551 research outputs found

    Spectral-spatial classification of hyperspectral images: three tricks and a new supervised learning setting

    Get PDF
    Spectral-spatial classification of hyperspectral images has been the subject of many studies in recent years. In the presence of only very few labeled pixels, this task becomes challenging. In this paper we address the following two research questions: 1) Can a simple neural network with just a single hidden layer achieve state of the art performance in the presence of few labeled pixels? 2) How is the performance of hyperspectral image classification methods affected when using disjoint train and test sets? We give a positive answer to the first question by using three tricks within a very basic shallow Convolutional Neural Network (CNN) architecture: a tailored loss function, and smooth- and label-based data augmentation. The tailored loss function enforces that neighborhood wavelengths have similar contributions to the features generated during training. A new label-based technique here proposed favors selection of pixels in smaller classes, which is beneficial in the presence of very few labeled pixels and skewed class distributions. To address the second question, we introduce a new sampling procedure to generate disjoint train and test set. Then the train set is used to obtain the CNN model, which is then applied to pixels in the test set to estimate their labels. We assess the efficacy of the simple neural network method on five publicly available hyperspectral images. On these images our method significantly outperforms considered baselines. Notably, with just 1% of labeled pixels per class, on these datasets our method achieves an accuracy that goes from 86.42% (challenging dataset) to 99.52% (easy dataset). Furthermore we show that the simple neural network method improves over other baselines in the new challenging supervised setting. Our analysis substantiates the highly beneficial effect of using the entire image (so train and test data) for constructing a model.Comment: Remote Sensing 201

    A novel spectral-spatial singular spectrum analysis technique for near real-time in-situ feature extraction in hyperspectral imaging.

    Get PDF
    As a cutting-edge technique for denoising and feature extraction, singular spectrum analysis (SSA) has been applied successfully for feature mining in hyperspectral images (HSI). However, when applying SSA for in situ feature extraction in HSI, conventional pixel-based 1-D SSA fails to produce satisfactory results, while the band-image-based 2D-SSA is also infeasible especially for the popularly used line-scan mode. To tackle these challenges, in this article, a novel 1.5D-SSA approach is proposed for in situ spectral-spatial feature extraction in HSI, where pixels from a small window are used as spatial information. For each sequentially acquired pixel, similar pixels are located from a window centered at the pixel to form an extended trajectory matrix for feature extraction. Classification results on two well-known benchmark HSI datasets and an actual urban scene dataset have demonstrated that the proposed 1.5D-SSA achieves the superior performance compared with several state-of-the-art spectral and spatial methods. In addition, the near real-time implementation in aligning to the HSI acquisition process can meet the requirement of online image analysis for more efficient feature extraction than the conventional offline workflow

    A novel band selection and spatial noise reduction method for hyperspectral image classification.

    Get PDF
    As an essential reprocessing method, dimensionality reduction (DR) can reduce the data redundancy and improve the performance of hyperspectral image (HSI) classification. A novel unsupervised DR framework with feature interpretability, which integrates both band selection (BS) and spatial noise reduction method, is proposed to extract low-dimensional spectral-spatial features of HSI. We proposed a new Neighboring band Grouping and Normalized Matching Filter (NGNMF) for BS, which can reduce the data dimension whilst preserve the corresponding spectral information. An enhanced 2-D singular spectrum analysis (E2DSSA) method is also proposed to extract the spatial context and structural information from each selected band, aiming to decrease the intra-class variability and reduce the effect of noise in the spatial domain. The support vector machine (SVM) classifier is used to evaluate the effectiveness of the extracted spectral-spatial low-dimensional features. Experimental results on three publicly available HSI datasets have fully demonstrated the efficacy of the proposed NGNMF-E2DSSA method, which has surpassed a number of state-of-the-art DR methods

    Introduction to Facial Micro Expressions Analysis Using Color and Depth Images: A Matlab Coding Approach (Second Edition, 2023)

    Full text link
    The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment. FMER is a subset of image processing and it is a multidisciplinary topic to analysis. So, it requires familiarity with other topics of Artifactual Intelligence (AI) such as machine learning, digital image processing, psychology and more. So, it is a great opportunity to write a book which covers all of these topics for beginner to professional readers in the field of AI and even without having background of AI. Our goal is to provide a standalone introduction in the field of MFER analysis in the form of theorical descriptions for readers with no background in image processing with reproducible Matlab practical examples. Also, we describe any basic definitions for FMER analysis and MATLAB library which is used in the text, that helps final reader to apply the experiments in the real-world applications. We believe that this book is suitable for students, researchers, and professionals alike, who need to develop practical skills, along with a basic understanding of the field. We expect that, after reading this book, the reader feels comfortable with different key stages such as color and depth image processing, color and depth image representation, classification, machine learning, facial micro-expressions recognition, feature extraction and dimensionality reduction. The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment.Comment: This is the second edition of the boo

    Authentication of Amadeo de Souza-Cardoso Paintings and Drawings With Deep Learning

    Get PDF
    Art forgery has a long-standing history that can be traced back to the Roman period and has become more rampant as the art market continues prospering. Reports disclosed that uncountable artworks circulating on the art market could be fake. Even some principal art museums and galleries could be exhibiting a good percentage of fake artworks. It is therefore substantially important to conserve cultural heritage, safeguard the interest of both the art market and the artists, as well as the integrity of artists’ legacies. As a result, art authentication has been one of the most researched and well-documented fields due to the ever-growing commercial art market in the past decades. Over the past years, the employment of computer science in the art world has flourished as it continues to stimulate interest in both the art world and the artificial intelligence arena. In particular, the implementation of Artificial Intelligence, namely Deep Learning algorithms and Neural Networks, has proved to be of significance for specialised image analysis. This research encompassed multidisciplinary studies on chemistry, physics, art and computer science. More specifically, the work presents a solution to the problem of authentication of heritage artwork by Amadeo de Souza-Cardoso, namely paintings, through the use of artificial intelligence algorithms. First, an authenticity estimation is obtained based on processing of images through a deep learning model that analyses the brushstroke features of a painting. Iterative, multi-scale analysis of the images is used to cover the entire painting and produce an overall indication of authenticity. Second, a mixed input, deep learning model is proposed to analyse pigments in a painting. This solves the image colour segmentation and pigment classification problem using hyperspectral imagery. The result is used to provide an indication of authenticity based on pigment classification and correlation with chemical data obtained via XRF analysis. Further algorithms developed include a deep learning model that tackles the pigment unmixing problem based on hyperspectral data. Another algorithm is a deep learning model that estimates hyperspectral images from sRGB images. Based on the established algorithms and results obtained, two applications were developed. First, an Augmented Reality mobile application specifically for the visualisation of pigments in the artworks by Amadeo. The mobile application targets the general public, i.e., art enthusiasts, museum visitors, art lovers or art experts. And second, a desktop application with multiple purposes, such as the visualisation of pigments and hyperspectral data. This application is designed for art specialists, i.e., conservators and restorers. Due to the special circumstances of the pandemic, trials on the usage of these applications were only performed within the Department of Conservation and Restoration at NOVA University Lisbon, where both applications received positive feedback.A falsificação de arte tem uma história de longa data que remonta ao período romano e tornou-se mais desenfreada à medida que o mercado de arte continua a prosperar. Relatórios revelaram que inúmeras obras de arte que circulam no mercado de arte podem ser falsas. Mesmo alguns dos principais museus e galerias de arte poderiam estar exibindo uma boa porcentagem de obras de arte falsas. Por conseguinte, é extremamente importante conservar o património cultural, salvaguardar os interesses do mercado da arte e dos artis- tas, bem como a integridade dos legados dos artistas. Como resultado, a autenticação de arte tem sido um dos campos mais pesquisados e bem documentados devido ao crescente mercado de arte comercial nas últimas décadas.Nos últimos anos, o emprego da ciência da computação no mundo da arte floresceu à medida que continua a estimular o interesse no mundo da arte e na arena da inteligência artificial. Em particular, a implementação da Inteligência Artificial, nomeadamente algoritmos de aprendizagem profunda (ou Deep Learning) e Redes Neuronais, tem-se revelado importante para a análise especializada de imagens.Esta investigação abrangeu estudos multidisciplinares em química, física, arte e informática. Mais especificamente, o trabalho apresenta uma solução para o problema da autenticação de obras de arte patrimoniais de Amadeo de Souza-Cardoso, nomeadamente pinturas, através da utilização de algoritmos de inteligência artificial. Primeiro, uma esti- mativa de autenticidade é obtida com base no processamento de imagens através de um modelo de aprendizagem profunda que analisa as características de pincelada de uma pintura. A análise iterativa e multiescala das imagens é usada para cobrir toda a pintura e produzir uma indicação geral de autenticidade. Em segundo lugar, um modelo misto de entrada e aprendizagem profunda é proposto para analisar pigmentos em uma pintura. Isso resolve o problema de segmentação de cores de imagem e classificação de pigmentos usando imagens hiperespectrais. O resultado é usado para fornecer uma indicação de autenticidade com base na classificação do pigmento e correlação com dados químicos obtidos através da análise XRF. Outros algoritmos desenvolvidos incluem um modelo de aprendizagem profunda que aborda o problema da desmistura de pigmentos com base em dados hiperespectrais. Outro algoritmo é um modelo de aprendizagem profunda estabelecidos e nos resultados obtidos, foram desenvolvidas duas aplicações. Primeiro, uma aplicação móvel de Realidade Aumentada especificamente para a visualização de pigmentos nas obras de Amadeo. A aplicação móvel destina-se ao público em geral, ou seja, entusiastas da arte, visitantes de museus, amantes da arte ou especialistas em arte. E, em segundo lugar, uma aplicação de ambiente de trabalho com múltiplas finalidades, como a visualização de pigmentos e dados hiperespectrais. Esta aplicação é projetada para especialistas em arte, ou seja, conservadores e restauradores. Devido às circunstâncias especiais da pandemia, os ensaios sobre a utilização destas aplicações só foram realizados no âmbito do Departamento de Conservação e Restauro da Universidade NOVA de Lisboa, onde ambas as candidaturas receberam feedback positivo
    corecore