t). 

inn, 

(5.29) 
on r, 

(5.30) 

On the other hand equation (5.23) implies that also u* = un + O(~t) and 
therefore applying the incompressibility constraint and using equation (5.26) 
yields 

\7p* = O(~t). 
Finally, using equation (5.25) yields the important result 

un+l = u* + O(~t2 ). 

(5.31) 

(5.32) 
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This means that the tangential component of un+l is satisfied with second
order accuracy in time, yielding a second-order consistent predictor-corrector 
scheme. 

A way to impose the exact no-slip boundary condition for un+l could 
be to solve the momentum equation of system (5.16) (instead of using equa
tion (5.25)) with pn+l obtained from (5.26). Then however, the strict in
compressibility imposed by equation (5.25) will be lost. In that case it can 
be shown, under certain conditions of smoothness, that Ln+l = V · un+l 

satisfies the Helmholtz equation 

(5.33) 

which has solution Ln+l = 0 only if Ln+l = 0 or 8\:+1 = 0 on r. Since 
this can not be ensured\ V · un+l decays exponentially beyond a boundary 
layer of thickness (v.l.t)~, see also Orszag et al. (1986), which poses a severe 
restriction to the time-step. Numerical experiments have indeed shown that 
V · un+I is worse compared to the results obtained with the modified pressure 
correction scheme and that the maximum is achieved in the boundary layer. 
So with respect to divergence-freedom the present algorithm is better suited. 

To conclude this section some remarks are made regarding natural bound
ary conditions. On that part of the boundary where the normal component 
of the stress is prescribed, that is on r cr, the pressure can be described 
through equation (5.6). For instance, in the case of an outflow boundary it 
is customary to prescribe zero stress there. In formulations where a pressure 
Poisson equation has to be solved to obtain the pressure, the most frequently 
used outflow boundary condition for the pressure problem is p = 0 in combi
nation with homogeneous Neumann conditions for the velocity components, 
since it results in no coupling between the pressure and the velocity calcula
tions. The Neumann conditions for the velocity are implemented naturally 
in the variational formulation; also, Neumann conditions for the velocity on 
the outflow perform better than Dirichlet conditions because they are less 
restrictive. 

Finally, with respect to initial conditions the initial velocity is given by 
equation (5.8); for the pressure correction scheme also an initial condition for 
the pressure is required. The most common way to obtain the initial pressure 
is to solve the PPE with the Neumann boundary condition obtained from 
the momentum equation at t = 0. 
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5.3.3 Spectral element discretization 

Application of a Galer kin spectral element discretization to the semi-discrete 
pressure correction equations is performed in the standard way. As already 
stated in section 5.3.1, there is no need to satisfy any form of the discrete 
Brezzi-Babuska condition as the decoupling procedure is applied to the 
continuous equations, leading to uncoupled problems for both velocity and 
pressure. Therefore the degree of approximation for the pressure can be 
taken equal to that for the velocity, resulting in a numerical algorithm that 
is simple to implement. The fully discrete form of the pressure correction 
scheme thus becomes: 

• Calculate u* by solving 

( ~ M + ~tD) u* = 2Mun- ~Mun-l 
2 

~tQpn + ~tMf'l+l, (5.34) 

with M the (diagonal) mass matrix, D the diffusion or stiffness matrix 
and Q the gradient matrix. The column pn contains the pressure 
components at t = tn. The column f contains also the contribution of 
non-homogeneous boundary conditions. 

• Calculate p* by solving 

(5.35) 

with K the pressure stiffness matrix and L the divergence matrix. 

• Calculate un+l via 

(5.36) 

• Calculate pn+l via 

(5.37) 

where vis assumed to be constant. In appendix E these equations are derived 
in a more detailed way. Moreover, explicit expression for the system matrices 
are given there. From the above system it can be seen that it is essential that 
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the mass matrix M is diagonal, since then the equations (5.36} and (5.37) do 
not involve the solution of a system, but only the calculation of matrix-vector 
products which can be performed on elemental level. Problems (5.34) and 
(5.35), fina.lly, can be solved using an iterative finite element preconditioning 
technique for symmetric systems as described in chapter 3. 

5.3.4 Application to an analytical test case 

In order to test the performance of the pressure correction schemes presented 
in the previous sections, here a Stokes problem with analytical solution is 
analyzed. This analytical solution is also used by e.g. Kim and Moin (1985) 
and R0nquist (1988) for the Navier-Stokes problem. Later in this chapter 
this will be done also. 

Consider the Stokes problem (5.13) with v = 1. The source term is 
chosen such that the exact velocity and pressure are given by 

ttt(x,t) = -cos(x1)sin(x2)e-2t, 

u2(x,t) = sin(x1)cos(x2)e-2t, (5.38) 

1 -p(x,t) = - 4 (cos(2xt)+cos(2x2))e 4t. 

A plot of the exact velocity and pressure at t = 1 is shown in Figure 5.1. 

Figure 5.1: Stokes problem with analytical solution. Velocity field (left) and con
tourlines of the pressure (right) at t = 1. 
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The problem is solved on the domain n = ( -1' 1) X ( -1' 1) with time
dependent boundary conditions for the velocity according to equation (5.38) 
and with initial velocity and pressure according to equation (5.38) at t = 0. 
The domain 0 is divided into ne = 4 elements of degree n. As a first test, 
this problem is approximated until t = 1 using a degree of approximation n 
such that the spatial errors are negligible compared to the errors due to the 
time-integration. 

Table 5.1: Stokes problem with analytical solution. Standard pressure-correction 
method. Discrete maximum error ! for several quantities, spatial dis
cretization fixed, number of time-steps varying. 

time-steps discrete maximum error 

u Lu p Qp 

8 0.12. w-2 o.1s. 10-4 0.16 ·10° 0.42 ·10-2 

16 o.16. 10-3 0.90 ·10-5 o.74. w-1 0.22. 10-2 

32 0.50 ·10-4 0.12 ·10-4 0.38 ·10-1 0.94 ·10-3 

64 0.12 ·10-4 0.29 ·10-5 o.26. 10-1 0.18 ·10-3 

Table 5.2: Stokes problem with analytical solution. Modified pressure-correction 
method. Discrete maximum error e for several quantities, spatial dis
cretization fixed, number of time-steps varying. 

time-steps discrete maximum error 

u Lu p Qp 

8 0.47 ·10-3 0.82 ·10-5 0.27 ·10° 0.11. w-2 

16 0.10. w-3 0.12 · w-s 0.19. 10° 0.27 ·10-3 

32 0.24 ·10-4 0.19 ·10-6 0.18. 10° 0.50 ·10-4 

64 0.58 ·10-5 0.47. 10-7 0.10. 10° 0.13 ·10-4 
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Figure 5.2: Contourplot of the pressure error for the Stokes problem with the stan
dard pressure correction method, using 8 time-steps (left) and 32 time
steps (right). 

Figure 5.3: Contourplot of the pressure error for the Stokes problem with the mod
ified pressure correction method, using 8 time-steps (left) and 32 time
steps (right). 

In Table 5.1 results are presented for a varying number oftime-steps for 
the velocity and its discrete divergence, and for the pressure and its discrete 
gradient, for the standard pressure correction approach; in Table 5.2 the 
same is done for the modified scheme presented in this thesis. Both schemes 
are second-order accurate in time for the velocity. For the modified scheme 
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however, the results are more accurate, especia.lly with respect to divergence
freedom. For the standard pressure correction scheme the results for the 
divergence do not improve much if the number of time-steps is increased. 
With respect to the gradient of the pressure the standard scheme does not 
obtain a clear second-order convergence in time, contrary to the modified 
scheme. 

The results for the pressure itself are rea.lly bad for both schemes, re
alizing that the maximum value of the pressure at t = 1 is 0(10-2). For 
the standard scheme, which clearly has disadvantages for the computing the 
pressure since it is not a.llowed to change in the boundary layer, this need not 
be a great shock. However, for the modified scheme, of which it is shown 
that the pressure satisfies the PPE with the correct Neumann condition, 
and is therefore consistent with the original Stokes equation, this may seem 
surprising. The picture becomes more clear if it is known where the error 
in the pressure achieves its maximum value. In Figure 5.2 a contour plot of 
the pressure error is given for several time-steps using the standard pressure 
correction approach. In Figure 5.3 the same is done for the modified pressure 
correction scheme. For the standard scheme the maximum error is achieved 
within a boundary layer, which can be explained by the fact that the pres
sure can not change there. For the modified scheme however, the maximum 
error is not obtained alongside the whole boundary, but only near the cor
nerpoints. The reason that the computed pressure is not correct is because 
for this test case the boundary is not smooth, due to the corners. The use 
of a Neumann condition overdetermines the problem in the cornerpoints. 

It is proven by Gresho and Sani (1987) that for a sufficiently smooth 
boundary the pressure obtained from the PPE with the Neumann condition 
will also satisfy the Dirichlet boundary condition which follows from the 
tangential component of the momentum equation. If the Dirichlet bound
ary condition is used, the Poisson problem for the pressure is well-posed 
and should yield the correct pressure. To emphasize this point the same 
computations are made with the correct Dirichlet boundary conditions for 
the pressure correction Poisson equation. Table 5.3 shows the results for the 
standard pressure correction method and Table 5.4 gives the results obtained 
with the modificated scheme. For the standard method the pressure still is 
not correct. For the modified scheme however, the pressure now clearly is 
correct. Moreover, the pressure gradient has improved considerably. It can 
also be seen that since the zero Neumann boundary condition no longer holds 
now, the velocity and its divergence-freedom have deteriorated, compared to 
the results in Table 5.2. 
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Table 5.3: Stokes problem with analytical solution. Standard pressure-correction 
method with Dirichlet boundary conditions for the pressure. Discrete 
maximum error t for several quantities, spatial discretization fixed, num
ber of time-steps varying. 

time-steps discrete maximum error 

u Lu p Qp 

8 0.74 ·10-3 0.53 ·10-4 0.49 ·10-1 o.5o. w-2 

16 0.20 ·10-3 0.17 ·10-4 0.22. 10-1 0.26 ·10-2 

32 0.67 ·10-4 0.13 ·10-4 o.ll· w-1 0.83 ·10-3 

64 0.21·10-4 0.32 ·10-5 o.68. w-2 0.21·10-3 

Table 5.4: Stokes problem with analytical solution. Modified pressure-correction 
method with Dirichlet boundary conditions for the pressure. Discrete 
maximum error e for several quantities, spatial discretization fixed, num
ber of time-steps varying. 

time-steps discrete maximum error 

u Lu p Qp 

8 0.14 ·10-2 0.23 ·10-3 0.34 ·10-3 0.40·10-4 

16 0.64 ·10""3 0.77 ·10-4 0.13. 10-3 0.56 ·10-5 

32 0.99 ·10-4 0.11 ·10-4 0.70 ·10-5 0.47. 10-6 

64 0.14 ·10-4 0.13 ·10-5 0.33 ·10-5 0.14 ·10-6 

In the second test the problem is approximated until t = 0.5 using ne = 4 
elements with varying degree of freedom n, but now keeping the time-step 
small enough to ensure that temporal errors are negligible. The results for 
the modified scheme are presented in Figure 5.4 (top). Spectral convergence 
is obtained for the velocity and for the discrete gradient of the pressure; the 
pressure itself is not correct. Again performing the same computation, but 
now with the correct Dirichlet boundary conditions for the pressure also gives 
spectral convergence for the pressure, as is shown in Figure 5.4 (bottom). 
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Figure 5.4: Stokes problem. Evolution of the discrete maximum error e for several 
quantities (top) and for the pressure in the case of Dirichlet conditions 
(bottom) with ne = 4, n varying. N is the number of degrees of freedom 
in one direction. 
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5.4 Solution of the N avier-Stokes equations 

5.4.1 The operator splitting approach 

Consider again the Navier-Stokes equations plus boundary and initial con
ditions given by the system (5.12). The first step in the solution method 
is to apply a similar operator splitting technique as is described in chapter 
4 for unsteady convection-diffusion problems, including the pressure term 
temporarily in the viscous part of the equation. Thereto the momentum 
equation is written in the following form 

8u 8i = 'Du + Cu- V'p + f, (5.39) 

with 'D = vV'2 the diffusion operator and C = -( u · V') the non-linear 
convection operator. Equation (5.39) is written in terms of an integrating 
factor inC 

:t(Q~t*,t)u) =Q~t*,t)('Du-V'p+f). (5.40) 

For the definition of Q~t*,t) see equation ( 4.6). The 'Stokes' equation (5.40) 
is integrated using an implicit backward differences scheme with time-step 
~t. This yields the following semi-discrete system 

k . 
.Boun+l- L.BiQgn+l,tn+l-•)un+l-i 

i=l 

~t 

(5.41) 
(tn+l tn+l-i) . 

To evaluate the terms Qc ' un+l-•(i = 1, 2, ... ) the following associ-
ated initial value problem is solved 

{ 

/)~~·) = C ii( s), 0 < 8 < i.:l.t, 

ii(O) = un+l-t, 

from which it follows that 

~tn+l,tn+l-i)un+l-i = ii( i~t). 

(5.42) 

(5.43) 

Problem (5.43) according for the non-linear convection is solved using a 
three-step version of the explicit Taylor-Galer kin scheme described by equa
tion ( 4.25). This scheme, also used by Jiang and Kawahara (1993), does not 
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suffer from weak instability, contrary to the two-step scheme. The initial 
condition is u.O = un+l-i; a time-step ~s such that ~t = j~s with j an 
integer is used. The semi-discrete convection step then becomes 

-m+l -m ~8 (-m ~)-m u 3 = u -3u •v u, 

-m+ 1 -m ~8(-m+~ '"')-m+lU ~=u--u ~·vu ~ 
2 ' 

um+l = iim- ~s(um+t · V)um+!. 

(5.44) 

After introduction of the simpler notation un+l-i = Q(t"+I-',t")un+l-i (see 
also chapter 4), equation (5.43) leads to 

-n+l-i _ -i(j+l) u - u . (5.45) 

The further deduction of the pressure correction scheme is completely anal
ogous to the Stokes case; also the theory concerning boundary conditions 
and consistency of the computed solution holds now. The only difference 
consists of the equation for the intermediate velocity. For a second-order 
backward differences integration this part reads: 

• Calculate u* from 

!u• - ~t'Vu* = 2iin - ~iin-t - ~tVpn + ~tF+l 
2 2 ' 

(5.46) 

with u* = un+l on r. The quantities un and u.n-1 are calculated 
according to the associated convection problem (5.44), (5.45). 

The spectral element discretization of equation (5.46) is given by: 

• Calculate u* by solving 

(~M + ~tD) u* = 2Miin- ~Miin-1 

- ~tQpn + ~tMF+l, (5.47) 

The columns u.n and un-1 are calculated through the solution of 

-m+l u ~ 

-m ~sM-tcm -m = u -- u 
3 ' 

-m ~sM-Icm+l -m+l = u -- au 3 
2 ' 

u.m+l = iim- ~sM-lcm+ium+i, 

(5.48) 

where cm+t and em+~ denote the convection matrix at time levels 
m + l and m + ~ respectively. 
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The derivation of the system (5.48) is analogous to that of the two-step 
scheme described in section 4.3.3. Again, the use of a diagonal mass matrix 
M ensures an efficient evaluation without the need to solve the system. 

5.4.2 The analytical test case revisited 

Consider again the analytical velocity and pressure given by equation (5.38). 
For 11 = 1 this solution satisfies the Navier-Stokes equations with zero source 
term. The numerical results for this test case are quite similar to those ob
tained for the Stokes problem, as can be expected. To emphasize that the 
modified pressure correction scheme performs well also in the presence of 
the non-linear convective term, the second test of section 5.3.4 is repeated. 
The problem is approximated until t = 0.5 using ne = 4 elements of varying 
degree of approximation n, keeping the time-step small enough to ensure 
that temporal errors are negligible. Figure 5.5 (top) shows the results for 
the modified scheme using the obligated Neumann condition for the pressure 
correction Poisson equation. Spectral accuracy is obtained for the velocity 
and the discrete gradient of the pressure. For the pressure itself again spec
tral accuracy can be achieved using the correct Dirichlet boundary condition, 
as is shown in Figure 5.5 (bottom). 
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Figure 5.5: Navier-Stokes problem. Evolution of the discrete maximum error e 
for several quantities (top) and for the pressure in the case of Dirichlet 
conditions (bottom) with ne = 4, n varying. N is the number of degrees 
of freedom in one direction. 

5.5 Buoyancy-driven flow in an enclosed cavity 

The simulation of cavity flow is an often used test case for the validation of 
a numerical technique for incompressible flow. In this section a buoyancy· 
driven free-convection flow in an enclosed cavity is analyzed, a problem well· 
documented in literature, see De Vahl Davis (1983). The driving force be
hind this flow is the gravity field acting on density differences caused by 
non-uniform temperature distributions. The numerical modelling of a free
convection flow is the more challenging, since it is is additionally complicated 
by the presence of the energy equation, a convection-diffusion equation for 
the temperature, which is coupled to the system of N avier-Stokes equations. 
Rfllnquist (1988) uses a similar test case for the algorithm presented in his the
sis, however with a temperature that is assumed to be constant. In the con
text of the research presented in this thesis, the natural convection problem 
is very interesting since it couples the solution of the N a vier-Stokes equa
tions for incompressible flow to the solution of general convection-diffusion 
problems, described in chapter 4. 
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The equations for natural convection in a domain n presuming an incom
pressible flow are the momentum equation, the continuity equation and the 
energy equation. Compared to equation (5.12) the source term is replaced 
with the buoyancy term which, assuming constant fluid properties except 
for the density in the buoyancy term, is supposed to be linearly dependent 
on the temperature. In dimensionless form the full set of equations reads 

au 2 at+ (u · V)u- PrY' u + Vp = RaPrTg, 

V'·u =0, (5.49) 

ar Tt + ( u · V)T = V 2T, 

with T(x) the dimensionless temperature and g = [0, 1]T. The Rayleigh 
number Ra and the Prandtl number Pr are defined by 

ll 

Pr = ""i' (5.50) 

with g the acceleration of gravity, {3 the thermal expansion coefficient, D.T 
the characteristic temperature difference, l the characteristic length, 8 the 
thermal diffusivity and v the kinematic viscosity of the fluid. 

The solution procedure for the system (5.49) is straightforward. Each 
time-step the energy equation is solved using an operator splitting scheme 
for convection-diffusion problems as described in chapter 4. For the diffusion 
part a second-order accurate backward differences scheme is used. The con
vection part is integrated using the three-step explicit scheme described in 
section 5.4.1. The velocity appearing in the convective term is extrapolated 
from the previous time-step using a second-order accurate in time extra
polation scheme. More details can be found in Minev et al. (1994). Next, 
the set of momentum equation and continuity equation is solved with the 
modified pressure correction scheme described in this chapter. 

The computational domain with boundary conditions is shown in Fig
ure 5.6. The cavity aspect ratio and the Prandtl number are chosen to be 
1 and 0. 71 respectively. Simulations are performed at 4 different values of 
Rayleigh numbers (Ra = 103,10\105, 106 ). Under the same conditions this 
problem has been investigated by Lankhorst (1991). For Rayleigh numbers 
larger than Ra = 106 no benchmark solution exists. Computations are per
formed until a steady state is reached using a time-step that varies from 
D.t = 4 · 10-2 at Ra = 103 to D.t = 10-4 at Ra = 106 • The number of 
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Figure 5.6: Buoyancy-driven flow in an enclosed cavity. Computational domain 
with boundary conditions. 

elements in the spectral element discretization is ne = 16; the degree of 
approximation in each element is n = 8. 

The resulting streamfunction contours and isotherms are plotted in Fig
ures 5.7 through 5.10 for increasing Rayleigh number. The qualitative 
agreement with the available information of Lankhorst (1991) is very good. 
The flow clearly follows the same development when the Rayleigh number is 
increased. At Ra = 103 and Ra = 104 a clockwise rotating primary flow with 
the rotation center, or stagnation point, at the cavity midpoint is observed. 
At Ra = 105 the center has been split up into two clockwise rotating sec
ondary rolls. At Ra = 106 the flow is further split up into three, though very 
weak, rolls rotating in a clockwise direction. The thickness of the wall bound
ary layer also decreases with increasing Rayleigh number. This structure of 
the flow highly influences the resulting temperature :field. At Ra = 103 the 
conduction is still dominant. For increasing Rayleigh number the problem 
for the temperature becomes highly convective; the temperature gradient 
normal to the isothermal walls at the left lower and right upper corners also 
increases due to the intensification of the convective heat transfer. 
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Figure 5.7: Streamlines (left) and isotherms (right) for the buoyancy-driven flow in 
an enclosed cavity at Ra = 103 • Modified pressure correction/ operator 
splitting scheme using ne = 16 elements of degree n = 8. 

Figure 5.8: Streamlines (left) and isotherms (right) for the buoyancy-driven flow in 
an enclosed cavity at Ra = 104 . Modified pressure correction/operator 
splitting scheme using ne = 16 elements of degree n = 8. 
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Figure 5.9: Streamlines (left) and isotherms (right) for the buoyancy-driven flow in 
an enclosed cavity at lb = 105 . Modified pressure correction/operator 
splitting scheme using n~ = 16 elements of degree n = 8. 

Figure 5.10: Streamlines (left) and isotherms (right) for the buoyancy-driven flow in 
an enclosed cavity at Ra = 106 . Modified pressure correction/operator 
splitting scheme using ne = 16 elements of degree n = 8. 
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Table 5.5: Buoyancy-driven flow in an enclosed cavity. Present results (P) compared 
with the benchmark numerical solution (B) and the deviation (D) for 
Ra = 103 through Ra = 106 • Modified pressure correction/operator 
splitting scheme using ne = 16 elements of degree n = 8. 

variable source Rn. = 103 &=~105 Rn. = 106 

Ut,max B 3.649 16.178 34.73 64.63 
p 3.630 16.171 34.15 63.02 

D (%) -0.5 0.0 -1.6 -2.3 

X2( Ut) B 0.813 0.823 0.855 0.850 
p 0.830 0.830 0.875 0.830 

U2,max B 3.697 19.617 68.59 219.39 
p 3.693 19.604 66.85 219.69 

D (%) -0.1 -0.1 -2.5 +0.1 

Xt ( u2) B 0.178 0.119 0.066 0.0379 
p 0.170 0.125 0.079 0.0404 

Numax B 1.505 3.528 7.717 17.925 

p 1.507 3.531 7.717 17.350 

D (%) +0.1 +0.1 0.0 -3.2 

x2(Nu) B 0.092 0.143 0.081 0.0378 

p 0.080 0.125 0.080 0.0404 

Numin B 0.692 0.586 0.729 0.989 
p 0.692 0.586 0.726 0.972 

D (%) 0.0 0.0 -0.3 -1.7 

x2(Nu) B 1.0 1.0 1.0 1.0 

p 1.0 1.0 1.0 1.0 
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In Table 5.5 results are shown for Rayleigh numbers Ra = 103 through 
Ra = 106 • Presented are the following characteristic values of the present 
method (P) compared with the benchmark values (B) of De Vahl Davis 
(1983) and the deviations (D) in terms of percentage from the benchmark 
solution: 

• The maximum horizontal velocity on the vertical mid-line u1,ma.x and 
its x2-location x2(u1). This is illustrated in Figure 5.11 for the case 
Ra = 105 • 

• The maximum vertical velocity on the horizontal mid-line u2,max and 
its x1-location x1 ( u2). This is illustrated in Figure 5.11 for the case 
Ra = 105• 

• The maximum Nusselt number Nu at the 'hot' wall x1 = 0 and its 
x2-location x2(Nu). 

• The minimum Nusselt number Nu at the 'hot' wall x1 = 0 and its 
x2-location x2(Nu). 

The N usselt number is defined by 

Nu= f)TI 
OXt .Xl=O. 

(5.51) 

As can be seen the difference between the values of the present computation 
and the benchmark values are quite small. There is a tendency towards larger 
differences for increasing Rayleigh number. For instance, the maximum de
viation is found at Ra = 106 for the maximum value of the Nusselt number. 
However, this may be expected because if the Rayleigh number increases, 
the sensitivity for the determination of the maximum (or minimum) of the 
Nusselt number to the distribution of nodal points in the vertical direction 
also increases. Unless accidentally one of the grid lines is located at exactly 
the right position, a too low value (or too high) value for the N usselt number 
is found. This holds also for the determination of the maximum of the ve
locity components. Finally, it is remarked that the results also compare very 
well to the results obtained by Lankhorst (1991), who uses a considerably 
finer mesh, 45x45 nodes against 33x33 nodes for the present computation. 
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Figure 5.11: Buoyancy-driven cavity flow. Horizontal velocity profile on the vertical 
mid-line and vertical velocity profile on the horizontal mid-line for the 
case Ra;;;; 105 . 

5.6 Conclusions 

This chapter has dealt extensively with the solution of the Navier-Stokes 
equations for unsteady incompressible flow. The choice of solution method 
is largely determined by the need for an efficient numerical scheme. The sol
ution method presented consists of a continuous pressure correction scheme 
with second-order accuracy in time. Pressure correction schemes are a spe
cial application of the class of projection methods. In a projection method 
the original set of Navier-Stokes equations is split into a set of problems that 
are simple to solve for both velocity and pressure. In the pressure correction 
approach the velocity and pressure are decoupled by taking the pressure at 
the previous time-level, resulting in a convection-diffusion problem for an 
intermediate velocity field that can be solved using the operator splitting 
technique presented in chapter 4. Enforcing the incompressibility constraint 
yields a Poisson equation for the pressure correction which can be solved 
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using a finite element preconditioning technique of chapter 3. 
In the standard pressure correction approach the computed solution is 

not consistent with the solution of the original Navier-Stokes system. More
over, the pressure is not allowed to change in a boundary layer. In this 
chapter the standard pressure correction scheme has been modified. The 
modification consists of an addition to the equation for the computation of 
the new pressure in such a way that the disadvantages mentioned above 
no longer hold. This results results in a second-order consistent algorithm. 
Gresho and Sani (1987) emphasize the following weak points of a 'projection' 
approach of which only the first one applies to the present algorithm: 

• More-than-originally necessary smoothness for velocity and pressure 
are required. 

• It is difficult to derive a boundary condition for the pressure, since 
it involves the calculation of second-order derivatives of the velocity. 
In the present algorithm this problem does not exist. The boundary 
condition (a homogeneous Neumann condition) to be formulated is for 
the pressure correction and not for the pressure itself. 

• The velocity is not strictly guaranteed to be divergence-free, since the 
incompressibility constraint is applied to the intermediate velocity. In 
the present algorithm the constraint is applied to the new velocity on 
each time-level thus guaranteeing always divergence-freedom. 

• The general solvability constraint for the Navier-Stokes equations 

J un+l dr = 0, 

r 
(5.52) 

is often difficult to satisfy. In the present case it is automatically satis
fied because of the choice of boundary conditions for the intermediate 
velocity. 

The standard and modified algorithm have been thoroughly analyzed by 
means of a test case with analytical velocity and pressure. Especially with 
respect to divergence-freedom the modified scheme gives much better results. 
Moreover, the modified scheme is clearly second-order consistent in time. A 
'practical' drawback for the computation of the pressure is a smoothness 
requirement for the boundary. For the test case the Poisson problem for 
the pressure correction is overdetermined in the corner points because of the 
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use of the (obligated) Neumann condition. If the correct Dirichlet boundary 
condition is used the modified scheme yields the correct pressure, contrary to 
the standard scheme. Therefore, a way to compute the pressure in the case 
of a non-smooth boundary could be to retrieve it through post-processing of 
the discrete gradient on the boundary, yielding an accurate approximation 
of the Dirichlet boundary condition. The modified scheme has been further 
validated by means of its application to the problem of a buoyancy-driven 
cavity flow, which for increasing Rayleigh number results in a highly con
vective convection-diffusion problem for the temperature. Good results were 
obtained also for this problem. 

With respect to the spectral element discretization the above algorithm 
holds several advantages. Firstly, the application of the decoupling algorithm 
to the continuous Navier-Stokes results in a set of equations that is simple 
to implement. The degree of approximation for velocity and pressure can be 
taken the same, as there is no need to satisfy any form of the Brezzi-Babuska 
condition. Secondly, the use of a diagonal mass matrix, which is a valid 
approach in a high-order method, is essential with respect to efficiency since 
in that case both the convective equations for the velocity and the correction 
equations for velocity and pressure do not involve the solution of a system, 
but only the calculation of matrix-vector products which can be performed 
on elemental level. Finally, for the analytical test case it was also shown 
that spectral accuracy for both velocity and pressure can be achieved if the 
temporal errors are negligible. 
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Discussion 

In the last chapter the accomplishments of the research presented in this 
thesis are discussed and some ideas for future research are given. The aim of 
this work is to solve convection-dominated flow problems, in particular gov
erned by the Navier-Stokes equations, using a high-order spectral element 
method. The reason to apply spectral elements is the high accuracy that 
can be achieved when approximating 'sufficiently' smooth phenomena, such 
as occur in incompressible fluids, within a geometrically flexible framework. 
Therefore, the first part of this thesis (chapters 2 and 3) is mainly concerned 
with the spectral element method. In the second part (chapters 4 and 5) 
the application of the spectral element method to problems for unsteady in
compressible flow is analyzed. Then not only the spatial discretization is of 
importance but also aspects such as the choice of time-integration and the 
choice of decoupling algorithm for the Navier-Stokes equations. 

After describing the spectral element technique (chapter 2), using a thor
ough theoretical basis, in the first instance the property of exponential or 
spectral accuracy is checked by applying the method to several relatively 
simple test cases for elliptic equations. For such problems spectral elements 
prove to be much better suited than the conventional low-order methods as 
regards the accuracy of the approximate solution. For the approximation of 
somewhat less trivial solutions (but still smooth), such as highly convective 
phenomena in more dimensions the remark on accuracy still holds. How
ever, a perhaps equally important criterion for a numerical method is the 
efficiency, both with respect to memory usage and computing time, with 
which the resulting system of discrete equations can be solved (chapter 3). 
For a high-order spectral-type method efficiency is achieved firstly by the 
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use of iterative solution algorithms, and secondly by the use of a tensorial 
basis that is derived from the one-dimensional basis. This allows a method 
to significantly decrease the number of operations needed to compute the 
residuals in an iterative technique. The success of iterative solvers strongly 
depends on the quality of the preconditioner. A very powerful tool in the 
iteration is provided by the use of finite element preconditioning to improve 
the conditioning of the spectral element system matrix. Using this type of 
preconditioner only a few iterations are needed to obtain convergence. 

At that point, having obtained not only a highly accurate numerical 
method but also an efficient iterative solver, the possibility exists to further 
deepen the analysis of the spectral element method by investigating such 
matters as the extension to complex three-dimensional geometries or the 
use of non-conforming elements. Since these properties have already been 
examined (with excellent results) in other researches (Bernardi et al., 1990; 
Maday and R0nquist, 1990), here priority is given to the application of 
spectral elements to the specific class of incompressible flow problems, mainly 
because of the future field of application (flows in the transition from laminar 
to turbulent, visco-elastic flows). The above aspects will have to be addressed 
in future research if the application has need of them. 

The solution of general unsteady convection-diffusion problems is con
sidered a good starting point for validating a numerical method that is go
ing to be applied to incompressible flow problems (chapter 4 ). Moreover, 
examples of the convection-diffusion equation can be found in a wide range 
of problems, such as the energy equation for temperature problems and the 
pure convection equation for particle tracking. For unsteady problems the 
choice of time-integration becomes also important. Since convection and 
diffusion are, also from a mathematical point of view, totally different phe
nomena, it is appropriate to treat them separately by using an operator 
splitting approach that decouples the problem into a pure convection prob
lem followed by a pure diffusion problem. Again, this choice is influenced 
by the need for an efficient numerical scheme, since then the diffusion equa
tion can be solved using an implicit time-integration with a large time-step, 
and the convection equation can be solved using an explicit time-integration 
with, if necessary, a smaller time-step. The use of a high-order spectral ele
ment method has a great advantage because in that case it is valid to apply 
a diagonal mass matrix, since it is not as restrictive with respect to accuracy 
as is the case for low-order methods. Consequently, the resulting discrete 
system does not involve the solution of a system, but only the calculation 
of matrix-vector products which can be performed on elemental level. The 
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diffusion system can be solved using an iterative procedure described above. 
The numerical results for the spectral element approximation of both 

linear and non-linear convection-diffusion equations are excellent, even if 
the convective part is dominant. For smooth phenomena dear spectral con
vergence (or p-convergence) is obtained if the time-step is small enough; 
again the method proves to be much more accurate than the conventional 
low-order finite element method. The opportunity has also been taken to 
approximate a. non-smooth solution. In that case no spectral accuracy is 
obtained, as is to be expected. However, the use of high-order elements still 
has an advantage with respect to accuracy over low-order elements. As re
gards efficiency some balance will have to be found between p-convergence 
and h-convergence, both of which types can be provided for by the spectral 
element method. In the context of convection-diffusion problems the per
formance of the spectral element technique described in this thesis has also 
been compared in detail to other numerical methods, see Vreugdenhil and 
Koren (1993), Timmermans and Van de Vosse (1993b). There the spectral 
element method gives excellent results in obtaining accuracy combined with 
an efficient algorithm, also for the approximation of a strongly non-linear 
and discontinuous propagation of a shock. 

The solution of the Navier-Stokes equations for incompressible :flow is 
the obvious next step (chapter 5). Again, the choice of solution method is 
largely determined by the need for an efficient method, which is found in 
a. modified continuous pressure correction (or predictor-corrector) scheme. 
The set of equations is split into a set of problems for both velocity and 
pressure that are simple to solve. This results in a. convection-diffusion 
problem for an intermediate velocity field that can be solved using the op
erator splitting technique mentioned above. Enforcing the incompressibility 
constraint yields a Poisson equation for the pressure correction which can be 
solved using a. finite element preconditioning technique. Next, the velocity 
is 'corrected'. The main advantage of a pressure correction is that the final 
velocity obtained is guaranteed to be divergence-free. In this thesis a modifi
cation to the standard approach is proposed in order to derive a second-order 
consistent scheme. This also introduces a correction for the pressure which 
allows the pressure to change in the boundary layer. Using this modification 
there are no longer any problems relating 'artificial' boundary conditions for 
the pressure correction Poisson equation (Orszag et al., 1986; Gresho and 
Sani, 1987; Karniadakis et al., 1991). 

The reason to choose a continuous decoupling algorithm is because in 
that case the degree of approximation for velocity and pressure can be taken 
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the same, since there is no need to satisfy any form of the Brezzi-Babuska 
condition. The resulting set of discrete equations is then very easy to im
plement; moreover, the use of finite element preconditioning to solve the 
Poisson problem for the pressure is then straightforward. Again, the use of 
a diagonal spectral element mass matrix gives great advantages, also in the 
pressure correction scheme. Using the modified scheme numerical results 
for the Navier-Stokes equations are also very good showing a second-order 
consistency in time. Spectral convergence for both velocity, pressure and 
the gradient of the pressure can be obtained, if the time-step is chosen such 
that temporal errors are negligible. The only drawback is that the correct 
pressure must be retrieved through post-processing of the discrete pressure 
gradient (Gresho and Sani, 1987), if the boundary is not smooth. Con
cluding, at this moment there exists a highly accurate and highly efficient 
solution method for the approximation of incompressible flow problems. 

As already indicated, with respect to the analysis of the spectral element 
method still work has to be done concerning the treatment of complex three
dimensional geometries. Another job for future research is to further speed 
up the iterative solver. At the moment, still the (sparse) LU-decomposition 
of the linear element matrix, that is used for preconditioning, is stored. The 
ultimate goal is to achieve a matrix-free solver by also solving the linear 
element system using an iterative procedure. A possible strategy could then 
be to make use of so-called element-by-element preconditioners, based on 
the product of the inverse of the element matrices. Since this may lead to 
a great loss of connectivity between the elements, an alternative is provided 
for by the use of clusters of elements (Tezduyar et al., 1992). Such a pro
cedure would fit naturally in the context of spectral elements, since every 
spectral element can be seen as a cluster of linear elements. As a conse
quence, the same part of the mesh is used for both computing the spectral 
residuals and inverting the finite element systems. This leads not only to a 
highly parallelizable iterative solver but also to a highly efficient data trans
port between the processors (Johan et al., 1992). Also, the application of 
spectral elements enables a more flexible use of the available processors than 
low-order techniques; the fewer the processors, the higher the order of el
ements has to be. The above procedure seems to be more promising than 
the use of 'intra-element' multigrid (R0nquist and Patera, 1987; Maday and 
Munoz, 1988), since the communication between the subsequent levels of the 
multigrid cycle is complicated by the non-equidistant distribution of the grid 
points. 
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Future research must also focus on application of the techniques described 
in this thesis to flows in the transitional area between laminar and turbulent 
flow where often physically originated instabilities occur. These {smooth) 
flow phenomena are very difficult to simulate since (as already stated in chap
ter 1) they originate from relatively small scaled disturbances. Application of 
a highly-accurate spectral element method that introduces minimal numeri
cal damping can prove to be very successful. Already, in this area work has 
been done (Kaiktsis et al., 1991 ). Another very interesting application for 
spectral elements is the field of visco-elastic flow problems (Baaijens, 1992; 
Tamaddon-Jahromi et al., 1992; Phillips and Roberts, 1993). Computations 
in this field often lead to large systems even for two-dimensional flows, since 
compared to the Navier-Stokes system also the extra stresses are unknowns. 
The use of spectral elements will not only enhance the computational accu
racy, but as already stated they are more flexible than low-order methods 
with respect to parallelization. Moreover, as is also shown in this thesis 
spectral elements are well-suited to deal with highly convective problems, 
without the use of stabilizing upwind techniques, such as occur in visco
elastic problems when some splitting algorithm is applied to decouple the 
stresses and pressure from the velocity. 
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Appendix A 

Orthogonal polynomials in 
( -1, 1) 

A.l Sturm-Liouville problems 

Consider the following eigenvalue problem on the domain ( -1, 1) 

{ 
-! (a(z) ~~i) + b(x)tpi = >.iw(x)tpi in ( -1, 1), 

(A.1) 

plus suitable boundary conditions for 'Pi· 

Problem (A.1) is a Sturm-Liouville eigenvalue problem on ( -1, 1). The 
solution 'Pi( x) is called the eigenfunction with eigenvalue Ai. The coefficient 
a( x) is continuously differentiable and strictly positive in ( -1, 1), the coef
ficient b( x) and the weight function w( x) are non-negative in ( -1, 1 ). The 
problem is called singular, or more specific, singular at the boundary points 
if 

a( -1) = a(1) = 0. (A.2) 

As indicated in section 2.2.2 those eigenfunctions that form a complete 
orthogonal polynomial set in a Hilbert space are of special importance. 
First consider the property of completeness. Therefore define the weighted 
Lebesgue space 

(A.3) 
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which is a Hilbert space. The natural inner product in this space is 

1 

(c, v)w = j c(x)v(x)w(x) dx, 
-1 

'Vc, vEL~( -1, 1), (A.4) 

with induced norm llvll! = ( v, v )w· It can be shown, see e.g. Courant 
and Hilbert (1953}, that the eigenfunctions l.fJi form a complete set on the 
Lebesgue space L!( -1, 1) if and only if 

(i-. oo). (A.5) 

Consider now the expansion of an analytical function c( x) in terms of eigen
functions i.fJi with eigenvalues Ai that satisfy equation (A.5). In Canuto et al. 
(1988) it is shown that this expansion has the property of spectral accuracy, 
i.e. the coefficients Ci decay faster than any inverse power of the eigenvalues 
Ai 

'Vm > 0 3io Vi > io : Ci < Aim. (A.6) 

It should be noted here that spectral accuracy is generally not obtained for 
eigenfunction expansions of a non-singular or of a half-singular Sturm-Liou
ville problem. In these cases the coefficients decay algebraically unless the 
function c( x) satisfies an infinite number of special boundary conditions. A 
proof of these properties is given in Gottlieb and Orszag (1977). 

Of special interest are those orthogonal eigenfunctions that are poly
nomials, because of the efficiency with which they can be evaluated and 
differentiated numerically. In section 2.2.2 it is seen that the polynomial 
eigenfunctions are the Jacobi polynomials, see e.g. Abramowitz and Stegun 
(1972). In practice only the Chebyshev and Legendre polynomials are used 
in spectral methods. A survey of Legendre polynomials is given in appendix 
B. 

A.2 Orthogonal systems of polynomials 

In section 2.2.2 the spectral approximation of an analytical function c( x) in 
terms of orthogonal eigenfunctions of Sturm-Liouville problems is discussed. 
In this section the expansion of c( x) in terms of a system of orthogonal 
polynomials shall be discussed from a general point of view. 
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First define Pn( -1, 1) to be the space of polynomials of degree :s; n on 
( -1, 1). Let Pi (i = 0, 1 ... ) be a system of algebraic polynomials that are 
mutually orthogonal in ( -1, 1) with respect to a weight function w( x) 

1 

j Pi(x)pj(x)w(x) dx = 0, 
-1 

i -1 j. (A.7) 

The classical Weierstrass theorem implies that the system Pi is complete in 
the Lebesgue space L~( -1, 1) defined by equation (A.3). A function c(x) can 
be expanded in terms of the polynomials Pi· This formal series is denoted 
by 

00 

c(x) = LCiPi(x). 
i=O 

The coefficients Ci satisfy 

1 

c; = IIP~II~ j c(x)pi(x)w(x) dx. 
-1 

(A.8) 

(A.9) 

Consider now the truncated series expansion defined for any integer n > 0 
by 

n 

Snc(x) = LCiPi(x). (A.lO) 
i=O 

Due to the orthogonality relation (A.7), Snc is the orthogonal projection of 
c(x) upon Pn( -1, 1) with respect to the inner product (A.4). The complete
ness of the system Pi is equivalent to the property 

\:/c E L!( -1, 1) (n- oo). (A.ll) 

Equation (A.ll) is a well-known result of classical functional analysis. It 
states that the function c( x) is equivalent to its series expansion ( A.8). 

A.3 Discrete polynomial expansions 

The coefficients Ci depend on all the values of c( x) in physical space and are 
therefore rarely computed exactly. A finite number of discrete coefficients 
can easily be computed using the values of c( x) at Gauss-type quadrature 
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points. The finite series defined by the discrete coefficients is actually the 
interpolating polynomial of c( x) at these points. 

Let Xk and Wk be the Gauss-type quadrature points and weights. The 
interpolating polynomial can be written as 

n 

Inc(x) = l:ciPi(x). 
i=O 

It is uniquely defined by 

Inc(xk) = c(xk), k = 0, ... , n. 

The Ci are the discrete coefficients. They satisfy 

1 n 

Ci = -
11 

·ll2 l:c(xj)Pi(Xj)Wj dx, 
Pt n j=O 

with II · lin the norm induced by the discrete inner product 

n 

(c, v)n = 2: c(xk)v(xk)wk, Vc, v E C0
( -1, 1). 

k=O 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

For more information on orthogonal systems of polynomials see Canuto et 
al. (1988). 
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The Legendre polynomials 

The Legendre polynomials are eigenfunctions of a singular Sturm-Liouville 
problem on ( -1, 1) which reads 

(B.1) 

In terms of equation (A.1) this implies that a(x) = (1- x2), j3(x)::: 0 and 
w( x) = 1 and that the eigenvalues satisfy An = n( n + 1 ). The Legendre 
polynomials satisfy the recurrence relation 

2n + 1 n 
Ln+l(x) = 

1 
XLn(x)- --

1
Ln-l(x), n+ n+ 

(B.2) 

with Lo( x) = 1 and L1 ( x) = x. The following properties are of importance 

Ln(±1) = (±1t, (B.3) 

(B.4) 

a2Ln(±1) = (±l)n(n+2)(n+ 1)n(n-1) 
ax2 8 ' 

(B.5) 

(2 1)L ( ) 
_ aLn+l _ aLn-1 

n + 11 X - ax ax ' (B.6) 

(B.7) 
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Let xo = -1, Xn. = 1, and let Xk (k = 1, ... ,n-1) be the Legendre 
Gauss-Lobatto points defined as the roots of 8tn. The interpolation poly
nomial for a given function c( x) on ( -1, 1) can be constructed as 

n 

In.c(x) = L:c(xi)¢i(x), (B.8) 
i=O 

where the ¢i(x) denote the Lagrange interpolation polynomials which are 
1 at Xi and 0 at all other Gauss-Lobatto points. The functions ¢i( x) are 
given by 

-1 1- x2 8Ln. 
¢i(x)= 8 ·· n(n+1)Ln.(Xi)X-Xi X 

(B.9) 

In Figures B .1 through B .4 the Lagrange polynomials ¢i( x) are shown for 
n = 2, 4, 8, 16. Also shown are the corresponding Legendre Gauss-Lobatto 
points. 

The derivatives of Inc( x) in the interpolation points are given by 

a<m>zn.c(x)l _Ln ( ·)P(m) 
( ) - c x, k' ' 8x m . ' 

:c=:c~c 1=0 

(B.10) 

with 

p(m) _ 8(m)</>i( X) 
ki - 8x(m) (B.ll) 

Using equations (B.6) and (B. 7) the Lagrange polynomials can also be writ
ten as 

¢i(X) = -1 Ln-l(x)- Ln+t(x) 
(2n + 1)Ln(Xi) X- Xi 

(B.12) 

This form easily leads to 

8t/>i = _1_ ( Ln(x) _ </>i(x)). 
8x x- Xi Ln(xi) 

(B.13) 

Using </>i( x k) = Dik one can derive for the case that k i= i 

(B.14) 
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Substitution of Taylor expansions around Xi in equation (B.13) yields 

p.(l) = 1 8Ln(xi) (B.15) 
u 2Ln(Xi) 8x 

Using the properties (B.4) and (B.5) and recalling that 88~n lr=.:e; = 0 for 
i = 1, ... , n- 1 finally yields 

npl = Ln(x~c) 1 , 
r~.; ( )( ) k,i=1, ... ,n-1, k:f;i, 1 Ln Xi X/c - Xj 

p.(l) = 0 
n ' 

i=1, ... ,n-1, 

(1) 1 
P00 = - 4n(n + 1), 

(1} - 1 ( pnn - 4n n + 1). 

The second derivatives can be derived from equation (B.13) 

82</>i 
8x2 = 

Using the same methods as for the first derivative one can obtain 

p(2) = ! 1 82 Ln(Xi) 
n 3 Ln(xi) 8x2 

And thus 

p~~) = _2 Ln~Xk) 1 )
2

' k :f; i, 
• LnXi)(xk-Xi 

k = 1, ... , n- 1, i = 0, ... , n, 

p(2} _ (±l)n+ln(n + 1) _ 
2 

(±1)n 
ki - 2Ln(Xi)(±1- Xi) Ln(Xi)(±l- Xi)2 ' 

p.(2) __ ! n(n + 1) 
u - 3 1- X~ 1 

l 

k = 0, n, i = 0, ... , n, i :f; k, 

i=1, ... ,n-1, 

p~) = PJ~ = ;
4 

(n + 2)(n + l)n(n- 1). 

(B.16) 

(B.17) 

(B.18) 

(B.19) 
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Figure B.l: Lagrange interpolants tPi(:r) (i = 0, i = 1) through the Legendre 
Gauss-Lobatto points (•) for n = 2. 
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Figure B.2: Lagrange interpolants tPi(.r) (i = 0, i = 2) through the Legendre 
Gauss-Lobatto points ( •) for n = 4. 
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Figure B.3: Lagrange interpolants ¢i(z) (i = 0, i = 2, i = 4) through the Legendre 
Gauss-Lobatto points (•) for n = 8. 
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Figure B.4: Lagrange interpolants ¢i(z) (i = 0, i = 4, i = 8) through the Legendre 
Gauss-Lobatto points (•) for n = 16. 
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Appendix C 

Finite elem.ent 
preconditioned algorithm.s 

In this appendix the iterative algorithms with the idea of finite element 
preconditioning incorporated, that are analyzed in chapter 3, are presented. 
The spectral element system is denoted by 

Sc = Mf, (C.l) 

with S the system matrix and M the diagonal mass matrix. The linear 
finite element preconditioner, based on the same Legendre Gauss-Lobatto 
interpolation points is denoted by F. 

Minimum Residual 

solve Fc0 = Mf 
r0 = Mf- Sc0 

solve Fb0 = r 0 

do until llrk+1 11 small enough 
k (rk, Sbk) 

a = (Sbk,Sbk) 
ck+l = ck + akbk 
rk+l = rk - akSbk 

solve Fbk+1 = rk+l 

end do 

(C.2) 
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Conjugate Gradient 

solve Fc0 = Mf 
r0 = Mf- Sc0 

solve Fz0 = r 0 

bo = zo 
do until llrk+lll smaJ.l enough 

k (rk,zk) 
0 = (bk Sbk) 
ck+1 = i + okbk 
rk+l = rk - okSbk 
solve Fzk+1 = rk+l 

k (rk+l' zk+l) 
/3 = (rk,zk) 
bk+l = zk+I + (3kbk 

end do 

Bi-CGSTAB 
solve Fc0 = Mf 
r0 = Mf- Sc0 

Po= o = wo = 1 
vo =Po= 0 
do until !lrk+1 11 small enough 

p"+l = (ro, rk) 
/3- pk + 1 0! 

- pk :..;k 

pk+l = rk + /3 (Pk _ wkvk) 

solve Fy = pk 
vk+t = Sy 

pk + 1 
0! - ..,....:.,,...--.,....,...,,..,.. 

- frO vk+l) 
s = rk _: ovk+l 

solve Fz = s 
t = Sz 

k+l (t, s) 
w =ct,t) 
ck+1 = ck + oy 
rk+l = s - wk+lt 

end do 

(C.3) 

(C.4) 
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Backward differences 
formulae 

In chapter 4 an operator splitting method is discussed that decouples a 
convection-diffusion problem into a pure convection and a pure diffusion 
problem. For spectral-type methods the eigenvalues of the diffusion or stiff 
system are real and negative and grow like O(N4 ), if N -+ oo. Here N is the 
maximum of the number of degrees of freedom in each spatial direction. As 
a consequence, the diffusion part requires a time-integration with a stability 
area that includes the negative real axis. 

A desirable property for a multistep time-integration for the diffusion 
part is so-called A-stability (Hairer and Wanner, 1991). A method is called 
A-stable if the region of absolute stability includes the negative complex 
half plane. It is proven by Dahlquist (1963) that a multistep method that is 
A-stable can not have order greater than 2, and that the method of order 
2 with the smallest error constant is the trapezoidal method. Since for the 
diffusion part only the negative real axis has to be included in the stability 
region, the requirement of A-stability can be relaxed. For this purpose the 
property of A( a )-stability is introduced. A method is A( a )-stable if the 
region of absolute stability includes the wedge in Figure D.1, thus always 
including the negative real axis. 

A useful class of A( a )-stable time-integration methods is given by the 
so-called 'backward differences formulae' (Hairer et al., 1987). In a back
ward differences scheme the time-derivative is approximated via backward 
differentiation, leading to 
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Im(.X~t) 

Re(.X~t) 

Figure D.l: A(a)-stability region. 

k 

,Bocn+l - L ,Bicn+l-i 
i=l 

~t 
(D.l) 

where e.g. the superscript n + 1 denotes the approximation at the time 
t"'+l = ( n + 1 )~t with ~t the time-step. For consistency it is required that 

k 

,8o =I: ,aj. (D.2) 
i=l 

The coefficients of the schemes of order k = 1 through k = 4 are given in 
Table D.l. 

With respect to stability, backward differences schemes are accurate for 
all components around the origin in the stability diagram and absolutely 
stable away from the origin in the left imaginary plane. Backward differences 
schemes are implicit and available up to eleventh order; the schemes of order 
k = 1 through k = 6 are A( a: )-stable. In Figure D .2 the regions of absolute 
stability for the backward differences schemes of order k = 1 through k = 4 
are shown. The methods are stable outside of the closed contours. 
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4 

Im(A~t)O 

-4 

0 4 8 12 
Re(Adt) 

Figure 0.2: Regions of absolute stability of the backward differences schemes of 
order k = 1 through k = 4. The methods are stable outside of the 
closed contours. 

Table 0.1: Coefficients of the backward differences schemes of order k = 1 through 
k = 4. 

1 coefficient 1 k = 1 1 k = 2 1 k = 3 1 k = 4 1 

f3o 1 ~ ll 25 
2 6 12 

f3t 1 2 3 4 

/32 - _! -! -3 2 

{33 - - 1 4 
3 3 

/34 - - - 1 -4 
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Appendix E 

Spectral element pressure 
correction equations 

The operator splitting pressure correction scheme for the solution of the 
continuous Stokes equations in a bounded domain !l, as derived in chapter 
5, consists of the following steps: 

1. Calculate u* from 

~u·- Lit'Du"' = 2un- ~un-l- LitVpn + Litf'l+l. (E.l) 

2. Calculate p* from 

t"7 2p"' = ~ V · u* 
v 2 Lit . (E.2) 

3. Calculate un+l from 

(E.3) 

4. Calculate pn+l from 

pn+l = pn + p* - v\7 . u*. (E.4) 

For simplicity the following boundary conditions for the pressure correction 
scheme are assumed 

.. op'" 
u = 0, on = 0 on r. (E.5) 
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The solution space for the velocity is the space (Hfi.0(S1))2 defined by 

Hfi,o(fl) = { v, ::i E L2(fl) iv = 0 on r}. 
The solution space for the pressure is the space n;,o(fl) defined by 

(E.6) 

n;,o(fl) = { q, ::i E L2(n)l!! = o on r, k q dfl = o}. (E.7) 

First consider the discretization of step 1. The weighted residual formulation 
of equation (E.l) reads 

Find u* E Hfi,0(fl) such that: 

(~u*- at'Du"', v) = ( 2un- ~un-1, v) -at (Vp'\ v) 

+ at ( r+I, v), 'Vv E (H~.0(fl)?. (E.8) 

Application of Green's formula to the diffusion term leads to the weak or 
variational formulation 

Find u* E Hfi,0(fl) such that: 

(~u· + atvVu*, Vv) = ( 2un- ~un-l, v) -at (Vpn, v) 

+ at(fn+I,v), 'VvE(H~,0(S1)) 2 • (E.9) 

Application of the Lax-Milgram lemma, see also chapter 2, yields that prob
lem (E.9) has a unique solution u* E Hfi,0(fl). The discretization of equa
tion (E.9) is similar to that of the steady convection-diffusion equation de
scribed in section 2.3.2 and to that of the unsteady convection-diffusion 
equation described in section 4.4.2. It is of importance that since the pres
sure correction scheme is applied to the continuous Stokes equations, the 
degree of approximation n for velocity and pressure can be taken the same. 
As a consequence the discretization of the pressure term in equation (E.9) 
becomes rather simple. The resulting matrix-vector system reads 

2M n 1M n-1 u -- u 
2 

atQpn + atMr+I, (E.lO) 
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or equivalently 

(E.ll) 

r,s=O, ... ,n. 

Here M is the mass matrix, D is the diffusion or stiffness matrix and Q is 
the gradient matrix. Explicit expressions for these matrices in an element 
ne are 

n n 1 ~ ~ 

n;spq = v 2:2: lk'·n-IJI v ktpq · v klr11, 
k=O l=O kl 

(E.12) 

Q;spq = /r/11 Vr&pq, 

with /p (p = 0, ... , n) the Gauss-Lobatto weights, see equation (2.27), 
IJ jpq (p, q = 0, ... , n) the discrete transformation Jacobian, see equation 
(2.57), and Vr 11pq ( r, s, p, q = 0, ... , n) the discrete gradient, see equation 
{2.68). 

Next, consider the discretization of step 2. The weak formulation of 
equation (E.2) is given by 

Find p* E n:,o(!l) such that: 

(Vp*, \7q) = -~ ~t (\7 · u*, q), 'Vq E n:.o(!l). (E.13) 

Again, application of the Lax-Milgram lemma yields that problem (E.13) 
has a unique solution p* E H~,0(!l). The resulting matrix-vector system 
reads 

K ,.. 3 1 L • 
p = --- u. 

2 D.t 
This can equivalently be written as 

(E.l4) 

(E.15) 

r,s=O, ... ,n. 
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Here K is the pressure stiffness matrix and L is the divergence matrix. 
Explicit expression for these matrices in an element fle are 

(E.16) 

The discretized versions of step 3 and 4 (equations (E.3) and (E.4)), finally, 
are straightforward. The complete spectral element pressure correction equa
tions thus read: 

1. Solve for u• from 

(~M+~tn)u* = 

2. Solve for p* from 

K * 3 1 L • p = --- u 
2~t . 

3. Calculate un+l from 

4. Calculate p"+1 from 

2Mu"- ~Mu"-1 
2 

~tQp" + ~tMr+I. (E.17) 

(E.18) 

(E.19) 

(E.20) 
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Samenvatting 

Het doel van dit proefschrift is de ontwikkeling van nauwkeurige en efficH!nte 
oplosmethoden voor incompressibele stromingsproblemen met een dominant 
convectief gedeelte. De reden om spectraal elementen toe te passen is de 
hoge nauwkeurigheid die bereikt wordt, als 'voldoende' gladde stomingsver
schijnselen benaderd worden, binnen een raamwerk van geometrische :flexi
biliteit. 

In het eerste gedeelte van dit proefschrift wordt de spectraal elementen 
methode nader bekeken. Spectraal elementen methoden zijn hoge-orde p
type gewogen residuen technieken om partiEHe differentiaal vergelijkingen op 
te lossen. Ze combineren de geometrische :flexibiliteit van de conventionele 
h-type eindige elementen methode met de hoge nauwkeurigheid van spec
traal methoden. Voor een specifieke klasse van basisfuncties tonen spec
traal elementen methoden exponenWHe convergentie als gladde functies be
naderd worden. Dit is een groot voordeel t.o.v. conventionele lage-orde 
methoden, die slechts algebraisch convergeren. Van groot belang voor een 
numerieke methode is ook de efficH~ntie waarmee het resulterende discrete 
stelsel opgelost kan worden, zowel met betrekking tot geheugengebruik als 
rekentijd. Voor een spectraal elementen methode wordt dit op de eerste 
plaats bereikt door het gebruik van een iteratieve oplosmethode, en in de 
tweede plaats door het gebruik van een tensoriiHe basis die afgeleid is van de 
basis in een dimensie. Het aantal operaties nodig om de residuen in een ite
ratieve techniek uit te rekenen wordt op deze manier sterk verminderd. Nog 
een voordeel is dat de volle spectrale systeem matrix niet langer opgeslagen 
hoeft te worden, hetgeen resulteert in een efficient geheugengebruik. 

In het tweede gedeelte wordt het oplossen van incompressibele stromin
gen besproken. Als uitgangspunt wordt gekeken naar algemene tijdsafhanke
lijke convectie-diffusie problemen. Toepassing van lage-orde methoden leidt 
vaak tot oscillaties in de numerieke oplossing, als de convectie dominant 
is. De spectraal elementen methode daarentegen vertoont een zeer geringe 
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numerieke demping en dispersie. Voor tijdsafhankelijke problemen is ook 
de tijdsintegratie van groot belang. Aangezien convectie en diffusie ver
schillende verschijnselen zijn, ligt het voor de hand om ze apart te behan
delen m.b.v. een 'operator splitting' techniek, waarmee het probleem ge
splitst wordt in een puur convectie- en een puur diffusie-probleem. Hierdoor 
wordt een efficiente methode bereikt, omdat in dat geval het diffusie-gedeelte 
opgelost kan worden met een impliciete tijdsintegratie en een grote tijdsstap; 
het convectie-gedeelte wordt opgelost met een expliciete methode met een 
kleinere tijdsstap, indien nodig. De spectraal elementen methode biedt hier 
een groot voordeel door het gebruik van een diagonale massa-matrix, die 
bijzonder eenvoudig te inverteren is hetgeen leidt tot grote efficH~ntie. Ret 
diffusie-gedeelte kan opgelost worden met een iterative procedure. 

De volgende stap is het oplossen van de N a vier-Stokes vergelijkingen 
voor incompressibele stromingen. Ook hier wordt de keuze van oplosmetho
de mede bepaald door de behoefte aan een effici(~nte numerieke methode: 
een gemodificeerde continue druk-correctie methode. Er is gekozen voor een 
continue methode omdat dan niet aan de Brezzi-Babuska conditie voldaan 
hoeft te worden, zodat de approximatiegraad voor snelheid en druk gelijk 
genomen kan worden. De discrete vergelijkingen zijn dan eenvoudig te im
plementeren. In een druk-correctie methode worden de vergelijkingen ge
splitst in een stelsel problemen voor zowel snelheid als druk. Dit resul
teert in een convectie-diffusie probleem voor een tijdelijk snelheidsveld, dat 
opgelost wordt met de 'operator splitting' zoals hoven vermeld. Voor de 
druk-correctie resteert een Poisson vergelijking die opgelost wordt met een 
eindige elementen gepreconditioneerd iteratief schema. Vervolgens wordt 
de snelheid gecorrigeerd. Het grote voordeel van een druk-correctie is de 
garantie dat de benaderde stroming altijd incompressibel is. In dit proef
schrift wordt een modificatie op de standaard druk-correctie techniek voor
gesteld waarmee een tweede-orde consistent schema afgeleid kan worden. 
Dan zijn er ook geen problemen met betrekkking tot de formulering van een 
randvoorwaarde voor de druk-correctie. 
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Stellingen 

behorende bij het proefschrift 

Analysis of spectral element methods 
with application to incompressible ftow 

1. Toepassing van een hoge-orde Galerkin spectra.al elementen methode op sterk convec
tieve problemen leidt ook zonder de toevoeging van een stabilizerende upwind term tot 
zeer goede resultaten, zelfs in bet geval van een sterk niet-lineaire propagatie van een 
schok. 

• Dit proefschrift, hoofdstukken 2 en 4. 

• Vreugdenhil, C.B. and Koren, B. (eds.), Numerical methods for advection-diffusion 
problems (Vieweg, Braunschweig), 1993. 

2. Door toevoeging van een term aan de vergelijking voor de druk op het nieuwe tijdsniveau 
is de druk-correctie methode consistent met de originele Navier-Stokes vergelijkingen. 
Dan zijn er ook geen moeilijkheden m.b.t. de formulering van een randvoorwaarde voor 
de druk. 

• Dit proefschrift, hoofdstuk 5. 

3. Het gebruik van een diagonale massa-matrix, in plaats van een consistente massa-matrix, 
leidt voor een hoge-orde methode tot een veel kleiner verlies van nauwkeurigheid dan 
voor een lage-orde methode. Als gevolg hiervan biedt de spectraal elementen methode 
grate voordelen bij bet cre~ren van effici~nte oplosmethoden voor tijdsafhankelijke pro
blemen. 

• Dit proefschrift, hoofdstukken 4 en 5. 

• Timmermans, L.J.P and Van de Vosse, F.N ., Spectral methods for advection
diffusion problems, in: Numerical methods for advection-diffusion problems (eds. 
G.B. Vreugdenhil and B. Koren) (Vieweg, Braunschweig), 1993. 

4. Verreweg de belangrijkste grootheid in simulaties van incompressibele stromingen is een 
divergentie-vrij snelheidsveld. Hiervan kan op eenvoudige wijze worden afgeleid: druk, 
versnelling, vorticiteit, stroomfunctie etc. 

• Dit proefschrift, hoofdstuk 5. 

• Gresho, P.~I., Some current CFD issues relevant to the incompressible :<avier
Stokes equations, Camp. Meth .. <\ppl. Mech. Eng. 87 pp. 201-252, 1991. 

5. Onderzoekers die voornamelijk publiceren om een maximaal aantal publicaties te berei
ken, tonen een gebrek aan beroepsmoraal. 



6. Het is niet duidelijk of de verwaarlozing van bet verscbil van de impliciete tweede-orde 
termen in de standaard druk-correctie aanpak toegestaan is, indien zoals door Hawken et 
al. bet algoritbme toegepast wordt op bet continue stelsel Navier-Stokes vergelijkingen. 

• Hawken, D.M., Tamaddon-Jabromi, H.R., Townsend, P. and Webster, M.F., A 
Taylor-Galerkin based algorithm for viscous incompressible flow, Int. J. Numer. 
Meth. Fluids 10 pp. 327-351, 1990. 

7. De onderliggende gedachte bij het gebruik van projectie-methoden voor het oplossen 
van de Navier-Stokes vergelijkingen is: het mag eigenlijk niet, maar probeer het toch 
maar. 

• Gresho, P.M., On the theory of semi-implicit projection methods for viscous in
compressible flow and its implementation via a finite element method that also 
introduces a nearly consistent mass matrix. Part 1: Theory, Int. J. Numer. Meth. 
Fluids 11 pp. 587-620, 1990. 

8. De goede begeleider vormt een spiegel voor de promovendus. Hij reflecteert en dwingt zo 
de promovendus zichzelf te evalueren. De promovendus mag onder geen beding worden 
geleid. 

9. De ondraaglijke lichtheid van bet bestaan ligt hierin, dat een volledig gebrek aan gewicht 
of druk het bewijs ontneemt dat men voelt en dus leeft. 

• Milan Knndera, The unbearable lightness of being (Unwin Paperbacks, London), 
1989. 

10. Problemen m.b.t. het diskgebruik binnen een sterk numeriek gerichte vakgroep worden 
niet opgelost door uitbreiding van de compnterfaciliteiten, maar door het regelmatig 
instrneren en controleren van gebruikers. 

Eindhoven, 8 maart 1994 Luc Timmermans 


